electrodegmail邮箱申请
gmail邮箱申请 时间:2021-02-22 阅读:(
)
1MagneticPropertiesofNanocrystalline-SiCGopaMishra1,SankarMohapatra1,SasmitaPrusty1,ManojKumarSharma2,RatnamalaChatterjee2,SKSingh1andDKMishra1,*1AdvancedMaterialsTechnologyDepartment,InstituteofMineralsandMaterialsTechnology(CSIR),Bhubaneswar751013,Orissa,India2DepartmentofPhysics,IndianInstitueofTechnologyDelhi,NewDelhi110016,IndiaE.
mail:dilipiuac@gmail.
comAbstract:Four-hourball-milled-SiCproductsynthesizedbythethermalplasmatechniqueshowsroomtemperatureferromagnetism.
Thesemi-λsignatureofthefield-cooledmagnetization(FCM)andzerofield-cooledmagnetization(ZFCM)curvessuggestthepossiblesignatureofaglassyferromagnetismstateinthesample.
Theprominentfallinthemagnetizationvalueataround50KobservedinZFCMcurverevealstheexistenceofasharptransitionfromaferromagneticstatetoaglassyferromagneticstate.
ThepresenceofglassyferromagnetismatlowtemperatureisconfirmedfromtheM~Hcurverecordedat5K.
Keywords:Carbides;ThermalPlasma;Semiconductors;GlassyferromagnetismIntroduction:WidebandgapII-VIandIII-Vsemiconductorshaveattractedalotofattentionoftheresearcherstoproduceasystemlikedilutemagneticsemiconductor(DMS)fortheapplicationinthefieldofoptoelectronics,spintronicsandmagnetoelectronics[1-5].
ButtheintriguingphenomenonofferromagnetisminDMShasremainedunsolvedsofar.
Recentreportonferromagnetismincarbonandcarbonbasedcompoundshasopeneda2newavenueforthesearchofnewdilutedmagneticsemiconductors(DMSs)[6-12].
Developingamagneticsystemwithcarbonhasitsownadvantagesasitislightweight,stable,simpletoprocess,andlessexpensivetoproduce.
Investigationsperformedonvariousformsofcarbonandtheircompositeswithsemiconductorspointtowardsthefactthatitispossibletoproduceferromagneticcarbonsystems.
SomorefocushasbeenindicatedtowardstheIV-IVsemiconductorslikeSiliconcarbidematerials[6,7,13-17].
Recentlysiliconcarbideisunderinvestigationasanenablingmaterialforavarietyofnewsemiconductordevicesintheareaofspintronics[6,7,13,14].
Theseincludehigh-power,highvoltageswitchingapplications,hightemperatureelectronicsandhighpowermicrowaveapplicationsinthe1-10GHzregime.
Itisalsousedassubstratefordepositingseveralsemiconductormaterialslikegalliumnitride.
SiCistheonlycompoundsemiconductorwhichcanbethermallyoxidizedtoformahighqualitynativeoxide(SiO2).
ThismakesitpossibletofabricateMOSFET,insulatedgatebipolartransistorsandMOS-controlledthyristorinSiC[18].
Siliconcarbideexhibitsahighthermalconductivity,highresistancetowardsoxidation,highmechanicalstrength,lowspecificweight,andit'schemicallyinertnessmakeitacatalystsupportmaterial[19].
Duetothewidebandgapenergy,theleakagecurrentinSiCismanyorderslowerthaninsiliconandtheintrinsictemperatureiswellover800°C,whichmakesitanelectronicefficientmaterialforsemiconductorapplications[18].
Eventhoughitofferssubstantialadvantagesoversilicon,SiCisstillimmatureassemiconductormaterialsbecauseitexistsinmanypolytypicformsandalsothepresenceofminutemetallicimpuritieschangeitscrystalstructureandcreatelatticedefects.
Theselatticedefectsand3presenceofmagneticimpuritiesmaybeoneofthereasonsforobservingferromagnetisminthismaterial.
Inthismanuscript,-SiCproducthasbeensynthesizedbythermalplasmatechniqueandfurtherballmilledforthereductionofparticlesizes.
Roomtemperatureferromagnetismin-SiCandtheglassyferromagnetismatlowtemperaturehasbeendiscussed.
Experimental:Silica-richricehuskwasusedastherawmaterialforsynthesisofSiCpowder.
Therawmaterialwasplasmatreatedinanindigenouslydevelopedpottypeopenplasmareactor.
Thedetailoftheplasmareactorisdescribedelsewhere[20].
Therawmaterialwastakeninthegraphitecrucibleandthecruciblewascoveredwithagraphiteplatehavingaholeatthecentreinordertopreventthematerialtobeblownoutofthecrucibleduetoplasmapressure.
Therateofflowoftheplasmagengas(argon)wasregulatedto1.
5lit.
/min.
Thearcwasstruckbymovingtheupperelectrodeupordown.
Afterplasmatreatmentforaperiodof20minutestime,powerwasswitchedoffbuttheargongaswasallowedtopassforanotherhalfanhourinordertopreventoxidationoftheproduct.
TheplasmasynthesizedproductobtainedfromplasmareactorisinlooselyagglomeratedformandisamixtureofSiCandminutepercentageofcarbonandsilica.
Thisproductwasgroundinanagatemortartobreaktheagglomerationandwasthenheatedinafurnaceat700°Cfor2hoursforcompleteremovalofcarbon.
TheparticlesizeofthecarbonfreeSiCandSiO2mixtureisaround14.
69micron.
Forfurtherreductionofparticlesize,theproductwasgroundinaRetschPM-100planetaryballmillwith3mmstainlesssteelballs.
Thegrindingwascarriedoutina500mlstainlesssteel4jarinethylalcoholmediumatafixedrpmof350forfourhours.
Thenthisgroundsamplewasthoroughlywashedwith1:1HCl,1:2HNO3and40%Hfforthecompleteremovalofsilicaandothermetalimpuritiespresentinthesample.
Particlesizeanalyzer(ModelNanotracU2058I)wasusedtodeterminetheparticledistributionandaverageparticlesizeofthe-SiCpowder.
ATransmissionelectronmicroscope(TEM)(ModelJEOL,JEM–2010UHR)wasusedtodeterminetheshapeandsizeofthe-SiCnanocrystals.
EnergydispersiveX-rayandX-rayfluorescencespectrawererecordedtodeterminetheimpuritiesotherthanSi,CandOpresentinthesample.
PhaseandstructuralanalysisofthesampleswerecarriedoutusingX-raydiffractometer(XRD)(Model:X'PertPROPANalytical))usingMoKsource.
Fouriertransforminfraredspectroscopic(Model:PerkinElmerspectrumGx)andmicro-Ramanstudieswerecarriedouttoobtainthebondingandstructuralinformation.
Diffusedreflectivespectroscopy(DRS)studyhasbeendonetoestimatethebandgapof-SiCbyUV-Visiblespectrophotometer.
Fielddependentmagnetizationat300Kand5K,temperaturedependentzero-fieldcooled(ZFC)andfieldcooled(FC)magnetizationmeasurementswerecarriedoutusingQuantumDesignSuperconductingInterferometerDevice(SQUID)magnetometer.
ResultsandDiscussions:Fig.
1showsthedistributionofparticlesizeoffourhoursballmilled-SiCproduct.
Itisobservedfromthefigurethat78%ofparticleshavetheparticlesizewithin250nmwhereas22%ofparticleshavethesizewithin300nmto450nm.
TheGaussiancurvedistributionfittedtotheparticlesizedistributioncurveshowstheaverageparticlesizetobearound225nm.
Theresultobtainedfromparticlesizedistributioniswell5supportedbytheresultobtainedfromTEManalysis.
Transmissionelectronmicroscopyimagesof-SiCparticlesareshowninFig.
2.
Theparticlesarenonuniforminshapeandsize.
Theaveragesizeoftheparticlesisintheorderof250nm.
Theenergydispersivex-rayanalysispictureshowninFig.
3predictsthatthenanoparticlesarecomposedofSiandC.
NotransitionalmetalimpuritypeakisfoundotherthanCuwhichisnothingbutthesignatureofcarboncoatedCugridusedforTEManalysis.
ThesmalloxygenpeakobservedinthespectrumisduetothecontaminationofhydroxylgroupduringthesamplepreparationforTEManalysis.
ButXRFanalysispredictsthepresenceofmagneticimpurities(Fe,CoandNi)contentupto140ppmproductwithnon-magneticimpuritieslikeAl,Baetc.
ThespecificsurfaceareaoftheballmilledpowdersmeasuredbyBednortz-Edward-Tellertechniqueis12m2g-1.
Thex-raydiffractionpatternisshowninFig.
4.
Themajorreflectionpeaksof-SiCat(111),(200),(220),(311),(222)and(400)arefoundintheXRDpatternandmatchedwiththeJCPDSdata(#02-1050)havingspacegroup43Fm.
Apartfrom-SiC,smallshoulderpeakof-SiCisfoundatthe2valueof17.
31degree.
WithinthelimitationofXRD,thesmaller%ofmetallicimpuritiespresentinthesamplecannotbedetected.
ThecrystallitesizecalculatedusingScherer'sformulat=0.
89λ/1/2Cosisaround97nm.
Latticeparameterof-SiCproduct,a=4.
312calculatedusingtheformulad=a/(h2+k2+l2)1/2whichiswellmatchedwiththetheoreticalandexperimentalvalueofa=4.
349[21].
Fig.
5showstheFTIRspectrumoffourhourballmilled-SiCproduct.
Thesharpreflectancepeakat800.
73cm-1correspondstothevibrationalmodeofSiC.
Apartfromthis,peaksataround400to600cm-1areattributedtotheSi-O-Sistretchingmodesof6vibration.
1072.
4cm-1peakisattributedtotheSi-Omodeand2350.
72cm-1peakcorrespondtotheC-Cmodeofvibration.
1488.
7cm-1peakiscorrespondingtothehydroxylgroup(OH)whichisduetocontaminationduringhandlingofthesampleforexperimentinopenatmosphere.
TheXRDandFTIRspectraclearlypredictthatthefourhourballmilledproductisin-SiCform.
Fig.
6showstheRamanspectrumoffourhourballmilled-SiCproduct.
ItisreportedthatSiCgivesRamanscatteringfromatransverseoptic(TO)phononatapproximately790cm-1andalongitudinalopticphonon(LO)at973cm-1[3].
Inourspectrum,twoprominentpeaksareobservedat783and982cm-1representedastransverseoptics(TO)andlongitudinaloptics(LO)peaksrespectively.
TheTOandLOpeakpositionsoftheSiCcrystallitesindicatethatthepredominantSiCpolytypeis-SiC[6,22].
TheDRSstudyhasbeenundertakentoevaluatethebandgapof-SiCandisshowninFig.
7.
Itisverywellknownthat-SiCisanindirectbandgapsemiconductor.
ThebandgapcalculatedusingtheTaucsplot[23](i.
e.
hvs(h)1/2)isaround2.
17eVwhichiswellmatchedtothebandgapof2.
19eVreportedinliterature[24,25].
Presenceofminutepercentageofmetalimpuritiesdoesnotplayanyroleinvaryingbandgapof-SiC.
TheM~HcurveatroomtemperatureshowninFig.
8for-SiCproductisferromagneticinnature.
Saturationmagnetizationof0.
004emu/ghasbeenobservedwitharemnantmagnetization1.
1x10-3emu/gandcoercivityof106Oe.
ThehysteresisloopisshownintheinsetofFig.
8.
TheoriginofFMorderinsuchIV-IVsemiconductorslike-SiCislessstudied.
Alsoitisverydifficulttogetthe-SiCinitscompletepureform.
Sotheexactmechanismforexhibitingferromagnetisminthesematerialsisnotclear.
The7saturationmagnetizationarisingfrommagneticimpuritiesareestimatedtobeintheorderof0.
00254emu/g.
Ourexperimentallyobservedvalueis1.
5timesgreaterthanthevalueofsaturationmagneticmomentarisingfrommagneticimpurities.
Hence,itconfirmsthatthemagnetismcominginthismaterialisnotfromthemagneticimpurities.
Thepossiblereasonfortheobservationofferromagnetismmaybetheformationoflatticedefectsinducedduringthesynthesisprocesses.
Duetopresenceofmagneticandnonmagneticimpuritiesandthecontaminationofoxygen,sp3configurationofSiCisconvertedtoamixtureofsp3/sp2hybridizationtoinduceferromagneticorderinginthismaterial[6,7,26,27].
Infact,thepresenceofimpuritiesinSiCmayintroducelargescaledefectsintothelattice,suchasvacanciesandinterstitials.
ThesurfacecontaminationofoxygeninSiCisalsoascribedtoafactorofcreatinglatticedefects.
SuchdefectsatlowtemperaturebecomesisolatedfromeachotherandcreateshortrangeFMordering,thusreducingthemagnetizationvalue.
Furtherinvestigationisrequiredtoestablishtheoriginofferromagnetism.
TheM~Hcurverecordedatlowtemperature(i.
e.
5K)isshowninFig.
9.
Aclearhysteresisloopisobservedwitharemnantmagnetizationof3.
9x10-3emu/gandcoercivityof290Oerespectively.
Theremnantmagnetizationvalueis3.
5timesgreaterthanthevalueobtainedat300K.
Themagnetizationvalueincreasessteeplywiththeincreaseofmagneticfieldupto10000Oe.
Thereisnoobservationofsaturationmagnetizationfromthecurvewithinthelimitedappliedfieldof10000Oe.
ThetemperaturedependentZFCmagnetization(ZFCM)andFCmagnetization(FCM)measurementswerecarriedoutatamagneticfieldof100Oewithinatemperaturerangeof300K-5KandisshowninFig.
10.
AsshowninthispicturetheZFCandFC8startsbranchingfromeachotheratorabove300K.
ThedifferencebetweenFCMandZFCMincreasessignificantlywiththedecreaseoftemperatureandexhibitsapromptcuspespeciallyinZFCMcurveat50K.
Itisverymuchinterestingtonotethattheobservedthermo-magneticirreversibilityandsemi-λnatureoftheFCMandZFCMcurvessuggestthepossibilityofspinglasssignatureinthesample[6].
Atthesametimeferromagnetismisobservedatlowtemperaturei.
e.
at5K(showninFig.
9).
Thecombiningfeatureofspinglassandferromagneticbehaviorexhibitsaglassyferromagneticbehavior.
MostoftheglassyFMbehaviorisexhibitedduetothecompetitionbetweenlongrangeferromagneticorderingandshortrangeantiferromagneticinteractionandthusreducingthemagnetizationvalueatlowtemperature.
Conclusion:Inconclusion,itisconfirmedfromtheXRDandFTIRstudiesthattheproductobtainedfromplasmareactorisin-SiCformhavinglatticeparameterof4.
31,whichisincloseagreementwiththelatticeparameterofbulk-SiC.
Roomtemperatureferromagnetismandglassyferromagneticbehavioratlowtemperaturehasbeenpredicted.
Observedthermo-magneticirreversibilityandsemiλ-shapenatureoftheFCMandZFCMcurvesatvaryingtemperaturesuggestthepossibilityofglassyferromagneticstateinthesample.
Acknowledgement:AuthorsaregratefultoDirector,IMMT(CSIR),Bhubaneswarforprovidingresearchsupport.
AuthorsarethankfultoDSTforprovidingSQUIDfacilitytoIIT-DelhiunderprojectRP01993.
9References:[1].
H.
Ohno,Science281,951(1998).
[2].
K.
Ando,Science312,1883(2006).
[3].
H.
Ohno,F.
Matsukura,andY.
Ohno,Jpn.
Soc.
Appl.
Phys.
Int.
5,4(2002).
[4].
S.
Wolf,D.
D.
Awschalom,R.
A.
Buhrman,J.
M.
Daughton,S.
vonMolnar,M.
L.
Roukes,A.
Y.
Chtchelkanova,andD.
M.
Treger,Science294,1488(2001).
[5].
H.
Ohno,D.
Chiba,F.
Matsukura,T.
Omiya,E.
Abe,T.
Dietl,Y.
Ohno,andK.
Ohtani,Nature408,944(2000).
[6].
B.
Song,H.
Bao,H.
Li,M.
Lei,T.
Peng,J.
Jian,J.
Liu,W.
Wang,W.
WangandX.
Chen,J.
Am.
Chem.
Soc.
131,1376(2009).
[7].
B.
Song,J.
K.
Jian,H.
Li,M.
Lei,H.
Q.
Bao,X.
L.
ChenandG.
Wang,Phys.
B403,2897(2008).
[8].
A.
V.
Rode,E.
G.
Gamaly,A.
G.
Christy,J.
G.
FitzGerald,S.
T.
Hyde,R.
G.
Elliman,B.
Luther-Davies,A.
I.
Veinger,J.
AndroulakisandJ.
Giapintzakis,Phys.
Rev.
B70,054407(2004).
[9].
S.
Talapatra,P.
G.
Ganesan,T.
Kim,R.
Vajtai,M.
Huang,M.
Shima,G.
Ramanath,D.
Srivastava,S.
C.
DeeviandP.
M.
Ajayan,Phys.
Rev.
Lett.
95,097201(2005).
[10].
P.
Esquinazi,D.
Spemann,R.
Hohne,A.
Setzer,K.
H.
HanandT.
Butz,Phys.
Rev.
Lett.
91,227201(2003).
[11].
H.
Pan,J.
B.
Yi,L.
Shen,R.
Q.
Wu,J.
H.
Yang,J.
Y.
Lin,Y.
P.
Feng,J.
Ding,L.
H.
Van,andJ.
H.
Yin,Phys.
Rev.
Lett.
99,127201(2007).
[12].
B.
J.
Nagare,SajeevChackoandD.
G.
Kanhere,J.
Phys.
Chem.
A114,2689(2010).
[13].
F.
Stromberg,W.
Keune,X.
Chen,S.
Bedanta,H.
ReutherandA.
Mucklich,J.
Phys.
:Condens.
Matter18,9881(2006).
10[14].
M.
S.
MiaoandWalterR.
L.
Lambrecht,Phys.
Rev.
B74,235218(2006).
[15].
G.
Zhang,G.
Wei,K.
Zheng,L.
Li,D.
Xu,D.
Wang,Y.
XueandW.
Su,J.
Nanosci.
Nanotechnol.
10,1951(2010).
[16].
C.
Ziebert,J.
Ye,S.
Ulrich,A.
P.
PrskaloandS.
Schmauder,J.
Nanosci.
Nanotechnol.
10,1120(2010).
[17].
J.
Chen,R.
WuandY.
Pan,J.
Nanosci.
Nanotechnol.
10,6550(2010).
[18].
B.
J.
Baliga,IEEEElectronDeviceLett.
10,455(1989).
[19].
M.
J.
LedouxandC.
Pham-Huu,CATTECH5(4),226(2001).
[20].
M.
Ray,D.
R.
Sahu,D.
K.
Mishra,S.
K.
SinghandB.
K.
Roul,JournalofMaterials:DesignandApplications(Part-L),241,11(2007).
[21].
N.
W.
Thibault,Am.
Mineralogist29,327(1944).
[22].
D.
W.
Feldman,J.
Parker,W.
ChoykeandL.
Patrick,Phys.
Rev.
173(1968)787.
[23].
J.
Tauc,R.
GrigoroviciandA.
Vancu,Phys.
Stat.
Sol.
15,627(1966).
[24].
F.
H.
Ruddell,B.
M.
ArmstrongandH.
S.
Gamble,J.
Phys.
IVFrance02,C2-823(1993).
[25].
L.
Wenchang,ZhangKaiimingandXieXide,J.
Phys:Condens.
Matter5,891(1993).
[26].
T.
L.
Makarova,instudiesofHigh–Temperaturesuperconductivity,NOVASciencePublishers,Inc.
NewYork,(2003)p.
107.
[27].
T.
L.
Makarova,Semiconductors38,615(2004).
11FigureCaptions:Fig.
1:SchematicfigureofParticlesizedistributionof4hoursballmilled-SiCproduct.
Fig.
2:Transmissionelectronmicroscopepictureof4hoursballmilled-SiCproduct.
Fig.
3:EnergydispersiveX-rayanalysisspectrumof4hoursballmilled-SiCproductFig.
4:XRDpatternof4hoursballmilled-SiCproduct.
Fig.
5:FTIRspectrumof4hoursballmilled-SiCproduct.
Fig.
6:Ramanspectrumof4hoursballmilled-SiCproduct.
Fig.
7:Diffusedreflectivespectrumof4hoursballmilled-SiCproduct.
Fig.
8:Roomtemperaturehysteresiscurveof4hoursballmilled-SiCproduct.
Fig.
9:Hysteresiscurveof4hoursballmilled-SiCproductatlowtemperature(5K).
Fig.
10:Temperaturedependentzerofieldcooledandfieldcooledmagnetizationcurveof4hoursballmilled-SiCproduct.
12Fig.
1:SchematicfigureofParticlesizedistributionof4hoursballmilled-SiCproduct.
13Fig.
2:Transmissionelectronmicroscopepictureof4hoursballmilled-SiCproduct.
14Fig.
3:EnergydispersiveX-rayanalysisspectrumof4hoursballmilled-SiCproduct.
15Fig.
4:XRDpatternof4hoursballmilled-SiCproduct.
16Fig.
5:FTIRspectrumof4hoursballmilled-SiCproduct.
17Fig.
6:Ramanspectrumof4hoursballmilled-SiCproduct.
18Fig.
7:Diffusedreflectivespectrumof4hoursballmilled-SiCproduct.
19Fig.
8:Roomtemperaturehysteresiscurveof4hoursballmilled-SiCproduct.
20Fig.
9:Hysteresiscurveof4hoursballmilled-SiCproductatlowtemperature(5K).
21Fig.
10:Temperaturedependentzerofieldcooledandfieldcooledmagnetizationcurveof4hoursballmilled-SiCproduct.
春节期间我们很多朋友都在忙着吃好喝好,当然有时候也会偶然的上网看看。对于我们站长用户来说,基本上需要等到初八之后才会开工,现在有空就看看是否有商家的促销。这里看到来自HMBcloud半月湾服务商有提供两款春节机房方案的VPS主机88折促销活动,分别是来自洛杉矶CN2 GIA和日本CN2的方案。八八折优惠码:CNY-GIA第一、洛杉矶CN2 GIA美国原生IP地址、72小时退款保障、三网回程CN2 ...
搬瓦工怎么样?这几天收到搬瓦工发来的邮件,告知香港pccw机房(HKHK_1)即将关闭,这也不算是什么出乎意料的事情,反而他不关闭我倒觉得奇怪。因为目前搬瓦工香港cn2 GIA 机房和香港pccw机房价格、配置都一样,可以互相迁移,但是不管是速度还是延迟还是丢包率,搬瓦工香港PCCW机房都比不上香港cn2 gia 机房,所以不知道香港 PCCW 机房存在还有什么意义?关闭也是理所当然的事情。点击进...
imidc怎么样?imidc彩虹网路,rainbow cloud知名服务器提供商。自营多地区数据中心,是 Apnic RIPE Afrinic Arin 认证服务商。拥有丰富的网路资源。 在2021年 6.18 开启了输血大促销,促销区域包括 香港 台湾 日本 莫斯科 等地促销机型为 E3係,参与促销地区有 香港 日本 台湾 莫斯科 等地, 限量50台,售罄为止,先到先得。所有服务器配置 CPU ...
gmail邮箱申请为你推荐
绵阳电信绵阳电信宽带套餐资费推荐金山杀毒怎么样金山杀毒好吗?拂晓雅阁有什么网站是学电脑技术的`?快速美白好方法有什么快速美白的好办法吗?微信如何建群微信可以建立两个人的群吗?有一个是自己显卡温度多少正常显卡温度多少算正常?ps抠图技巧photoshop抠图技巧申请证书一、如何申请证书?中小企业信息化信息化为中小企业发展带来了哪些机遇网易公开课怎么下载手机上的网易公开课的付费课程怎么下载??????
免费域名 租服务器价格 最便宜虚拟主机 域名解析文件 windows主机 国外idc 香港主机 59.99美元 kddi 好玩的桌面 美国php空间 本网站在美国维护 dux softbank邮箱 asp免费空间申请 阿里校园 服务器监测 购买国外空间 优酷黄金会员账号共享 台湾google 更多