potential织梦网

织梦网  时间:2021-02-24  阅读:()
Title:TuningElectronicPropertiesofPrussianBlueAnaloguesforEfficientWaterOxidationElectrocatalysis:ExperimentalandComputationalStudiesAuthors:ElifPnarAlsa,Eminelker,SatyaVijayaKumarNune,YavuzDede,andFerdiKaradasThismanuscripthasbeenacceptedafterpeerreviewandappearsasanAcceptedArticleonlinepriortoediting,proofing,andformalpublicationofthefinalVersionofRecord(VoR).
ThisworkiscurrentlycitablebyusingtheDigitalObjectIdentifier(DOI)givenbelow.
TheVoRwillbepublishedonlineinEarlyViewassoonaspossibleandmaybedifferenttothisAcceptedArticleasaresultofediting.
ReadersshouldobtaintheVoRfromthejournalwebsiteshownbelowwhenitispublishedtoensureaccuracyofinformation.
TheauthorsareresponsibleforthecontentofthisAcceptedArticle.
Tobecitedas:Chem.
Eur.
J.
10.
1002/chem.
201704933LinktoVoR:http://dx.
doi.
org/10.
1002/chem.
201704933FULLPAPERTuningElectronicPropertiesofPrussianBlueAnaloguesforEfficientWaterOxidationElectrocatalysis:ExperimentalandComputationalStudiesElifPnarAlsa,[a]Eminelker,[d]SatyaVijayaKumarNune,[a]YavuzDede,[c]*FerdiKaradas[a],[b]*Abstract:WhileseveralPrussianblueanalogues(PBAs)havebeeninvestigatedaswateroxidationcatalysts,thefieldlacksacomprehensivestudythatfocusesonthedesignoftheidealPBAforefficientwateroxidationcatalysis.
Herein,aseriesofPBAswithdifferentcyanideprecursorswereinvestigatedtostudytheeffectofhexacyanometalgrouptotheirelectrocatalyticwateroxidationactivities.
Cyclicvoltammetric,chronoamperometric,andchronopotentiometricmeasurementsrevealthecloserelationbetweentheelectrondensityofelectroactivecobaltsitesandelectrocatalyticactivity,whichisalsoconfirmedbyInfraredandXPSstudies.
pHdependentcyclicvoltammetryandcomputationalstudieswerealsoperformedtogaininsightaboutthecatalyticmechanismandelectronicstructureofcyanide-basedsystemstoidentifypossibleintermediatesandtoassigntherate-determiningstepofthetargetprocess.
IntroductionIncreaseinenergydemandhasforwardedscientificcommunity,particularlyinthelasttwodecades,tofindalternativeenergysourcesthatwillreplacelimitedfossil-basedfuels.
[1]SincesolarenergythatutilizestheproductionofH2fromwaterhasbeenoneofthemostpromisingcandidatesamongsustainablesourcesofenergy,muchefforthasrecentlybeendevotedtoinvestigateefficientmethodstosplitwater.
[2–7]Sincewatersplittingprocessismostlylimitedbythehighoverpotentialofoxygenevolutionreaction(OER),manystudieshavebeenperformedtointroducenovelcatalyststhatoperateatlowoverpotentials.
[8]Manyinorganicsystemsincludingmetaloxides,[9–12]perovskites,[13–15]amorphousmaterials,[16]noble-metalbasedmaterials,[17,18]andmetalorganicframeworks(MOFs)[19,20]havebeeninvestigatedasWOCs.
Ofthese,cobaltoxidesstandforwardduetotheirhighcatalyticactivities.
[21,22]Despitetheirhighcatalyticactivities,cobaltoxideshavemainlytwodisadvantages;[23,24]i)lowstabilityandhightendencytodecomposeinacidicmedium,ii)difficultyincorrelationofthecatalyticactivitieswithstructureduetotheiramorphousnature.
Non-oxidematerialshavealsodrawnattentionasWOCsduetotheirfavorablecharacteristicssuchaseaseofpreparation,stabilityatawiderangeofpH,androbustnessduringcatalyticprocesses.
[25]Patzkeetal.
reportedacarbodiimide-basedmaterialthatcouldbeusedasaWOC,whichisstableinacidicandneutralmedia.
[26]Asimilarclassofmaterials,metaldicyanamides,hasalsoshowntobepromisingcandidatesforwateroxidationelectrocatalysis.
[27]Cobalthexacyanoferrates,membersofPrussianblueanalogue(PBA)family,arealsoexceptionalcandidatesforelectrocatalyticwateroxidationduetotheirhighcatalyticactivities,robustness,andstabilityatneutralpH.
[28–30]AfurtherstudybyPatzkeetal.
showedthatPBAscanalsobeusedforlightdrivenwateroxidationprocessinthepresenceof[Ru(bpy)3]2+asachromophore.
[31]Despitetheirhighturnoverfrequencies(TOFs),oneofthemaindrawbacksofcyanide-basedsystemsistheirlowconcentrationofelectroactivecobaltsites.
TheirlowconcentrationisattributedtotherelativelylargerdistancesbetweenCo(II)sites(~10)comparedtooxide-basedsystems(~3).
[28]Thisproblemhasrecentlybeenovercomebyourgroupwiththeuseofanovelpentacyanoferrate-boundpolymerasaprecursorforCo-FePBAs,whichresultedinadramaticdecreaseinthecrystallinitiesofPBAs,andthus,asignificantincreaseinthesurfaceconcentration.
[32]aln-asarsal.
approachedthesameproblembyusinganewsyntheticmethodforthepreparationofthinfilmsofPBAs,whichinvolveschemicaletchingofcobaltoxideswithahexacyanoferratesolutiontoformaninsituPBAfilm.
ThisnovelmethodledtoanimpressiveimprovementonthestabilityoftheelectrodeandelectrocatalyticperformanceinawiderangeofpH.
Itexhibitsamuchloweroverpotential(510mV)toobtainacurrentdensityof1mAcm2.
[33]Inaddition,Fukuzumietal.
investigatedthephotocatalyticwateroxidationperformancesofaseriesofCo-PtPBAsinthepresenceofwell-definedRu(bpy)32+/S2O82-couple.
Thesystematicstudyperformedwith[Co(CN)6]3and[Pt(CN)6]4groupsindifferentstoichiometricratiosclearlyshowedthatnumberofactivesitesishighlydependentonthenumberofdefects.
[34,35]FukuzumiandcoworkersalsostudiedtheeffectofcountercationtothecatalyticactivityandquantumefficiencydisplayedbyCo-CoPBAsinphotocatalyticwateroxidationprocessshowingthataquantumefficiencyof200%canbeachievedwithCo-CoPBAsincorporatingcalciumionsascountercations.
[36]PreviousstudiesmentionedaboveclearlyshowthatslightmodificationsinthestructureofPBAscouldleadtoasignificantincreaseintheircatalyticactivities.
Althoughpreviousstudiestookadvantageofrichandwell-establishedcyanidechemistrynostudyhasbeenperformedtoinvestigatetheeffectof[a]E.
P.
Alsa,Dr.
S.
V.
K.
Nune,Prof.
F.
KaradasDepartmentofChemistry,BilkentUniversity,06800Ankara(Turkey)E-mail:karadas@fen.
bilkent.
edu.
tr[b]Prof.
Dr.
F.
KaradasUNAM-InstituteofMaterialsScienceandNanotechnologyBilkentUniversity,06800Ankara,(Turkey)[c]Prof.
Y.
Dede,FacultyofScience,DepartmentofChemistry,GaziUniversity06500,Ankara(Turkey)dede@gazi.
edu.
tr[d]Prof.
E.
lkerDepartmentofChemistry,FacultyofArts&Sciences,RecepTayyipErdoganUniversity,53100,Rize(Turkey)SupportinginformationforthisarticleisgivenviaalinkattheendofthedocumentFULLPAPERhexacyanometalunittotheelectronicpropertiesandcatalyticperformanceofelectroactivecobaltsites.
Herein,electrocatalyticmeasurementsonaseriesofcobalthexacyanometalates(CHCMs)incorporatingdifferentM(CN)6units(M=CoIII,CrIII,FeII/III,and)togetherwithcharacterizationstudieswereperformedtoinvestigatetheeffectofthetypeandoxidationstateofthemetalinM(CN)6unittothecatalyticactivityofPBAs.
TheeffectofhexacyanometalgrouptotheelectronicpropertiesofelectroactivecobaltsitewasfurtherexaminedwithelectronicstructurecalculationsemployingDensityFunctionalTheory(DFT).
[37,38]ResultsandDiscussionElectrochemistryAlltheelectrochemicalexperimentswereconductedwithaPBAmodifiedfluorine-dopedtinoxide(FTO)electrode.
CyclicVoltammograms(CVs)ofCo[M(CN)6](M:CoIII,CrIII,andFeII/III)weretakeninaphosphatebufferwith1MKNO3astheelectrolyteina0.
2–1.
7Vvs.
NHEpotentialrange(Figure1).
[CoII-CoIII]exhibitsaquasi-reversibleredoxcouplewithanoxidationpeakat1.
210Vandareductiononeat1.
031Vvs.
NHEthatcanbeassignedtoCo2+/Co3+redoxcouple.
AsimilarredoxcouplewasobservedalsoforotherPBAs.
Anotherpeak,atamorepositivepotential,isobservedataround1.
415Vvs.
NHEfor[CoII-CoIII],whichcanbeassignedtoCo3+/Co4+redoxprocess.
[39]Tafelplotsofeachcatalystwereobtainedbyperformingchronoamperometrymeasurementsatdifferentappliedpotentialstofurtherinvestigatetheirelectrocatalyticperformances.
Alineartrendwasobtainedbetweenthelogarithmofthesteadystatecurrentdensitiesandinanoverpotentialrangeof283–483mVwithTafelslopesin90–130mVdec1range(Figure2).
Tafelslopesobtainedwith[CoII-FeII]and[CoII-FeIII]areslightlyhigherthanthosereportedprislalan-asarsal.
[28,33]ThedifferenceismainlyattributedtodifferentpreparationmethodssincePBAmodifiedelectrodespreparedviaaninsitumethodexhibitlowerTafelslopes(~90mVdec-1)comparedtothosepreparedwithdropcasting.
[26,32]Figure1.
CyclicVoltammogramsofPBderivatives([CoII-CoIII]black,[CoII-CrIII]red,[CoII-FeIII]blue,and[CoII-FeII]greenlines)in50mMKPielectrolyteatpH7with50mvsec-1sweeprate.
Thegraylineindicatestheelectrochemicalresponseofblankelectrode.
SimilarityintheTafelslopesindicatessimilarOERmechanisms.
Accordingtochronoamperometricmeasurementsonsetoverpotentialsof283,303,323,and343mVsareobtained,respectively,for[CoII-CoIII],[CoII-CrIII],[CoII-FeIII],and[CoII-FeII],whichareinlinewithcyclicvoltammetricstudies(FigureS1).
SurfacecoverageoftheelectroactiveCo2+speciesonFTOelectrodei.
e.
,surfaceconcentration,wasdeterminedbyperformingCVsatdifferentscanrates(25–225mVsec1range)recordedinthe0.
8–1.
6Vrange.
Surfaceconcentrationofderivativeswereobtainedinthe2–5nmolcm2range,whichisingoodagreementwiththepreviouslyreportedstudies(FigureS2).
[28,32]Figure2.
TafelplotsforPBderivativesfrom1.
1to1.
4VvsNHErecordedina50mMKPibufferatPh7.
0.
Surfaceconcentrationwasusedtoassessturnoverfrequencies(TOFs)ofPBAs.
TOFsatanoverpotentialof400mVwereobtainedas5.
0*102s1,3.
0*103s1,4.
4*103s1,and5.
0*103s1for[CoII-CoIII],[CoII-FeII],[CoII-FeIII],and[CoII-CrIII](FigureS3).
AcomparisonofTOFs,thus,showsthatCo(II)sitesavailablein[CoII-CoIII]exhibitthehighestcatalyticactivity.
Chronopotentiometry(CP)hasbeenperformedtomonitortheoverpotentialrequiredtoobtainacurrentdensityof1mAcm2duringa2hexperiment.
Theoverpotentialfor[CoII-CoIII],decreasesslightlyatfirstandthenmaintainsaconstantoverpotentialwhileitincreasesgraduallyuntilstabilizationforotherPBAs.
Theobservedoverpotentialsfor1mAcm2areslightlyhigherthantheonesextractedfromTafelslopesduetotheformationofO2bubblesontheelectrodesurfaceduringthemeasurement.
CPstudiesshowthat[CoII-CoIII]exhibitsthelwsrpnialandη1mAisdeterminedtobe531,578,661,and692mVsfor[CoII-CoIII],[CoII-CrIII],[CoII-FeIII],and[CoII-FeII],respectively(Figure3).
FULLPAPERTable1.
SummaryofelectrochemicalpropertiesforPBAsFigure3.
ChronopotentiometrymeasurementofPBderivativesat1mAcm-2ina50mMKPibufferatpH7.
0Longtermchronoamperometricstudiesatanappliedpotentialof1.
4VvsNHEwereperformedtoinvestigatethestabilityofthePBAmodifiedelectrodes.
Thecurrentdensityforeachcatalystdecreasesuntilitreachesaconstantvalueaspreviouslyreportedrrpandaln-asarsal.
[28,32]Thesametrendcanbeobtainedforfourrepeatingcyclesandtheclosesimilarityofcyclicvoltammetricprofilesobtainedaftereachcycleindicatesthatcatalystsretaintheirstructureevenduringlongtermcatalyticprocesses(FigureS4).
Aninterestinganomalyisobservedonlyfor[CoII-CrIII]whereadecreaseincurrentdensityisobtainedasusualfollowedbyanabruptincreaseafteraround10hours.
AcomparisonoftheCVsobtainedbeforeandaftera24helectrolysisexperimentindicatesasignificantincreaseintheonsetoverpotentialandcatalyticcurrentdensity,whichcouldbeattributedtothedecompositionof[CoII-CrIII]toamorecatalyticallyactivespecies.
Ourcharacterizationstudies,whichwillbediscussedinthefollowingsectionalsosuggestthatthedecompositionoccursonlyduringlong-termelectrolysisstudies(longerthan10h).
Furthermore,asimilarelectrolysisstudyequippedwithanO2probehasbeenperformedwith[CoII-CoIII]toinvestigatetheoriginofcurrentdensityandFaradaicefficiency.
TheperfectmatchbetweenthetheoreticalyieldobtainedfromchronocoulometrymeasurementandtheexperimentaloneobtainedfromO2probeindicatesthattheonlyoriginofcurrentdensityiscatalyticwateroxidationtoO2evolutionprocessandtherearenocompetingredoxreactions(FigureS5).
CharacterizationStudiesAllsamplesareisostructuralwithPrussianBluecrystalstructureadoptingface-centeredcubicstructure(fcc)withFm3mspacegroupasconfirmedbypowderXRDstudies.
Thecharacteristic2ha(2θ)paksfrPrssianBlhansrdfrallofthematerials(FigureS6)andlatticeparameterwasdeterminedtobearound10foreachderivative(TableS1).
XRDanalysisingracingincidencemodewasalsoperformedonthecatalystsdepositedonFTObefore(pristine)andafter(post-catalytic)theelectrocatalyticstudiestoinvestigatethestructuralstabilityofcatalystduringelectrocatalysis.
NoadditionalpeakswereobservedintheXRDofpost-catalyticsamplesandthepeakscorrespondingtoPrussianBluetypestructureremainconfirmingthestabilityofcatalysts(Figure4).
TheatomicratioofmetalsineachcompoundwasextractedbyEDXanalysis(TableS2).
Thefollowingmolecularformulaewereobtainedbasedonstoichiometricratioofmetals:K0.
76Co2.
62[Co(CN)6]2,K0.
82Co2.
59[CrIII(CN)6]2,K0.
62Co2.
69[FeIII(CN)6]2,andK1.
40Co3.
30[FeII(CN)6]2for[CoII-CoIII],[CoII-CrIII],[CoII-FeIII],and[CoII-FeII],respectively.
Eachcompoundhassimilarpotassiumcontentinthe0.
6-0.
8range,whichresultsinanaverageof~4.
5CNgroupsperCo(II)sites.
TheremainingcoordinationsphereofCo(II)sitesareoccupiedbywatermolecules,whichplayactiveroleinwateroxidation(FigureS7).
CompoundCo2+/3+(mV)V(CN)(cm1)TOF(η=400mV)SurfaceConcentration(nmolcm2)η1mAfromTafelPlot(mV)TafelSlope(mVdec-1)η1mAfromCP(mV)ηonset(CV)[CoII-CoIII]1.
01021765.
0*1024.
1153199565283[CoII-CrIII]1.
08421735.
0*1033.
9057896598303[CoII-FeIII]1.
08421204.
4*1035.
48661127717323[CoII-FeII]0.
99520723.
0*1032.
006921211079343FULLPAPERFigure4.
GI-XRDpatternsofPBderivativesforpristine(blacklines)andpostcatalytic(redlines).
ThepeaksthatbelongtoFTOelectrodearemarkedwithtriangle()andthepeaksbelongtoPrussianBluearemarkedwithasterisk(*).
InfraredstudiesshowthatPBAsexhibitthecharacteristicbandsthatareobservedforPrussianbluetypesystems;a)asharpbandataround1610cm1andabroadoneat3200–3500cm1,whichrepresentH-OHbendingandOHstretch,respectively,b)asharppeakataround490–590cm1duetoM-Cstretch,andc)asharpstretchataround2120–2180cm1thatisattributedtoCNstretch(TableS3).
PBAsexhibithigherCNstretchingfrequenciescomparedtotheirhexacyanometalprecursors,whichconfirmthebindingofnitrogenatomsofcyanidetoCo(II)sites[28,40](FigureS8).
TheInfraredanalysiswasalsoperformedonthepost-catalyticsamples.
TheclosesimilaritybetweentheinfraredspectraofcyanidestretchesofpristineandpostcatalyticsamplessuggeststhatcatalystsM-CN-CoIItypecoordinationmodeispreservedduringelectrolysis(FigureS9).
Aslightshifttohigherfrequenciesobservedinpost-catalytic[CoII-FeII],whichwasobservedalsoinpreviousstudies,canbeattributedtothepartialoxidationofironionsfrom+2to+3duringelectrocatalysis.
XPSstudiesalsoconfirmtheremarkablestabilityofPBelectrocatalysts.
InordertoinvestigatetheoxidationstateofelectroactiveCoIIsitesinpristineandpostcatalyticelectrodesCo2psignalwasexaminedinthebindingenergyregionbetween810-775eV.
InpreviousstudiesthebindingenergyofCo2p3/2andCo2p1/2signalsforCoIIsaltshavebeenreportedas782.
28and798.
38eVs,respectively.
Forthepristinesamples,Co2p3/2andCo2p1/2signalswereobservedinthesamerange.
ThesimilaritybetweenthebindingenergiesofCo2psignalsobtainedforpristinePBAsandpreviouslyreportedCoIIsaltssuggeststhattheoxidationstateofelectroactiveCoatomsis+2(Figure5).
NosignificantchangesintheCo2p3/2andCo2p1/2signalswereobservedinthepostcatalyticsamplesindicatingthestabilityoftheCoIIsites.
Figure5.
XPSofCo2pregionforpristine(blacklines)andpostcatalytic(redlines)ofPBderivativesInadditiontoCo2p,O1ssignalswerealsoexaminedforbothpristineandpostcatalyticsamples(FigureS10).
TheO1ssignalwhosebindingenergyishigherthan530eVindicatestheabsenceofanycobaltoxidespeciesbeforeandafterelectrochemicalexperimentsevenfor[CoII-CrIII].
TheobservedvaluesaredisplayedinTableS4.
AmildnoticeablebroadeningintheO1ssignalinthepostcatalyticsamples,indicatingapartialandreversibleoxidationofelectroactiveCoIIsites.
MechanismforCatalyticWaterOxidationTheCNstretchcouldbeconsideredasthefingerprintforcyanide-basedcoordinationcompounds.
Thecomparisonoftheshiftinthecyanidestretchcanbeusednotonlytoconfirmthebridgingcyanidegroupbutalsotoevaluatetheoxidationstates,andthus,electrondensitiesofmetalions.
ConsideringthattheFULLPAPERcyanidestretchshiftstohigherfrequenciesastheoxidationstateofthemetalincreasesadirectcorrelationcanbeestablishedwiththeshiftofthecyanidestretchandtheelectrondeficiencyofCoIIcenters.
ThecomparisonofcyanidestretchesimpliesthattheelectrondensitiesofCoIIsitesinPrussianblueanaloguescanbeorderedas:[CoII-CoIII]~[CoII-CrIII][CoII-CrIII]>[CoII-FeIII]>[CoII-FeII],whichpointsoutthatCoIIsitesin[CoII-CoIII]analoguehavethelowestelectrondensitiesamongall.
Theevaluationofelectrondensitiescangiveinsightabouttheratedeterminingstep(r.
d.
s.
)inwateroxidationcatalysis.
Twostepshavengenerallybeenreportedtocompetewitheachotherasther.
d.
s.
inwateroxidationprocess;i)CoIII-OH/CoIV-O(oxo)orCoIII-OH/CoIII-O(oxyl)oxidationstepandii)thenucleophilicattackofwatertotheelectrophilicoxygenatomofoxo/oxylspeciesthatresultsinO–Obondformation.
TheincreaseintheelectrondensityofCoIIsitefacilitatestheformerstepwhileitdecreasestheelectrophilicnatureofoxo-intermediateand,thus,impedesthelatter.
TheaforementioneddiscussiononthecomparisonofelectrondensitiesofCoIIsitesinPBAsandtheirelectrocatalyticperformancesclearlyshowthat[CoII-CoIII]standsoutasthemostefficientcatalystamongPBAswhileithasCoIIsiteswiththelowestelectrondensity.
ThiscorrelationpointsoutthatthenucleophilicattackofwatertoFigure6.
FTIRspectraofPBderivativesthatshowscyanidestretches.
oxo/oxylintermediateisther.
d.
s.
ofwateroxidationprocessforPBAs.
Herein,itshouldbenotedthattheelectronicpropertiesofthecatalystswilldifferwhenapotentialisapplied.
Catalyticallyactivecobaltionswillbeintheirhigheroxidationstatesparticularlywhentheappliedpotentialisabove1VvsNHE.
Nevertheless,thedifferenceintheelectrondensityofcobaltionsshouldbepreservedgiventhatstructuralintegrityofcyanideframeworkispreservedandthatmetalioninM(CN)6buildingblockisnotoxidized.
Whilethisassumptioncanbevalidwithhexacyanometalgroupsthatcontainmetalionsintheir3+oxidationstates,Fe2+ionin[Fe(CN)6]4-groupisexpectedtobeoxidizedwhenapotentialabove1Visapplied.
[41]TheoxidationofallFe2+ionsis,however,akineticallydemandingprocesssinceitrequiresmorepotassiumionstobetransportedfromtheframeworktotheelectrolyteduetochargeneutralityand,moreimportantly,therearenotenoughpotassiumionstoproduceafully-oxidized[CoIII-FeIII]system.
Therefore,thecatalyticallyactivespeciesin[CoII-FeII]containsamixtureofFeionswithoxidationstatesof2+and3+.
ThedifferenceinthecurvaturesofthebandsassignedtoFe2+/3+andCo2+/3+redoxprocessesfor[CoII-FeII]and[CoII-FeIII]alsoindicatesdifferentkineticsforthesetwoanalogues(FigureS11).
Thelowersurfaceconcentrationandturnoverfrequencyobtainedfor[CoII-FeII]couldthenbeattributedtothedifferenceinthekineticsoftheirelectrontransferandtheirelectronicproperties.
AfurtheranalysisofthemechanismwasmadebasedonthePourbaixdiagram(Figure7),whichwasobtainedbyperformingCVsfor[CoII-CoIII]atdifferentpHs(FigureS12).
ThediagramshowsthatCo2+/Co3+redoxprocessispHdependentinthepH4–10rangewithaslopeof64mVlog[H+]-1,whichreferstoa1H+–1eprocess.
Figure7.
PourbaixDiagramof[CoII-CoIII]inKPibufferatpHsfrom2to13.
CyclicVoltammogramsthatarerecordedatthesepHsareshowninFigure(S10).
Interestingly,thehalf-potentialforthesecondredoxstepispreservedregardlessofpH(97.
0%),cobaltchloridehexahydrateCoCl2.
6H2O(Sigma-Aldrich,98.
0%),PotassiumhexacyanochromateK3[Cr(CN)6](Aldrich,99.
99%),PotassiumhexacyanoferrateK3[Fe(CN)6](Sigma-Aldrich,>97.
0%),potassiumhexacyanoferratetrihydrate,K3[Fe(CN)6].
3H2O(Sigma-Aldrich,98.
5-102%).
AllthesolutionswerepreparedwithMilliporeMilli-Qdinizdwarwiharsisiif18.
2m.
m.
ExperimentalKaCob[M(CN)6]·xH2O(M=FeII,FeIII,CoIII,andCrIII)abbreviatedthroughoutas[CoII-FeII],[CoII-FeIII],[CoII-CoIII],and[CoII-CrIII].
Inthecaseof[CoII-CoIII]anaqueoussolutionofCoCl2.
6H2O(0.
15M,20mL)wasaddeddropwisetoanaqueoussolutionofK3[Co(CN)6](0.
10M,20mL)atroomtemperature.
Themixturewaskeptunderstirringfor1hourandthenallowedtowaitovernightforprecipitation.
Thesolutionwasfilteredbyvacuumsuctionandwashedwithcopiousamountsofwatertoobtainthepinkpowder.
Thepowderwasdriedfurtherindesiccator.
Thesameprocedurewasappliedfor[CoII-FeII](darkblue),[CoII-FeIII](darkbrown),and[CoII-CrIII](paleyellow).
PreparationPBAmodifiedFTOElectrodesFTOelectrodeswereprocuredfromSigma-Aldrich(with~80%ransmian,2mmwihasrfarsisanf7.
sq-1,1x2cm).
Electrodeswerewashedbysonicationfor10minutesinbasicsoapysolution,deionizedwaterandisopropanolrespectively.
Thentheywereannealedat400oCfor30minutes.
CatalystmodifiedelectrodeswereFULLPAPERpreparedbydropcastingmethod.
Amixtureof5mgofPBAcatalyst,500μLDF,500μLwarand100μLNafinslinwrmixdandsonicatedfor30minutes.
Aftermakingastalsspnsin,50μLfiwastakenanddroppedontobycovering1cm2oftheFTOelectrode.
Electrodeswerethendriedatroomtemperaturefor10minutesfollowedby80oCfor10minutesinanoven.
Thentheywereleftindesiccatoruntilfurtheruseforelectrochemicalexperimentsandcharacterization.
ElectrochemicalMeasurementsGamryInstrumentsInterface1000Potentiostat/Galvanostatwasusedforperformingelectrochemicalmeasurements.
AconventionalthreeelectrodecellwasusedwithAg/AgCl(3.
5MKCl)asreferenceelectrode,FTOastheworkingelectrode,andPtwireascounterelectrode.
YSI5100dissolvedoxygensensingelectrodeinstrumentequippedwithadissolvedoxygenfieldprobewasusedtodeterminetheoxygenevolution.
KPibuffersolutionwaspreparedbyusingKH2PO4andK2HPO4andpHofthesolutionwasadjustedbyaddingH3PO4orKOH.
Bulkwaterelectrolysiswasperformedwithatwocompartmentcellwithseparationofaglassfrit.
TheelectrolysisandsteadystatechronoamperometryexperimentswereperformedinKPibuffersolutioncontaining1MKNO3asspprinlrl.
lrTldS220SnCmpapH/InpHmeterwasusedtodeterminethepHsofbuffersolutions.
AlloftheelectrochemicalexperimentswereperformedatroomtemperatureandunderN2atmosphere.
PhysicalMeasurementsXRDparnswrmasrdsinaPananalialX'PrPrMultipurposeX-RayDiffractometer(MPD)withCuKαX-RayRadiation(λ=1.
5418).
I-XRDpatternswererecordedbyusingaPanalyticalX'Pr3RDarialRsarhDifframr(RD)wihCKαX-rayradiation(l=1.
5418a)atanincident(w)angleof0.
58.
FTIRspectraweretakenbyusingaBrukerAlphaPlatinum-ATRSpectrometerwithwavenumberrangebetween4000-400cm1.
FEI-Quanta200FEGESEMwasusedforimagingandEDAXanalysis,at5kVbeamvoltageforimagingand30kVforEDAX.
XPSanalysiswasperformedusingThermoScientificK-AlphaX-RayPhotoelectronSpectrometersystemwithaAlKαmicrofocusedmonochromatorsourceoperatingat400mmspotsizeandhγ=14.
86.
6eVaccompaniedbyafloodgun,200eVforsurveyscanand30eVforindividualscans.
InordertoplotandanalyzetheresultsOriginPro8.
5wasused.
AcknowledgementsTheauthorsthanktheScienceandTechnologyCouncilofTurkey,TUBITAK(ProjectNo:215Z249)forthefinancialsupport.
E.
U.
thanksTUBITAKforsupport(ProjectNo:1929B011500059).
Y.
D.
thanksM.
N.
ParlarFoundation,BAGEPandTBA-EBPfrninsiarawards.
TUBITAKTRGRIDinfrastructureisgratefullyacknowledgedforHPCresources.
WealsothankProf.
Buraklgütforhishelpfuldiscussionsonelectrochemistry.
Keywords:WaterOxidationPrussianBlueDFTcyanideelectrocatalysis[1]N.
S.
Lewis,D.
G.
Nocera,PNAS2006,103,15729–15735.
[2]A.
Llobet,F.
Meyer,Angew.
Chemie-Int.
Ed.
2011,50,A30–A33.
[3]N.
S.
Lewis,Science(80-.
).
2016,351,aad1920-9.
[4]J.
Marshall,Nature2014,510,22–24.
[5]J.
R.
McKone,N.
S.
Lewis,H.
B.
Gray,Chem.
Mater.
2014,26,407–414.
[6]M.
G.
Walter,E.
L.
Warren,J.
R.
McKone,S.
W.
Boettcher,Q.
Mi,E.
A.
Santori,N.
S.
Lewis,Chem.
Rev.
2010,110,6446–6473.
[7]K.
J.
Young,L.
A.
Martini,R.
L.
Milot,R.
C.
Snoeberger,V.
S.
Batista,C.
A.
Schmuttenmaer,R.
H.
Crabtree,G.
W.
Brudvig,Coord.
Chem.
Rev.
2012,256,2503–2520.
[8]M.
E.
G.
Lyons,M.
P.
Brandon,J.
Electroanal.
Chem.
2010,641,119–130.
[9]R.
D.
L.
Smith,M.
S.
Prévot,R.
D.
Fagan,Z.
Zhang,P.
A.
Sedach,M.
K.
J.
Siu,S.
Trudel,C.
P.
Berlinguette,Science(80-.
).
2013,340,60–63.
[10]Y.
Surendranath,M.
Dinca,D.
G.
Nocera,J.
Am.
Chem.
Soc.
2009,131,2615–2620.
[11]S.
Jung,C.
C.
L.
McCrory,I.
M.
Ferrer,J.
C.
Peters,T.
F.
Jaramillo,J.
Mater.
Chem.
A2016,4,3068–3076.
[12]C.
C.
L.
McCrory,S.
Jung,I.
M.
Ferrer,S.
M.
Chatman,J.
C.
Peters,T.
F.
Jaramillo,J.
Am.
Chem.
Soc.
2015,137,4347–4357.
[13]Gurudayal,D.
Sabba,M.
H.
Kumar,L.
H.
Wong,J.
Barber,M.
Grtzel,N.
Mathews,NanoLett.
2015,15,3833–3839.
[14]A.
Kudo,H.
Kato,S.
Nakagawa,J.
Phys.
Chem.
B2000,104,571–575.
[15]J.
Suntivich,K.
J.
May,H.
A.
Gasteiger,J.
B.
Goodenough,Y.
Shao-Horn,Science(80-.
).
2011,334,1383–1385.
[16]Y.
Zhang,C.
Zhao,X.
Dai,H.
Lin,B.
Cui,J.
Li,J.
PowerSources2013,243,908–912.
[17]L.
G.
Bloor,P.
I.
Molina,M.
D.
Symes,L.
Cronin,J.
Am.
Chem.
Soc.
2014,136,3304–3311.
[18]T.
Reier,M.
Oezaslan,P.
Strasser,ACSCatal.
2012,2,1765–1772.
[19]B.
Nepal,S.
Das,Angew.
ChemieInt.
Ed.
2013,52,7224–7227.
[20]Y.
Gong,Z.
Hao,J.
Meng,H.
Shi,P.
Jiang,M.
Zhang,J.
Lin,Chempluschem2014,79,266–277.
[21]Y.
Matsumoto,E.
Sato,Mater.
Chem.
Phys.
1986,14,397–426.
[22]D.
E.
Hall,J.
Electrochem.
Soc.
1985,132,41C–48C.
[23]J.
R.
Galan-Mascaros,ChemElectroChem2015,2,37–50.
[24]C.
C.
L.
McCrory,S.
Jung,J.
C.
Peters,T.
F.
Jaramillo,J.
Am.
Chem.
Soc.
2013,135,16977–16987.
[25]Z.
Chen,A.
R.
Rathmell,S.
Ye,A.
R.
Wilson,B.
J.
Wiley,Angew.
ChemieInt.
Ed.
2013,52,13708–13711.
[26]D.
Ressnig,M.
Shalom,J.
Patscheider,R.
Moré,F.
Evangelisti,M.
Antonietti,G.
R.
Patzke,J.
Mater.
Chem.
A2015,3,5072–5082.
[27]S.
V.
K.
Nune,A.
T.
Basaran,E.
lker,R.
Mishra,F.
Karadas,ChemCatChem2017,9,300–307.
[28]S.
Pintado,S.
Goberna-Ferron,E.
C.
Escudero-Adan,J.
R.
Galan-FULLPAPERMascaros,J.
Am.
Chem.
Soc.
2013,135,13270–13273.
[29]F.
Hegner,I.
Herraiz-Cardona,D.
Cardenas-Morcoso,N.
Lopez,J.
R.
Galan-Mascaros,S.
Gimenez,ACSAppl.
Mater.
Interfaces2017,DOI10.
1021/acsami.
7b09449.
[30]F.
Hegner,D.
C.
-M.
Cardenas-Morcoso,S.
Gimenez,N.
Lopez,J.
R.
Galan-Mascaros,ChemSusChem2017,DOI10.
1002/cssc.
201701538.
[31]S.
Goberna-Ferron,W.
Y.
Hernadez,B.
Rodríguez-García,J.
R.
Galan-Mascaros,ACSCatal.
2014,4,1637–1641.
[32]M.
Aksoy,S.
V.
K.
Nune,F.
Karadas,Inorg.
Chem.
2016,55,4301–4307.
[33]L.
Han,P.
Tang,.
Reyes-Carmona,B.
Rodríguez-García,M.
Torréns,J.
R.
Morante,J.
Arbiol,J.
R.
Galan-Mascaros,J.
Am.
Chem.
Soc.
2016,138,16037–16045.
[34]Y.
Yamada,K.
Oyama,R.
Gates,S.
Fukuzumi,Angew.
Chem.
2015,127,5705–5709.
[35]Y.
Yamada,M.
Yoneda,S.
Fukuzumi,Chem.
-AEur.
J.
2013,19,11733–11741.
[36]Y.
Yamada,K.
Oyama,T.
Suenobu,S.
Fukuzumi,S.
Fukuzumi,W.
Nam,R.
Sarangi,S.
Fukuzumi,W.
Nam,Y.
Xie,etal.
,Chem.
Commun.
2017,53,3418–3421.
[37]W.
Kohn,A.
D.
Becke,R.
G.
Parr,J.
Phys.
Chem.
1996,100,12974–12980.
[38]R.
G.
Parr,W.
Yang,Density-FunctionalTheoryofAtomsandMolecules,OxfordUniversityPress,NewYork,1989.
[39]D.
J.
Wasylenko,C.
Ganesamoorthy,J.
Borau-Garcia,C.
P.
Berlinguette,Chem.
Commun.
2011,47,4249–4251.
[40]K.
Nakamoto,InfraredandRamanSpectraofInorganicandCoordinationCompoundsPartB:ApplicationsinCoordination,Organometallic,andBioinorganicChemistry,JohnWiley&Sons,Inc.
,2009.
[41]R.
O.
Lezna,R.
Romagnoli,N.
R.
deTacconi,K.
Rajeshwar,J.
Phys.
Chem.
B2002,106,3612–3621.
[42]D.
W.
Crandell,S.
Ghosh,C.
P.
Berlinguette,M.
-H.
Baik,ChemSusChem2015,8,844–852.
[43]B.
Wang,Y.
-M.
Lee,W.
-Y.
Tcho,S.
Tussupbayev,S.
-T.
Kim,Y.
Kim,M.
S.
Seo,K.
-B.
Cho,Y.
Dede,B.
C.
Keegan,etal.
,Nat.
Commun.
2017,8,14839.
[44]B.
Wang,Y.
-M.
Lee,W.
-Y.
Tcho,S.
Tussupbayev,S.
-T.
Kim,Y.
Kim,M.
S.
Seo,K.
-B.
Cho,Y.
Dede,B.
C.
Keegan,etal.
,Nat.
Commun.
2017,8,14839.
FULLPAPEREntryfortheTableofContents(Pleasechooseonelayout)FULLPAPERTheeffectofelectroinactivehexacyanometalgrouptoelectroactiveCo(II)siteinPrussianBlueanalogueswasprobedbyexperimentalandcomputationalstudies.
E.
P.
Alsa,E.
lker,S.
V.
K.
Nune,Y.
Dede,*F.
Karadas*PageNo.
–PageNo.
Title

Sharktech:无限流量服务器丹佛,洛杉矶,荷兰$49/月起,1Gbps带宽哦!

鲨鱼机房(Sharktech)我们也叫它SK机房,是一家成立于2003年的老牌国外主机商,提供的产品包括独立服务器租用、VPS主机等,自营机房在美国洛杉矶、丹佛、芝加哥和荷兰阿姆斯特丹等,主打高防产品,独立服务器免费提供60Gbps/48Mpps攻击防御。机房提供1-10Gbps带宽不限流量服务器,最低丹佛/荷兰机房每月49美元起,洛杉矶机房最低59美元/月起。下面列出部分促销机型的配置信息。机房...

Gcore(gcorelabs)俄罗斯海参崴VPS简单测试

有一段时间没有分享Gcore(gcorelabs)的信息了,这是一家成立于2011年的国外主机商,总部位于卢森堡,主要提供VPS主机和独立服务器租用等,数据中心包括俄罗斯、美国、日本、韩国、新加坡、荷兰、中国(香港)等多个国家和地区的十几个机房,商家针对不同系列的产品分为不同管理系统,比如VPS(Hosting)、Cloud等都是独立的用户中心体系,部落分享的主要是商家的Hosting(Virtu...

tmhhost:暑假快乐,全高端线路,VPS直接8折,200G高防,美国gia日本软银韩国cn2香港cn2大带宽

tmhhost为2021年暑假开启了全场大促销,全部都是高端线路的VPS,速度快有保障。美国洛杉矶CN2 GIA+200G高防、洛杉矶三网CN2 GIA、洛杉矶CERA机房CN2 GIA,日本软银(100M带宽)、香港BGP直连200M带宽、香港三网CN2 GIA、韩国双向CN2。本次活动结束于8月31日。官方网站:https://www.tmhhost.com8折优惠码:TMH-SUMMER日本...

织梦网为你推荐
windows优化大师怎么用windows优化大师怎么用啊?个性qq资料`谁有最新 最有个性的QQ个性资料快速美白好方法有什么快速美白的好办法吗?网站联盟怎样进入网站联盟如何建立自己的网站如何建立自己的网站ios系统ios系统有哪些版本?机械键盘轴机械键盘蓝轴有什么作用网络虚拟机如何设置vmware虚拟机网络服务器连接异常服务器连接异常是怎么回事啊,怎么解决网站排名靠前如何让自己的网站排名靠前
猫咪av永久最新域名 备案域名查询 vps.net 香港服务器99idc Hello图床 typecho 512m内存 html空间 浙江独立 智能骨干网 国外代理服务器地址 qq云端 gtt 最漂亮的qq空间 dnspod 英国伦敦 服务器论坛 apachetomcat 俄勒冈州 ssd 更多