CP006881熊猫直播频道
熊猫直播频道 时间:2021-02-20 阅读:(
)
RESEARCHARTICLETranscriptionalRegulationandAdaptationtoaHigh-FiberEnvironmentinBacillussubtilisHH2IsolatedfromFecesoftheGiantPandaZiyaoZhou1,XiaoxiaoZhou2,JinLi1,ZhijunZhong1,WeiLi1,XuehanLiu1,FuruiLiu1,HuaiyiSu1,YongjiuLuo1,WuyangGu1,ChengdongWang3,HeminZhang3,DeshengLi3,TingmeiHe3,HualinFu1,SuizhongCao1,JinjiangShi1,GuangnengPeng1*1TheKeyLaboratoryofAnimalDiseaseandHumanHealthofSichuanProvince,CollegeofVeterinaryMedicine,SichuanAgriculturalUniversity,Ya'an,625014,PRChina,2ChengduCenterforAnimalDiseasePreventionandControl,Chengdu,610041,PRChina,3Ya'anBifengxiaBase,ChinaConservationandResearchCenterfortheGiantPanda,Ya'an,625007,PRChinaTheseauthorscontributedequallytothiswork.
*pgn.
sicau@163.
comAbstractInthegiantpanda,adaptationtoahigh-fiberenvironmentisafirststepfortheadequatefunctioningofintestinalbacteria,asthehighcellulosecontentofthegutduetothepanda'svegetarianappetiteresultsinaharshenvironment.
Asanexcellentproducerofseveralen-zymesandvitamins,Bacillussubtilisimpartsvariousadvantagestoanimals.
Inourpreviousstudy,wedeterminedthatseveralstrainsofB.
subtilisisolatedfrompandasexhibitedgoodcellulosedecompositionability,andwehypothesizedthatthisbacterialspeciescansurviveinandadaptwelltoahigh-fiberenvironment.
Toevaluatethishypothesis,weemployedRNA-SeqtechnologytoanalyzethedifferentiallyexpressedgenesoftheselectedstrainB.
subtilisHH2,whichdemonstratessignificantcellulosehydrolysisofdifferentcarbonsources(celluloseandglucose).
Inaddition,weusedbioinformaticssoftwareandresourcestoanalyzethefunctionsandpathwaysofdifferentiallyexpressedgenes.
Interestingly,com-parisonofthecelluloseandglucosegroupsrevealedthattheup-regulatedgeneswerein-volvedinaminoacidandlipidmetabolismortransmembranetransport,bothofwhichareinvolvedincelluloseutilization.
Conversely,thedown-regulatedgeneswereinvolvedinnon-essentialfunctionsforbacteriallife,suchastoxinandbacteriocinsecretion,possiblytoconserveenergyforenvironmentaladaptation.
TheresultsindicatethatB.
subtilisHH2trig-geredaseriesofadaptivemechanismsatthetranscriptionallevel,whichsuggeststhatthisbacteriumcouldactasaprobioticforpandasfedahigh-fiberdiet,despitethefactthatcellu-loseisnotaverysuitablecarbonsourceforthisbacterialspecies.
Inthisstudy,wepresentamodeltounderstandthedynamicorganizationofandinteractionsbetweenvariousfunc-tionalandregulatorynetworksforunicellularorganismsinahigh-fiberenvironment.
PLOSONE|DOI:10.
1371/journal.
pone.
0116935February6,20151/13OPENACCESSCitation:ZhouZ,ZhouX,LiJ,ZhongZ,LiW,LiuX,etal.
(2015)TranscriptionalRegulationandAdaptationtoaHigh-FiberEnvironmentinBacillussubtilisHH2IsolatedfromFecesoftheGiantPanda.
PLoSONE10(2):e0116935.
doi:10.
1371/journal.
pone.
0116935AcademicEditor:Yung-FuChang,CornellUniversity,UNITEDSTATESReceived:November1,2014Accepted:December16,2014Published:February6,2015Copyright:2015Zhouetal.
ThisisanopenaccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalauthorandsourcearecredited.
DataAvailabilityStatement:AllrelevantdataarewithinthepaperanditsSupportingInformationfiles.
Funding:ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(number31272620),SichuanProvincialDepartmentofScienceandTechnologySupportProgram(number2011NZ0060)andtheProgramforChangjiangScholarsandInnovativeResearchTeaminUniversity(numberIRT0848).
Thefundershadnoroleinstudydesign,datacollectionandanalysis,decisiontopublish,orpreparationofthemanuscript.
IntroductionTheintestinalmicrobiota,ofwhichamajorcomponentisbacteria,greatlycontributestohostnutrition,metabolism,immunityandothercharacteristics[1–3].
However,thegutenviron-mentisnotanideallocationforintestinalbacteriabecausemostgrowthandreproductiongenesareinhibited[4].
Forthegiantpanda(Ailuropodamelanoleuca),oneofthemosthighlyendangeredmammals,withonly2,500to3,000individualssurvivedinwesternChina[5],ahigh-fibervegetariandietcombinedwithacarnivore-likegastrointestinalsystemresultsinaharshgutenvironment,assoftbambooshootsandstemsarethemajorfoodsourcesofthepandabutthisanimaldoesnotpossessarumenforfermentation[6,7].
Thus,adaptationtoahigh-fiberenvironmentisthefirststepfortheintestinalmicrobiotaofthegiantpandatoactasaprobiotic.
Althoughseveralrecentstudieshaveestablishedaframeworkforthecommunitycompositionandfunctionsofthepandaintestinalmicrobiotaviametagenomics[8–10],itisnotyetwellunderstoodhowasingleorganismcansurviveandadaptinthehigh-fibergutenvironmentofthegiantpanda.
Asavitalbacterialspeciesofthemammalianintestinalmicrobiome,Bacillussubtilisimpartsvariousadvantagestoanimalsduetoitsexcellentabilitytoproduceseveralenzymesandvita-mins[11,12].
Inourpreviousstudy[13,14],wedeterminedthatseveralB.
subtilisstrainsisolat-edfrompandasdemonstratedgoodcellulosedecompositioncapabilityaswellasothercontributions;thus,wespeculatedthatthisbacterialspeciescouldhelpthepandainseveralways,includingaidinginthedigestionofbambooinahigh-fiberintestinalenvironment.
Previously,glucosehadbeenrecognizedasthepreferredcarbonsourceformicrobes[15],whilemanybacterialspecieshadbeenshowntonotbeabletousecellulose.
OurpreviousresultsprovedthatB.
subtilishadabilitytosurviveinahigh-fiberenvironment,butthemecha-nismisstillunknown.
TheliteraturehasshownthattheadaptationofB.
subtilisindifferentenvironmentsoccursmainlythroughtranscriptionalregulation[16].
Thelevelsofmostbacterialstressadaptationmolecules,suchastheHfqprotein[17],smallRNAs[18]and16SrRNA[19],aredeterminedatthetranscriptlevel.
Therefore,weemployedRNA-Seqtechnologytocomparethedifferen-tiallyexpressedgenes(DEGs)oftheselectedB.
subtilisHH2strainwhenusingcelluloseandglucoseasprimarycarbonsources,andwethenanalyzedthefunctionsandpathwaysoftheDEGs.
Inthisstudy,werevealedmajortranscriptionalreconfigurationsinresponsetocelluloseadaptationaswellascertaincoordinatedchangesintheabundanceofB.
subtilisHH2.
Wethenproducedamodeltounderstandthedynamicorganizationoftheinteractionsbetweenvariousfunctionalandregulatorynetworksofunicellularorganismsinthegiantpandaintestine.
MaterialsandMethodsBacterialstrainandcultivationconditionsGlucosemediumwasmodifiedfromapreviousstudy[20]:70mmolK2HPO4,30mmolKH2PO4,25mmol(NH4)2SO4,0.
5mmolMgSO4,10μmolMnSO4,22mgferricammoniumcitrate,8gpotassiumglutamate,6gpotassiumsuccinate,1%glucose,0.
5mmolCaCl2,5μmolMnCl2,and1000mLofddH2OatpH=7.
2.
Thecellulosemediumwasformulatedinthesamewayastheglucosemedium,exceptthatthemaincarbonsourcewas1%sodiumcarboxymeth-ylcelluloseinsteadof1%glucose.
B.
subtilisHH2fromfreshfecesthatwascollectedfromhealthypandasattheYa'anBifengxiaBaseoftheChinaConservationandResearchCenterfortheGiantPanda(CCRCGP)andplacedinsterilesamplingbagsinourpreviousstudywasisolatedandidentified.
ThisAdaptationtoaHigh-FiberEnvironmentinBacillussubtilisHH2PLOSONE|DOI:10.
1371/journal.
pone.
0116935February6,20152/13CompetingInterests:Theauthorshavedeclaredthatnocompetinginterestsexist.
strainhasagoodabilitytodigestcellulose;thediameterofitscellulosehydrolysishalowas28.
00±0.
44mm(S1Fig.
).
Thestrainwasgrownin100mLofLBmediumat37°Cinashakerat150rpmfor24h.
Aftercultivation,1%ofthecellswasinoculatedintoglucoseandcellulosemediaandgrownat37°Cinashakerat150rpmuntilOD600~1.
RNAisolationandpreparationTotalRNAwasextractedusingthehotphenolmethod[21].
Inbrief,cellpelletswereresus-pendedandwashedonceinBufferA(50mMsodiumacetateand10mMEDTA,pH=5.
2).
Aftercollectingthecellsbycentrifugation,thepelletswereresuspendedinBufferAcontaining1%SDSandimmediatelyaddedtohotphenol.
Afterincubationat65°Cfor5minutesfollowedbycentrifugationfor10minutesat4°C,theRNA-containingsupernatantsweretransferredtoanewtubeforethanolprecipitation,washedandthendissolvedinDEPC-treatedwater.
TheRNAwasfurtherpurifiedwithtwophenol-chloroformtreatmentsandthentreatedwithRQ1DNase(Promega)toremoveDNA.
ThequalityandquantityofthepurifiedRNAweredeter-minedbymeasuringtheabsorbanceat260nm/280nm(A260/A280)usingSmartspecPlus(BioRad).
TheintegrityoftheRNAwasfurtherverifiedby1.
5%agarosegelelectrophoresis.
cDNAlibraryconstructionandsequencingRibosomalRNAswereremovedfromtheRNAsamples(10μg)usingaRiboMinusrRNAdepletionkit(Ambion),andtheresultingsampleswereusedtopreparedirectionalRNA-Seqlibraries[22,23].
ThepurifiedmRNAsweretheniron-fragmentedat95°Cfollowedbyendre-pairand5'adaptorligation.
Then,reversetranscriptionwasperformedusingRTprimerscon-taininga3'adaptorsequenceandarandomizedhexamer.
ThecDNAswerepurifiedandamplified,andall200-500-bpPCRproductswerepurified,quantifiedandstoredat-80°Cuntiltheywereusedforsequencing.
Forhigh-throughputsequencing,thelibrarieswerepreparedfollowingthemanufacturer'sinstructions,andtheIlluminaGAIIxsystemwasusedtocollectdatafrom80-ntsingle-endsequencing(ABlifeInc.
;Wuhan,China).
AlignmentofreadstothegenomeAfterobtainingthesequencingdata,therawdatawerescreened,whichincludedremovaloftwo-N-containingreads,removalofthesequenceadaptor,andidentificationofcleanreadswithlengthsofmorethan16ntafterremovaloflow-qualityvalues.
Becausethe16SrRNAgeneofB.
subtilisHH2hasmaximalhomologywithBacillus_subtilis_PY79(CP006881.
1)whencomparedwithallB.
subtilisgenomesintheNCBIdatabase(beforeNovember11,2013),wedecidedtouseBacillus_subtilis_PY79asthereferencegenomeforB.
subtilisHH2.
Weuti-lizedTophat[24]with2-ntmismatchestoalignoursequencingdatatothereferencegenomeofB.
subtilisHH2(ftp://ftp.
ncbi.
nlm.
nih.
gov/genomes/Bacteria/Bacillus_subtilis_PY79_uid229877/).
UsingtheRPKMs(readsperkilobaseofagenepermillionreads)[25],weeliminatedthedeviationsduetothelengthsofdifferentgenes.
AnalysisofdifferentiallyexpressedgenesToperformdifferentialgeneexpressionanalysis,weappliedthesoftwareedgeR[26],whichisspecificallyusedtoanalyzethedifferentialexpressionofgenesusingRNA-Seqdata.
Todeter-minewhetheragenewasdifferentiallyexpressed,theanalysisresultswerebasedonthefoldchange(FC2orFC-2)andP-value(P0.
01).
TopredictgenefunctionandcalculatetheAdaptationtoaHigh-FiberEnvironmentinBacillussubtilisHH2PLOSONE|DOI:10.
1371/journal.
pone.
0116935February6,20153/13functionalcategorydistributionfrequency,KEGGandGeneontology(GO)analyseswereem-ployedusingDAVIDbioinformaticsresources[27].
ResultsandAnalysisCelluloseisnotahighlysuitablecarbonsourceforB.
subtilisHH2B.
subtilisHH2wasfirstculturedinmediasupplementedwithcelluloseorglucoseastheprimarycarbonsource.
WefoundthatthegrowthofHH2wassignificantlyinhibitedinthecelluloseme-diumcomparedwiththeglucosemedium(Fig.
1).
Inaddition,whenthebacterialculturereachedOD600~1,weobservedboththecellulose-andglucose-grownbacterialsamplesunderalightmi-croscope.
Bacterialsporesweremoreapparentinthecellulosemediumthanintheglucosemedi-um(Fig.
2),whichindicatedthatcelluloseisnotasuitableenergysourceforthisbacterialstrain.
ProfileoftheRNA-SeqdataAftercultivation,weextractedtotalRNAfromthebacteriatoanalyzethetranscriptionalregulationinthedifferentcarbonenvironmentsvianextgenerationsequencing(NGS).
Weob-tained20,231,277and24,807,479fragmentsfromthecelluloseandglucosegroups,respective-ly.
Afterscreening,14,733,930and20,066,967cleanreadsweregeneratedfromthetwogroups,respectively.
WethenanalyzedwhetherthesereadsmatchedthereportedreferencegenomeintheGenBankdatabaseusingblastn(E-value1e-5).
Wefoundthatmorethan75%ofthereadscouldbemappedtothereferencegenome,ofwhichapproximately50%wereuniquelymappedFig1.
ThegrowthcurvesofB.
subtilisHH2exposedtodifferentcarbonsources.
B.
subtilisHH2wasculturedincelluloseorglucosemediumfollowing1%inoculationat37°Cinashakerat150rpm;theOD600wasmeasuredeveryhour.
Eachgraphrepresentsthemeanofthreeindependentbiologicalreplicatesgrownonthreedifferentdays.
Theerrorbarsrepresentthestandarddeviations(SDs)oftheopticaldensityateachtimepoint.
doi:10.
1371/journal.
pone.
0116935.
g001AdaptationtoaHigh-FiberEnvironmentinBacillussubtilisHH2PLOSONE|DOI:10.
1371/journal.
pone.
0116935February6,20154/13reads,representingacombinedsequencecoverageof250X(Table1).
Inthisstudy,thedetectedexpressedgenes(mappedreadsnumber10)comprised81.
67%(3,279/4,278)ofthereadsforthecellulosegroupand92.
69%(3,779/4,278)ofthereadsfortheglucosegroup.
Thetotalnum-berofdetectedgenesinthetwosampleswas4,134,whichaccountedfor96.
63%oftheB.
subti-lisgenes,indicatingthatthegenedetectioninthisstudylargelyreachedsaturation.
Thecorrelationcoefficient(R2)fortheexpressionofthesamegeneinthetwosampleswas0.
739,whichdemonstratedthatpartsofgenesexhibitedchangesinexpressionlevels.
Whencomparingthecellulosegroupwiththeglucosegroup,thenumberofsignificantlydown-regu-latedgenes(bymorethan10times)was164,whichwassignificantlygreaterthanthenumberofup-regulatedgenes(23genes),illustratingthattheseorganismsmaysignificantlyreducetheexpressionofsomegenesandlosepartialfunctionasawaytocopewiththeimpactsofanex-tremeenvironment[28].
AccordingtoGOfunctionalanalysis,23gene-functionclusterswereenrichedamongtheup-regulatedgeneswhencomparingthecellulosegrouptotheglucosegroup,and22clustersamongthedown-regulatedgeneswereenriched(S1Table).
Interesting-ly,amongtheclusterswiththetop10enrichmentscores,thefunctionsoftheup-regulatedgenes(clusters)weremainlyassociatedwithcelluloseutilization,whereasmostofthedown-regulatedgeneswereassociatedwithnon-essentialfunctionsforbacteriallife,indicatingare-ductioninenergyconsumptiontopermitenvironmentaladaptation(Table2).
CarbonmetabolismgeneexpressionissignificantlyalteredinbothgroupsGenerally,carbonmetabolism-relatedgeneclusterexpressionisalteredinbacteriainconjunc-tionwithchangesinnutritionalfactors.
Wefoundthatthemostsignificantlyup-regulatedFig2.
Bacteriaunderthelightmicroscope.
(A)B.
subtilisHH2wasculturedinglucosemediumuntilOD600~1.
(B)B.
subtilisHH2wasculturedincellulosemediumuntilOD600~1.
doi:10.
1371/journal.
pone.
0116935.
g002Table1.
MappingofcleanreadsintheB.
subtilisgenome.
SampleInputreadsTotalmappedUniquemappedMultiplemappedCellulose14,733,93011,293,808(76.
65%)5,314,734(47.
06%)5,979,074(52.
94%)Glucose20,066,96716,316,254(81.
31%)10,742,645(65.
84%)5,573,609(34.
16%)doi:10.
1371/journal.
pone.
0116935.
t001AdaptationtoaHigh-FiberEnvironmentinBacillussubtilisHH2PLOSONE|DOI:10.
1371/journal.
pone.
0116935February6,20155/13clustersinthecellulosegroupwereinvolvedinthemetabolismofaminoacids,lipids,galactose,andketonebodies,whichindicatesthatwhenadirectlyusedcarbonsource(usuallybeta-D-glucose)intheenvironmentislimiting,anorganismmayconsumeotherintracellularsub-stancesforsupplementation.
Cellulasecomponentgenes,suchasthebeta-glucanasegeneU712_19750,weresignificantlyhighlyexpressedinthecellulosegroupcomparedtotheglu-cosegroup.
SimilarobservationswerenotedforU712_19485andU712_19495,genesthaten-codetwosubunitsofthelichenin-specificphosphotransferaseenzyme,whichhasbeenconfirmedtobeinvolvedinthedigestionofcellobiose,asecondaryproductofcellulosecataly-sis[29].
Tofurtherutilizecellobiose,variousformsofglucosidase(suchasU712_19480andU712_03600)arealsoup-regulatedtocreatethefinalproductbeta-D-glucose.
Incontrast,theexpressionofglucosemetabolism-relatedgeneswassignificantlydecreasedinthecellulosegroupcomparedtotheglucosegroup,particularlyatthestartofglucosemetab-olism.
Inaddition,theexpressionoftheUDP-glucose6-dehydrogenasetuaD(U712_17840),anecessaryenzymeinthepentosephosphatepathway[30],wasdecreasedbymorethan16-fold.
Furthermore,atthebeginningofglucosemetabolism,theexpressionofgluconatekinase(U712_20270)wasdecreased9-foldinthecellulosegroupcomparedtotheglucosegroup;andatthesametime,thedownstreamproductionofglucose6-phosphate,whichisthesubstrateforthepentosephosphatepathway,wasdecreased[31].
S2Tableshowsthedifferentialexpres-sionofvariousgenesthatareimportantforcarbonmetabolisminthetwosamples.
Theexpressionofmostnon-essentialgenesisdecreasedinthecellulosegrouptoreduceenergyconsumptionApartfromglucosemetabolismgenes,thedown-regulatedgenesinthecellulosegroupwereinvolvedinchemotaxis,secretionoftoxinsandbacteriocins,motility,polymercompoundTable2.
GOtermanalysisofDEGs(top10enrichmentscores).
DifferentiallyexpressedgeneclusterDescriptionEnrichmentScoreDown-regulatedCluster1Toxin,peptide,antibioticandbacteriocinmetabolicprocesses3.
96Down-regulatedCluster2Chemotaxis,taxisandlocomotorbehavior2.
59Down-regulatedCluster3Flagellarassemblyandmotility2.
29Down-regulatedCluster4Membraneandtransmembrane2.
00Down-regulatedCluster5Flagellarassemblyandbacterialagellumproteinexport1.
98Down-regulatedCluster6Cellularmacromolecularcomplexassembly1.
28Down-regulatedCluster7Aniontransport1.
14Down-regulatedCluster8ABCtransporters0.
79Down-regulatedCluster9Cellwallbiogenesis/degradation0.
78Down-regulatedCluster10Metal-binding0.
68Up-regulatedCluster1Aminoacidmetabolism1.
44Up-regulatedCluster2Transmembrane1.
23Up-regulatedCluster3Carbohydratetransport1.
23Up-regulatedCluster4Oxidoreductaseandelectroncarrieractivity1.
02Up-regulatedCluster5Cellwallmacromoleculecatabolicprocesses0.
74Up-regulatedCluster6Proteintransportandlocalization0.
72Up-regulatedCluster7Calciumionbindingandsubstratebinding0.
56Up-regulatedCluster8Aminoglycanandpolysaccharidecatabolicprocesses0.
55Up-regulatedCluster9Aminoacidtransmembranetransporteractivity0.
52Up-regulatedCluster10Sporulation0.
50doi:10.
1371/journal.
pone.
0116935.
t002AdaptationtoaHigh-FiberEnvironmentinBacillussubtilisHH2PLOSONE|DOI:10.
1371/journal.
pone.
0116935February6,20156/13assembly,andcomplexproteinassembly.
Theexpressionofthesubtilosin-AassemblygeneU712_18825wassharplydecreasedby~187-fold.
Inadditiontothedecreasedexpressionofgenesinvolvedintheassemblyofcomplexsubstances,thedown-regulationofcertainnon-es-sentialgenesreducedtheenergyconsumptionofthecell.
Forexample,multiplevitalgenesintheflagellarassemblygenecluster(Fig.
3)weresignificantlydecreasedinthecellulosegroup.
Inaddition,theexpressionofnearlyeverystructuralproteingenewithinthetypeIIIsecretionsystem(T3SS)oftheflagellarassemblygeneclusterwasdown-regulated.
Furthermore,theex-pressionofaseriesofflagellargeneswasdecreased,indicatingthatmotilityandinfectionabili-tyweredecreasedduringnutritionaldeficiency.
Giventheinhibitionofvariousnon-essentialmetabolicgenesaswellasofgenesinvolvedinnon-essentialfunctionsinthecellulosegroup,itisapparentthatB.
subtilisHH2triggersaseriesofmechanismsthatconserveenergytobeusedforadaptationtoahigh-fiberenvironment.
Two-componentsystems(TCSs)andATP-bindingcassette(ABC)transportersareimportantregulatorysystemsforhigh-fiberenvironmentadaptionWhenbacteriaexperiencestress,theysignaltotheorganismthatanappropriatephysiologicalresponseisrequired.
TCSsandABCtransportershavebeenproposedtobeunitsthatpartici-pateinthecommonphysiologicalprocessofsignaltransductionandsubstancetransport[32,33].
InB.
subtilis,theyts,yvcandyxdgeneclustersencodeanABCtransporterfromsub-family9andacoupledTCSfromtheOmpRfamily[32],andthetranscriptionfactorofthissystemcanactivatetranscriptionbybindingDNAandinteractingwithRNApolymerase[34].
Wefoundthattheexpressionofeachgeneinthethreeclusters,aswellasthoseofthecorre-spondingABCtransporters,wasdecreasedbymorethanhalfinoursimulatedintestinalenvi-ronment.
Giventheinvolvedsignalingcascade,thereducedexpressionoftheOmpRfamilymayregulatetheinhibitionofmanygenes.
Furthermore,theexpressionofseveralzinc-bindinglipoproteinsandzincmetalloproteaseswasdecreasedinthecellulosegroup,whichcouldnega-tivelyaffecttheexpressionofmanyenzymes,storageproteins,transcriptionfactors,andpro-teinsinvolvedinreplication[35].
Therefore,TCSsandABCtransportersbothregulateenergyconservationinresponsetoahigh-fiberenvironment.
Conversely,TCSsandABCtransportersarealsowidelyinvolvedinnutrientabsorption.
InB.
subtilis,ATP-drivenuptakesystemspreferprimarycarbonandenergysources[36].
Severalki-nasesinTCSpathwaysinvolvedinthemetabolismofsomeaminoacidswereobservedtobeup-regulatedincellulosemedium,e.
g.
,GlnT(U712_01235)andYesM(U712_03510),whichin-dicateschangesintheexpressionofcarbonmetabolismgenes.
Severalhigh-affinityABCtrans-portersfordifferentsugarscatalyzethetransportofsugar-oligomerstoanevengreaterdegreethanpeptidetransporters,whichpermitsorganismstothriveinnutrient-poorenvironments[37,38].
Inthisstudy,theexpressionofmanyoligosaccharideandpolyoltransportersinvolvedincellulosehydrolyzatetransportwereincreasedinthecellulosegroup;forexample,theexpressionofthegeneU712_03520,whichencodestheputativeABCtransportersubstrate-bindingproteinyesO,wasincreased11.
26-foldcomparedtotheglucosegroup.
Itislikelythattheexpressionofmanypeptide-andcalcium-bindingABCtransporterproteingenes(suchasU712_06760,U712_06745andU712_08240)wasenhancedtoimprovethetransportofcellulosehydrolyzates.
StructuralmembraneandtransporterproteinsarekeyfactorsforadaptationtostressAsthefirstorganelletoexperiencepressureandthekeyorganelleforadaptationtoaharshenvironment,thecellmembranemakesvitalcontributionstocombattheeffectsofenvironmentalAdaptationtoaHigh-FiberEnvironmentinBacillussubtilisHH2PLOSONE|DOI:10.
1371/journal.
pone.
0116935February6,20157/13Fig3.
KEGGanalysisofflagellarassembly(bsu02040)inB.
subtilis.
Yellowboxesindicatesignificantlydown-regulatedgenesinthecellulosegroup,andgrayboxesindicateup-regulatedgenes(noneinthisfigure).
Greenindicatesagroupofproteins.
doi:10.
1371/journal.
pone.
0116935.
g003AdaptationtoaHigh-FiberEnvironmentinBacillussubtilisHH2PLOSONE|DOI:10.
1371/journal.
pone.
0116935February6,20158/13aggression,suchasinitiatingthesecretionofseveralproteinsandexchangingintracellularandex-tracellularsubstances[38].
Inthisstudy,membraneandtransmembranegeneswereenrichedinboththeup-anddown-regulatedgeneclustersaccordingtoGOanalysis(S1Table);however,ontheindividuallevel,thespecificsofthisenrichmentwerecompletelydifferent.
Theup-regulatedclustersprimarilyconsistedoftransporterproteins,includingcarbohydratetransporters,sugartransporters,andsymporters,indicatingthatcellulosehydrolyzatemayrequireagreateramountofenergytobedeliveredintothecell.
Incontrast,structuralproteins,suchasplasmamembrane,cellmembrane,andintrinsicmembraneproteins,wereprimarilydown-regulated.
Thedown-regulationofstructuralmembranegenesincreasesthepermeabilityofthecellmembrane,allow-ingtheeasytransportofcellulosehydrolyzatesintothebacteria.
Therefore,withaseriesofadjustments,thecellmembranecouldbecomemoreadaptedtocellulosemedium.
Sporulationisalast-resortresponsetopressureandissuppresseduntilalternativeresponsesproveinadequateWhenalternativeresponsesproveinadequatetorelievestress,sporulationisthefatechosenbymostBacillusspecies[39].
Weobservedincreasedsporulationinthecellulosegroup,bothunderthelightmicroscope(Fig.
1)andatthetranscriptionallevel(U712_12580,encodingthesporulationinhibitorSda,wasdecreasedmorethan16-fold).
However,amongthesevenstages(0-VI)ofsporulationproteingenes(clusters),whichareproteinsthatdeterminethesporula-tionform,onlystageIIandstageIIIsporulationproteinswereobservedtobesignificantlyup-regulatedinthecellulosegroup.
Incontrast,theexpressionofproteinsinvolvedinthefiveotherstagesofsporulationwasnotgreatlychanged.
Therefore,celluloseremainsanacceptablecarbonsourceforB.
subtilisHH2,andthisstraincanadaptwelltoahigh-fiberenvironmentthroughaseriesofalterationsintranscriptionalregulation.
AregulatorymodelofB.
subtilisHH2inahigh-fiberenvironmentAsdescribedabove,werevealedmajortranscriptionalreconfigurationsinresponsetocelluloseadaptationaswellascertaincoordinatedchangesintheabundanceofB.
subtilisHH2inahigh-fiberenvironment.
Tosummarizetheseadaptationmechanisms,weproposearegulatorymodelofB.
subtilisHH2forhigh-fiberenvironmentaladaptationandcellulosedigestion.
Inthismodel,utilizationofandadaptationtocelluloserequireatleastfourfunctionalclassesofproteins,including(i)membraneproteinsandmembrane-associatedsignalchannels,(ii)en-zymesthatcatalyzecellulosehydrolysis,(iii)proteinsencodedbyoperonsthatdecreasecellularenergyandnutrientconsumption,and(iv)proteinsinvolvedinsporulation.
Thecellulardeg-radationofandadaptationtocelluloseconsistoffivesteps.
First,whenbacteriaaregrownonamediumwithcelluloseasaprimarycarbonsource,ionchannel-coupledreceptorsinthecellmembranearestimulatedbycelluloseandsendsignalstotheassociatedtransductionsystems.
Asaresult,cellulasecomponentsareexpressed,secreted,assembledandtransportedtothecellsurface,whichhydrolyzesthecellulose.
Cellobioseandglucan,bothproductsofcellulosehydrolyzation,aretransportedintothecellthroughchannelsforhydrolyzatesandABCtrans-portersforfurtherutilization.
Simultaneously,uponpressuresignals,bacteriapartiallyreducethesynthesisofnon-essentialproteinstosaveenergy.
Theexpressionofsporulationgenesalsopartiallyincreasestoaddresspotentialcontinuingharshpressures.
DiscussionB.
subtilisiswidelyusedasaprobioticandfoodadditivewithmammalianapplicationsduetoitsexcellentabilitytosecreteavarietyofantimicrobialsubstancesthatmaintaintheintestinalmicroflorabalance[40]andimprovethedigestibilityofforagedfoodsinthegastrointestinalAdaptationtoaHigh-FiberEnvironmentinBacillussubtilisHH2PLOSONE|DOI:10.
1371/journal.
pone.
0116935February6,20159/13tract[41].
AnumberofstudieshaveexaminedB.
subtilisresistance[16,19],butthereisstillarelativedearthofresearchonenvironmentalcelluloseadaptationmechanisms.
Ahigh-fiberenvironmentismostcharacteristicoftheherbivorousanimalgutenvironment,particularlyforthegiantpanda,whichhasnorumenforthefermentationofvegetation.
Inadditiontothege-nomicpotentialoftheintestinalmicrobiota,understandingbacterialadaptationmechanismsforacelluloseenvironmentwillhelpustobetterclarifytheinteractionsbetweenintestinalbac-teriaandtheirpandahost.
ThroughphenotypeexperimentofB.
subtilisHH2isolatedfrompandasandgrownondif-ferentcarbonsources,wedemonstratedthatcelluloseisnotaverysuitablecarbonsourceforB.
subtilisHH2.
Howeverbasedonourtranscriptionalpathwayanalysis,wefoundthatthisbacte-riumcanadaptwellviaaseriesofregulatorynetworksandthatthedifferentiallyexpressedgenesclusteredintotwomaincategories:celluloseutilizationandhigh-fiberenvironmentad-aptation.
Forcelluloseutilization,strainHH2notonlyincreasedtheexpressionofcellulasebutalsoofaseriesofenzymecomponentsthathydrolyzecellulose,aswellassomeABCtransport-ers,whichservedassupport.
Whereasithasbeenshownthatorganismscanselectivelyexpresssomegeneshighlyforstressadaptation[39,42],inthisstudy,itwasobservedthatmanygenes(clusters),suchasseveralproteinkinases,wereup-regulatedbutthattheexpressionofmostnon-essentialgenesweredown-regulatedtoconserveenergy.
Interestingly,theexpressionoftheHfqprotein(U712_09100),severalsporulationkinasesandgenesofproteinsinvolvedinsporulationwasdecreasedinthecellulosegroup.
TheHfqproteinisanRNA-bindingproteinassociatedwithsmallregulatoryRNAs(sRNAs)andhasmanyfunctionsinpressureadaptation[17].
SporulationisthefinaladaptationbythegenusBacillustorelievestress,andthedecreaseintheexpressionofthesegenesindicatesthatcellu-losemaybeanacceptablecarbonsourceforB.
subtilisHH2.
Asanintestinalprobiotic,B.
subtilisHH2'scelluloseutilizationabilitycouldaidpandasindigestingbamboo.
Thebacterialmetabolitesubstances,suchaspolypeptidesandlipids,whichcouldbedigestedbythehostwereproducedincellulosedecomposing.
Inadditiontoitsnutri-tionaleffects,HH2alsocontributestomaintainingtheintestinalmicroflorabalanceinthehost,sincethesubstancesforantimicrobialeffectandimmunestimulationwerecontinuousproducinginahighcelluloseenvironment.
Basedonthegeneexpressiondata,wefoundthatalthoughHH2decreasingsomeantimicrobialpeptidesexpressioninthecellulosemediumcomparedtothatinglucosemediummayreduceitsantimicrobialfunctions,mostofbacitracinexpressioncouldstillbedetectedinthecellulosegroup.
Suchasflagellin(U712_17730)andaseriesofsurfactincomponents,whichareinvolvedinimmunestimulationandresistancetopathogencolonization[40],weredetectedmorethan2,000reads.
Thus,webelievethatB.
sub-tilisHH2canstillexertmostprobioticfunctionsbothinnutritionalandantimicrobialeffectsinahigh-fiberenvironmentwithinanimals.
Insummary,thisstudyrevealedmajorchangesintranscriptionalregulationsinresponsetocelluloseadaptationofB.
subtilisHH2ondifferentcarbonsources,asdetectedbyRNA-Seq.
Theseresultsdemonstratethatthisbacteriumcouldplaypartoffunctionsasaprobioticforpandasinahigh-fiberenvironment,althoughcelluloseisnotaverysuitablecarbonsourceforthisstrain.
Wealsodemonstratedamodelforunderstandingthedynamicorgani-zationandinteractionsofthevariousfunctionalandregulatorynetworksforunicellularor-ganismsinahigh-fiberenvironment.
Asawell-characterizedbacteriumandaGram-positivelaboratorymodel,thetranscriptionalregulationofB.
subtilisHH2inahigh-fiberenviron-mentwillbeareferenceforotherintestinalbacteria.
Therefore,theseresultsrepresentanim-portantcontributiontotheresearchontheprotectionbytheintestinalmicrobiotaofthepanda.
AdaptationtoaHigh-FiberEnvironmentinBacillussubtilisHH2PLOSONE|DOI:10.
1371/journal.
pone.
0116935February6,201510/13SupportingInformationS1Fig.
CellulosehydrolysishalosofB.
subtilisHH2.
Thisstrainhasagoodabilitytodigestcellulose;thediameterofitscellulosehydrolysishalowas28.
00±0.
44mm.
(TIF)S1Table.
GOtermanalysisofdifferentiallyexpressedgenes(DEGs).
(XLSX)S2Table.
Theexpressionlevelsofselectedimportantcarbon-metabolismgenes.
(DOCX)AuthorContributionsConceivedanddesignedtheexperiments:ZYZXZZJZGP.
Performedtheexperiments:ZYZXZJLWL.
Analyzedthedata:ZYZXZWLXL.
Contributedreagents/materials/analysistools:FLHSYLWGCWHZDLTH.
Wrotethepaper:ZYZXZHFSCJSGP.
Samplecollectpermis-sion:HZDL.
References1.
EckburgPB,BikEM,BernsteinCN,PurdomE,DethlefsenL,etal.
(2005)Diversityofthehumanintesti-nalmicrobialflora.
Science308:1635–1638.
PMID:158317182.
LeyRE,HamadyM,LozuponeC,TurnbaughPJ,RameyRR,etal.
(2008)Evolutionofmammalsandtheirgutmicrobes.
Science320:1647–1651.
doi:10.
1126/science.
1155725PMID:184972613.
FlintHJ,BayerEA,RinconMT,LamedR,WhiteBA(2008)Polysaccharideutilizationbygutbacteria:potentialfornewinsightsfromgenomicanalysis.
NatureReviewsMicrobiology6:121–131.
doi:10.
1038/nrmicro1817PMID:181807514.
FranzosaEA,MorganXC,SegataN,WaldronL,ReyesJ,etal.
(2014)Relatingthemetatranscriptomeandmetagenomeofthehumangut.
ProceedingsoftheNationalAcademyofSciences111:E2329–E2338.
doi:10.
1073/pnas.
1319284111PMID:248431565.
ZhanX,LiM,ZhangZ,GoossensB,ChenY,etal.
(2006)Molecularcensusingdoublesgiantpandapopulationestimateinakeynaturereserve.
Currentbiology16:R451–R452.
PMID:167819976.
JinC,CiochonRL,DongW,HuntRM,LiuJ,etal.
(2007)Thefirstskulloftheearliestgiantpanda.
Pro-ceedingsoftheNationalAcademyofSciences104:10932–10937.
PMID:175789127.
JinK,XueC,WuX,QianJ,ZhuY,etal.
(2011)WhyDoestheGiantPandaEatBambooACompara-tiveAnalysisofAppetite-Reward-RelatedGenesamongMammals.
PLoSONE6:e22602.
doi:10.
1371/journal.
pone.
0022602PMID:218183458.
TunHM,MaurooNF,SanYuenC,HoJCW,WongMT,etal.
(2014)MicrobialDiversityandEvidenceofNovelHomoacetogensintheGutofBothGeriatricandAdultGiantPandas(Ailuropodamelano-leuca).
PloSone9:e79902.
doi:10.
1371/journal.
pone.
0079902PMID:244750179.
FangW,FangZ,ZhouP,ChangF,HongY,etal.
(2012)Evidenceforligninoxidationbythegiantpandafecalmicrobiome.
PloSone7:e50312.
doi:10.
1371/journal.
pone.
0050312PMID:2320970410.
ZhuL,WuQ,DaiJ,ZhangS,WeiF(2011)Evidenceofcellulosemetabolismbythegiantpandagutmicrobiome.
ProceedingsoftheNationalAcademyofSciences108:17714–17719.
doi:10.
1073/pnas.
1017956108PMID:2200631711.
SchallmeyM,SinghA,WardOP(2004)DevelopmentsintheuseofBacillusspeciesforindustrialpro-duction.
Canadianjournalofmicrobiology50:1–17.
PMID:1505231712.
KunstF,OgasawaraN,MoszerI,AlbertiniA,AlloniGo,etal.
(1997)Thecompletegenomesequenceofthegram-positivebacteriumBacillussubtilis.
Nature390:249–256.
PMID:938437713.
ZhouXX,HeTM,PengGN,WangCD,ZhongZJ,etal.
(2013)Isolation&identificationof7BacillusstrainsfromGiantPandaandresistanceanalysis.
VeterinaryScienceinChina43:1115–1121.
14.
ZhouZ,ZhouX,ZhongZ,WangC,ZhangH,etal.
(2014)InvestigationofantibacterialactivityofBacil-lusspp.
isolatedfromthefecesofGiantPandaandcharacterizationoftheirantimicrobialgenedistribu-tions.
WorldJournalofMicrobiologyandBiotechnology30:3129–3136.
doi:10.
1007/s11274-014-1740-yPMID:25228249AdaptationtoaHigh-FiberEnvironmentinBacillussubtilisHH2PLOSONE|DOI:10.
1371/journal.
pone.
0116935February6,201511/1315.
KleijnRJ,BuescherJM,LeChatL,JulesM,AymerichS,etal.
(2010)MetabolicfluxesduringstrongcarboncataboliterepressionbymalateinBacillussubtilis.
JournalofBiologicalChemistry285:1587–1596.
doi:10.
1074/jbc.
M109.
061747PMID:1991760516.
NicolasP,MderU,DervynE,RochatT,LeducA,etal.
(2012)Condition-dependenttranscriptomere-vealshigh-levelregulatoryarchitectureinBacillussubtilis.
Science335:1103–1106.
doi:10.
1126/science.
1206848PMID:2238384917.
ChaoY,VogelJ(2010)TheroleofHfqinbacterialpathogens.
Currentopinioninmicrobiology13:24–33.
doi:10.
1016/j.
mib.
2010.
01.
001PMID:2008005718.
StorzG,VogelJ,WassarmanKM(2011)RegulationbysmallRNAsinbacteria:expandingfrontiers.
Molecularcell43:880–891.
doi:10.
1016/j.
molcel.
2011.
08.
022PMID:2192537719.
YanoK,WadaT,SuzukiS,TagamiK,MatsumotoT,etal.
(2013)MultiplerRNAoperonsareessentialforefficientcellgrowthandsporulationaswellasoutgrowthinBacillussubtilis.
Microbiology159:2225–2236.
doi:10.
1099/mic.
0.
067025-0PMID:2397056720.
IrnovI,SharmaCM,VogelJ,WinklerWC(2010)IdentificationofregulatoryRNAsinBacillussubtilis.
Nucleicacidsresearch38:6637–6651.
doi:10.
1093/nar/gkq454PMID:2052579621.
KhrerK,DomdeyH(1991)PreparationofhighmolecularweightRNA.
Methodsinenzymology194:398–405.
PMID:170645922.
MeyerM,KircherM(2010)Illuminasequencinglibrarypreparationforhighlymultiplexedtargetcaptureandsequencing.
ColdSpringHarborProtocols2010:pdb.
prot5448.
23.
ChenZ,DuanX(2011)RibosomalRNAdepletionformassivelyparallelbacterialRNA-sequencingap-plications.
High-ThroughputNextGenerationSequencing:Springer.
pp.
93–103.
24.
TrapnellC,PachterL,SalzbergSL(2009)TopHat:discoveringsplicejunctionswithRNA-Seq.
Bioinfor-matics25:1105–1111.
doi:10.
1093/bioinformatics/btp120PMID:1928944525.
MortazaviA,WilliamsBA,McCueK,SchaefferL,WoldB(2008)MappingandquantifyingmammaliantranscriptomesbyRNA-Seq.
Naturemethods5:621–628.
doi:10.
1038/nmeth.
1226PMID:1851604526.
RobinsonMD,McCarthyDJ,SmythGK(2010)edgeR:aBioconductorpackagefordifferentialexpres-sionanalysisofdigitalgeneexpressiondata.
Bioinformatics26:139–140.
doi:10.
1093/bioinformatics/btp616PMID:1991030827.
HuangDW,ShermanBT,LempickiRA(2008)SystematicandintegrativeanalysisoflargegenelistsusingDAVIDbioinformaticsresources.
Natureprotocols4:44–57.
28.
HottesAK,FreddolinoPL,KhareA,DonnellZN,LiuJC,etal.
(2013)Bacterialadaptationthroughlossoffunction.
PLoSgenetics9:e1003617.
doi:10.
1371/journal.
pgen.
1003617PMID:2387422029.
SadaieY,NakadateH,FukuiR,YeeLM,AsaiK(2008)GlucomannanutilizationoperonofBacillussub-tilis.
FEMSmicrobiologyletters279:103–109.
doi:10.
1111/j.
1574-6968.
2007.
01018.
xPMID:1817731030.
WidnerB,BehrR,VonDollenS,TangM,HeuT,etal.
(2005)HyaluronicacidproductioninBacillussubtilis.
Appliedandenvironmentalmicrobiology71:3747–3752.
PMID:1600078531.
CohenSS(1951)Gluconokinaseandtheoxidativepathofglucose-6-phosphateutilization.
JournalofBiologicalChemistry189:617–628.
PMID:1483227932.
JosephP,FichantG,QuentinY,DenizotF(2002)Regulatoryrelationshipoftwo-componentandABCtransportsystemsandclusteringoftheirgenesintheBacillus/Clostridiumgroup,suggestafunctionallinkbetweenthem.
Journalofmolecularmicrobiologyandbiotechnology4:503–513.
PMID:1243296133.
DintnerS,StarońA,BerchtoldE,PetriT,MascherT,etal.
(2011)CoevolutionofABCtransportersandtwo-componentregulatorysystemsasresistancemodulesagainstantimicrobialpeptidesinFirmicutesbacteria.
Journalofbacteriology193:3851–3862.
doi:10.
1128/JB.
05175-11PMID:2166597934.
Martnez-HackertE,StockAM(1997)StructuralrelationshipsintheOmpRfamilyofwinged-helixtran-scriptionfactors.
Journalofmolecularbiology269:301–312.
PMID:919940135.
ColemanJE(1992)Zincproteins:enzymes,storageproteins,transcriptionfactors,andreplicationpro-teins.
Annualreviewofbiochemistry61:897–946.
PMID:149732636.
HigginsCF(1992)ABCtransporters:frommicroorganismstoman.
Annualreviewofcellbiology8:67–113.
PMID:128235437.
NelsonKE,ClaytonRA,GillSR,GwinnML,DodsonRJ,etal.
(1999)EvidenceforlateralgenetransferbetweenArchaeaandbacteriafromgenomesequenceofThermotogamaritima.
Nature399:323–329.
PMID:1036057138.
KoningsWN,AlbersS-V,KoningS,DriessenAJ(2002)Thecellmembraneplaysacrucialroleinsur-vivalofbacteriaandarchaeainextremeenvironments.
AntonieVanLeeuwenhoek81:61–72.
PMID:12448706AdaptationtoaHigh-FiberEnvironmentinBacillussubtilisHH2PLOSONE|DOI:10.
1371/journal.
pone.
0116935February6,201512/1339.
StephensC(1998)Bacterialsporulation:AquestionofcommitmentCurrentbiology8:R45–R48.
PMID:942763940.
AbriouelH,FranzCM,OmarNB,GálvezA(2011)DiversityandapplicationsofBacillusbacteriocins.
FEMSmicrobiologyreviews35:201–232.
doi:10.
1111/j.
1574-6976.
2010.
00244.
xPMID:2069590141.
WilsonDB(2011)Microbialdiversityofcellulosehydrolysis.
Currentopinioninmicrobiology14:259–263.
doi:10.
1016/j.
mib.
2011.
04.
004PMID:2153160942.
SchultzD,WolynesPG,JacobEB,OnuchicJN(2009)Decidingfateinadversetimes:sporulationandcompetenceinBacillussubtilis.
ProceedingsoftheNationalAcademyofSciences106:21027–21034.
doi:10.
1073/pnas.
0912185106PMID:19995980AdaptationtoaHigh-FiberEnvironmentinBacillussubtilisHH2PLOSONE|DOI:10.
1371/journal.
pone.
0116935February6,201513/13
Webhosting24是一家始于2001年的意大利商家,提供的产品包括虚拟主机、VPS、独立服务器等,可选数机房包括美国洛杉矶、迈阿密、纽约、德国慕尼黑、日本、新加坡、澳大利亚悉尼等。商家VPS主机采用AMD Ryzen 9 5950X CPU,NVMe磁盘,基于KVM架构,德国机房不限制流量,网站采用欧元计费,最低年付15欧元起。这里以美国机房为例,分享几款套餐配置信息。CPU:1core内存...
LightNode是一家成立于2002年,总部位于香港的VPS服务商。提供基于KVM虚拟化技术.支持CentOS、Ubuntu或者Windows等操作系统。公司名:厦门靠谱云股份有限公司官方网站:https://www.lightnode.com拥有高质量香港CN2 GIA与东南亚节点(河内、曼谷、迪拜等)。最低月付7.71美金,按时付费,可随时取消。灵活满足开发建站、游戏应用、外贸电商等需求。首...
profitserver正在对德国vps(法兰克福)、西班牙vps(马德里)、荷兰vps(杜廷赫姆)这3处数据中心内的VPS进行5折优惠促销。所有VPS基于KVM虚拟,纯SSD阵列,自带一个IPv4,不限制流量,在后台支持自定义ISO文件,方便大家折腾!此外还有以下数据中心:俄罗斯(多机房)、捷克、保加利亚、立陶宛、新加坡、美国(洛杉矶、锡考克斯、迈阿密)、瑞士、波兰、乌克兰,VPS和前面的一样性...
熊猫直播频道为你推荐
如何免费开通黄钻怎么免费开通黄钻~~~?打开网页出现错误网页出现错误怎么解决?要最简单的那种百度抢票浏览器现在火车票越来越难买了,新版百度手机浏览器,除了抢票外,还有什么其他功能吗?不兼容Google play 服务提示不兼容怎么办?彩信中心联通手机的彩信中心如何设置?腾讯文章腾讯罗剑楠是何许人也?qq怎么发邮件手机QQ怎么发邮件神雕侠侣礼包大全神雕侠侣手游华山论剑礼包有什么 怎么领取保护气球什么气球可以骑?ejb开发EJB是什么?
虚拟主机服务商 深圳虚拟主机 短域名 高防dns virpus asp.net主机 rackspace 美国php主机 光棍节日志 双11抢红包攻略 512au 好看的桌面背景图片 100m免费空间 美国十次啦服务器 阿里云浏览器 howfile 可外链相册 33456 dnspod ebay注册 更多