voidpp点点通2004

pp点点通2004  时间:2021-01-26  阅读:()
SAND2004-4782PrintedSeptember2004ITS5TheoryManualDocumentRev.
1.
2September17,2004R.
P.
Kensek,B.
C.
Franke,T.
W.
LaubDraftVersion1.
22ITS5TheoryManualTABLEOFCONTENTS1Scope.
32GeneralLimitations.
33PhotonTransport43.
1InteractionsModeled.
53.
1.
1PhotoelectricEffect53.
1.
1.
1PhotoelectronProduction53.
1.
1.
2Relaxation.
53.
1.
2IncoherentScattering.
63.
1.
3CoherentScattering73.
1.
4PairProduction.
74ElectronTransport.
74.
1TransportMechanics.
74.
1.
1BoundaryCrossingDetails.
84.
2InteractionsModeled.
84.
2.
1CollisionalEnergyLoss.
84.
2.
2ElasticScattering.
84.
2.
3InelasticScattering94.
2.
4Bremsstrahlung.
94.
2.
5Knock-ons94.
2.
6ImpactIonization.
104.
2.
6.
1VacancyRelaxation.
105GeometryTracking106Tallies.
107BiasingOptions.
108SourceDescriptions.
109Statistics.
1010RandomNumberGenerators.
1011References10DraftVersion1.
23ITS5TheoryManual1ScopeThisdocumentdescribesthemodelingofthephysics(andeventuallyfeatures)intheIntegratedTIGERSeries(ITS)codes[Franke04]whichislargelypulledfromvarioussourcesintheopenliterature(especially[Seltzer88],[Seltzer91],[Lorence89],[Halbleib92]),althoughthosesourcesoftendescribetheETRANCodefromwhichthephysicsengineofITSisderived,notnecessarilyidentical.
Thisismeanttobeanevolvingdocument,withmorecoverageanddetailastimegoeson.
Assuch,entiresectionsarestillincomplete.
Presently,thisdocumentcoversthecontinuous-energyITScodeswithmorecompletenessonphotontransport(thoughelectrontransportwillnotbecompletelyignored).
Inparticular,thisdocumentdoesnotcovertheMultigroupcode,MCODES(externallyappliedelectromagneticfields),orhigh-energyphenomena(photonpair-production).
Inthisversion,equationsarelargelylefttothereferencesthoughtheymaybepulledinovertime.
2GeneralLimitationsAsimulationisonlyasgoodastheunderlyingmodel.
Thecontinuous-energyITScodes(withoutexternallyappliedelectromagneticfields)ismodeledafterthelinear,time-independentBoltzmannEquationforphotonsandelectrons(additionalassumptionsonhowtheelectronsarehandledwillbediscussedshortly),whichessentiallysaysparticlesstreambetweencollisionpoints.
Thefrequencyandtypeofcollisionsaregivenintermsofcrosssectionswhichareprobabilitiesperpathlength.
Thephysicsisembodiedinthedetailsofwhathappensatcollisionpoints,whichmayincludehowtheenergyanddirectionoftheincomingparticlechange,whethertheincomingparticleisabsorbed,andhowmanynewparticlesemergeincludingdetailsoftheirenergiesanddirections.
Here,"timeindependence"meansthatneitherthesourcenormaterialpropertiesdependontime.
TheBoltzmannEquationis"linear"whichmeanstheparticleinteractionsdonotmodifythematerialpropertiesandtheparticlesdonotinteractwitheachother.
Thecrosssectionsarebaseduponthoseofelementsofneutralatoms.
Inparticular,molecularandsolid-stateeffectsarenotmodeled.
Theseeffectstendtobeofgreaterimportanceatlowerenergies.
TheAtomicFormFactorassociatedwithphotoncoherentscatteringisparticularlysensitivetothis(e.
g.
see[Poletti02]).
ThesolecasewhereITSaddressesmolecularorsolid-stateeffects(atleastapproximately)istheparametersfortheBethestoppingpowerofelectrons,wherealternatevaluesareusedforlow-Zelementsdependingonwhetheritisusedinacompoundorwhetheritisagasorsolid[Berger88].
Themodeledcrosssectionstendtoberathersmoothfunctionsofenergy,exceptfordiscontinuitiesinphotoncrosssectionsatedgeenergies.
Realcrosssections[Hubbell99]exhibitoscillationsneartheseedgeenergies,sothecodesmaybelessaccurateformono-energeticphotonsnearedgeenergiesofthematerialtheyaretransportingthrough.
Forthecaseofaspectrumofphotons,sucheffectsarebelievedtoquicklywashout.
Similarily,realelectroncrosssectionsmayexhibitlargeoscillationsforsmallangulardeflectionsduetosolid-stateeffects.
ThissuggeststransportcodessuchasITS"arenotintendedorsuitableforapplicationsinthethin-film,pluralscatteringregime,whereinterferenceeffectsdependingonthestructureofthematerialplayanimportantrole"[Berger88].
For3Dcalculations,distancesof1nmforthenon-CADcodes,or10nmfortheCADcodes(includingaCG-onlysimulationusinganexecutablefromtheCADcodes)mustbe"small"comparedtozonethicknessesinthemodeledgeometry.
Intracking,whenaparticleismovedtoaboundary,the3Dcodesdeterminewhichzoneisenterednextbymakingaqueryatapointslightlybeyondtheboundary(basedonthesedistances)inthedirectionoftheparticle.
Generally,electrontransportismoreapproximatethanphotontransport.
Electrontransportistreatedina"ClassI"[Berger63]condensed-historyapproach,wheretheaccumulatedeffectsofscatteringoverapathlengtharetreatedinsteadofindividualinteractions(detailsaregiveninthesectionsonelectrontransport).
Sinceindividualscattersarenotmodeledalongthepathlength,thepathlengthshouldbefairlysmallcomparedtoregionsofinterest(sometimesathirdissufficient[Jensen88],thoughthiswilldependontheDraftVersion1.
24ITS5TheoryManualapplication).
Fromanangular-deflectionperspective,thispathlengthistheITS"substep"(seesection4),whichinprinciple(butnotwiththepresentimplementation)canbereducedtoanarbitrarysize.
Presently,ITSusesunstablerecursionrelationswhichtranslatetoafixed,smallnumberoftermstobesummed[Seltzer88],whichwouldbeinsufficientforconvergenceforverysmallpathlengths.
Fromanenergy-stragglingperspective,thepathlengthisthe"step"size.
Also,thepresentimplementationinITSusesseveralnearest-neighboralgorithms,theeffectsofwhichshouldbebettercharacterized.
3PhotonTransportPhotonsmoveinstraightlinesbetweencollisionsitesandaremodeledassuch.
Thefrequencyofcollisionsisdeterminedbythetotalcrosssectionofall(modeled)photoninteractions.
Adistancetocollisionissampledbasedonanexponentialdistribution.
Inthecontinuous-energymembersoftheITScodes,thissamplingisdonemechanicallyassumingphotoncollisionforcingisineffect.
First,thedistancetoboundaryofthecurrentzoneiscalculatedandthenaturalprobabilityofaninteractionalongthatdistancetoboundaryiscalculated.
Iftheuserhadrequestedphotoncollisionforcinginthatzone,thisnaturalprobabilitywouldbeusedtomodifytheweightofthephotonwhichwouldinteractwiththeuser'sspecifiedprobability.
Bydefault,thenaturalprobabilityisusedasthe"forcing"probabilitywhichismathematicallyequivalenttonoforcingatall.
Thedetailsofwhathappensatacollisionsitearespecifiedbythemodelingofthetypeofcollisionwhichoccurred.
Therelativeprobabilityofanyoneinteractionisgivenbytherelativesizeofthecorrespondingcrosssections.
Whennointeractionoccursinagivenzone,thephotonismovedtotheboundary.
Thenextzoneisdeterminedinslightlydifferentwaysdependingonthedimensionalityofthemembercode:Inthe3Dcodes(ACCEPT),apointischosenacertaindistancebeyondtheboundaryinthedirectionofthephoton.
Thisdistanceis1nmfornon-CADand10nmforCAD(includingtheCG-onlyoptioninCAD).
Thezonecontainingthatpointisidentifiedasthenextzoneforthephoton.
Inthe2.
5Dcodes(CYLTRAN),thenextzoneisdeterminedbycomparingtoeithertheaxialorradialboundariesofasetofcandidatezonesbasedonthesurfaceexitedfromthepreviouszone.
Inthe1Dcodes(TIGER),thenewzoneindexissimplyonegreaterorsmallerthanthepreviouszone,dependingonthedirectionofthephoton.
Afterbeingmoved(toeitheraboundaryorcollisionsite–ifthephotonhasnotbeenabsorbed),theprocessofsamplingdistancetocollisionrepeats(untilthephotonhasescapedtheboundariesofthemodelgeometry).
Nosamplingofdistancetocollisionoccursinvoidregions.
Thepre-processeddataofthecrosssectionsfromNISTforeachinteractionaregivenasvaluesonan80-pointenergygrid(spanningtherangeof1keVto1GeV)foreachelement.
Higher-Z(atomicnumber)elementswillhavemoreenergypoints,astheenergyrangeisbrokenupinto"tables"betweentheedgeenergies(atwhichthephotoelectriccrosssectionshavediscontinuitiesinenergy).
Thesevaluesaremappedontoafinegrid(ofabout3000energypoints–thegridisadaptivewithmorepointsaddednearedge-energydiscontinuites)bylog-logquadraticinterpolation.
(TheXCOM[Berger87]program,uponwhichourmethodsarebased,usesdifferentinterpolationprocedures.
XCOMuseslog-logcubicsplineinterpolationabovetheK-edge,andlog-loglinearinterpolationbelow.
SpotcheckingvaluesobtainedfromourfinegridandXCOM'sinterpolationmethods,thedifferencesaregenerallylessthan1%andoftenmuchlessawayfromedgeenergies.
ThereisevidenceNIST[Seltzer93]maybeexploringuseoflog-logHermitepolynomialinterpolation"toavoidtheoccasionalnumericalexcursionfoundforcubicsplines,"sothebestinterpolationchememaybeamovingtarget.
)ValuesarethenusedintheMonteCarlowithasimplenearest-neighborlookup,wheretheenergyatwhichthecrosssectionisevaluatedisthegeometricmeanoftheendpointsoftheenergybin.
Crosssectionsforcompoundsareobtainedfromweightedsumsoverthecorrespondingcoefficients(i.
e.
fractionsofweightsoftheatomicconstituents)fortheelements.
[Berger87]DraftVersion1.
25ITS5TheoryManual3.
1InteractionsModeled3.
1.
1PhotoelectricEffectThetotalphotoelectricabsorptioncrosssectionsarebasedoncalculationsfromScofield[Scofield73].
However,thesecrosssectionswerenotrenormalizedusingtherelativisticHartree-FockcorrectionfactorssuppliedbyScofieldsincereviewsofSalomanandHubbell[Saloman87]indicatethatagreementwithexperimentisbetterwhentherenormalizationisnotdone.
AlthoughthesecrosssectionswerealsousedinthepubliclyreleasedITS3.
0in1992[Halbleib92],themedicalphysicscommunityapparentlyhasonlyrecently"rediscovered"thebenefitofuseofthese(non-renormalized)crosssections[DeMarco02].
Theaccuracyofthephotoelectriccrosssectionsaregivenin[Hubbell99]as:PhotonenergyrangeSolidGas0.
5-1keV10-20%5%1-5keV5%5%5-100keV2%2%100keV–10MeV1-2%1-2%10MeV–100GeV2-5%2-5%Strictlyspeaking,thistableiscomparingmeasurementstotheEPDLdataset,butagainthesearebasedonthesamenon-renormalizedScofieldcalculations(withaslightlydifferentinterpolationscheme).
Thisassessmentcomesfromasystematiccomparison[Saloman88]tothemassiveNISTdatabasewhere,forexampleinthe5-100keVrange,almosteachelementiscomparedwithmeasurementsfromseveralsources.
Thisisthedominantinteractioncrosssectionforlow-energyphotons.
3.
1.
1.
1PhotoelectronProductionTheprobabilityofhavingaparticularshellionizedistheratioofthephotoelectriccrosssectionevaluatedoneithersideofthediscontinuityattheshelledgeenergy(forphotonenergiesabovethatedgeenergy,butotherwiseassumedtoindependentofthephoton'senergy).
Forthestandardcodes,onlytheK-shellofthehighest-Zelementineachmaterialistreated.
ForthePCODES,allelementsaretreateddowntoanaverage-Mandaverage-Nshell.
Theangleoftheemergingphoto-electron(withrespecttotheparentphoton)isdescribedbytheFischerdistributionatlowerenergiesandSauterformulaathigherenergies(bothcanbefoundin[Lorence89]).
Forthestandardcodes(non-PCODES),theswitchingenergyis50keV[Seltzer88]andthedistributionshavebeenpre-calculatedbyNISTonthirteenenergiesand21equi-probablereduced-anglebins.
Thesamplingproceedsbylinearlyinterpolatingonenergyandanangularterm,(1-βcosθ),whichisatypicalfactorintheBethe-Heitlerformulas.
ForthePCODES,theswitchingenergyisafunctionofatomicnumber[MacCallum73]andthedistributionsaresampledanalyticallybyeitherdirectsamplingfromFischerorarejectiontechniquefortheSauterdistribution.
Theenergyoftheemergingphoto-electronisthedifferencebetweentheenergyofthephotonhavingthephotoelectricinteractionandthebindingenergyoftheatomicshellinvolved.
Forthestandardcodes,thebindingenergiesarethosefrom[Carlson75].
ThebindingenergiesforthePCODESaresettobeconsistentwiththeNISTphotoelectricedgeenergies.
Forshellenergiesbelow1keVforthePCODEs,weusethebindingenergiesof[Carlson75].
Bindingenergiesaregenerallywellknown,andthedifferencesinthesedatasetstendtobelessthan1%.
3.
1.
1.
2RelaxationIfashellhasbeenionizedthroughthephotoelectricevent,theresidualshellbindingenergymustrelaxthroughtheproductionoffluorescencephotonsorAugerelectrons.
Foreachshell,thedatawhichareneededarethefluorescenceefficiencyandrelativeprobabilitiesofwhichothershell(s)maybeinvolvedwhichinturnaffectstheenergiesoftheemittedfluorescencephotonsorAugerelectrons.
DraftVersion1.
26ITS5TheoryManualInthestandardcodes,onlytheK-shellistreated.
A1984fit(overatomicnumberZ)isusedfortheK-shellfluorescenceefficiencies.
See[Hubbell94]fordiscussionandlatestsuggestionoftabulatedvalues.
Efficienciesforhigh-Zmaterials(whichgeneratethemostfluoresence)areratherstabletothe1%level.
Low-ZelementssuchasAlhavechangedbyabout20%overtheyears,andisnowknowntoabout10%[Hubbell94].
Thebranchingratios(whichK-shellfluorescenceorwhichAugerelectrons)aretakenfrom[Bambynek72].
Theassessmentofagreementofthesefluorescencebranchingratiostomeasuredvaluesareaslargeas20%forlow-Zandoftheorderof7%athighZ[Bambynek72].
ThedataforthePCODES(whichneedsimilardatabutformoreshells,includingCoster-KronigtransitionsfortheLshells)comefrom10referencescitedin[Halbleib75].
Atthistime,itisnotclearwhichquantitiycamefromwhichsource.
3.
1.
2IncoherentScatteringThetotalcrosssectionforincoherent(Compton)scatteringistakenfrom[Hubbell75]obtainedfromusingaproductoftheanalyticKlein-Nishinaformulaandnon-relativisticHartree-Fockincoherent-scatteringfunctionsS(Z,x)(wherexisthemomentumtransferandZistheatomicnumber).
ThesamplingoftheangleofthescatteredphotonisperformedbysamplingfromtheKlein-NishinacrosssectionthenrejectingonS(Z,x)forlargeenergies(energieslargerthan0.
003MeVtimesthesquarerootofaneffectiveatomicnumberforthegivenmaterial),otherwisesamplingonS(Z,x)andrejectingonKlein-Nishina.
WeareconsistentinusingthesameS(Z,x)tosamplefromthetotalordifferential(inangle)crosssections.
WhentheKlein-Nishinacrosssectionissampled,Kahn'smethod[Kahn56]isusedforenergieslessthan5MeVwhileKoblinger'smethod[Koblinger75]isusedotherwise.
Bothmethodsuseanalyticexpressionandaremathematicallyequivalent(butnotnecessarilyasefficient)intheirrangeofvalidity.
Koblinger'smethodcannotbeusedbelowabout1.
4MeVsinceoneoftheterms,treatedasaprobability,becomesnegative.
TheswitchingenergiesweredeterminedbyNISTasgoodchoicesforefficientsamplingtimes.
Whenevaluatingtheincoherentscatteringfunctions,cubicsplineinterpolationisused(whichisadditionallylog-logformomentumtransferslargerthan2inverseAngstroms).
S(Z,x)isassumedtobeunityabovemomentumtransfersof100inverseAngstroms.
WhenxissampledfromS(Z,x),cubicsplineinterpolationisusedonthecumulativeprobabilityfunction.
Forcompounds,aneffective(normalizedtounityforlargex)incoherentscatteringfunctionisusedas[Seltzer89]Seff(x)=Σiwi(Zi/Ai)[S(x,Zi)/Zi]/where=Σiwi(Zi/Ai).
Oncetheangleofthescatteredphotonisdetermined,itsenergyandthatoftheemergingelectronaredeterminedbyComptonkinematics.
Hubbell[Hubbell97]assessedtheincoherent-scatteringfunctionapproachtobe5%orbetterinforwardscatteringanglesandforlowandmediumZmaterials.
ForlargeanglesandhighZvaluesthisapproachmaybetoohighbyasmuchas20%.
HealsoreferstoS-Matrixtheorywhichmayprovidemoreaccuratecrosssectionsthantheuseoftheincoherentscatteringfunction,butadmitsmorecomparisonswithexperimentaldataareneeded.
Meanwhile,thereisinterestinasimplertheorybutonewhichcanincorporateComptonDopplerbroadening–whichisthoughttohaveaveryminoreffectonenergydeposition(duetoenergydepositionbeingtheintegralofthebroadenedquantity)butadramaticeffectonforexample,apulseheightdistribution.
EvaluationsbyNIST[Rao04]onthisalternateapproachtomodelingComptonscatteringresultedindifferencesinthetotalcrosssectionsbylessthan1%above50keV,butcouldbeaslargeas10%at5keVforparticularelements.
Theyconclude"Wenote,unfortunately,thatthereisascarcityofabsoluteexperimentaldatafortotalscatteringcrosssections.
"[Rao04](WehaveastudentinternimplementingaformoftheComptonDopplerbroadeningsowecaneventuallymakeourownassessmentsofitsimpactonourapplications.
)DraftVersion1.
27ITS5TheoryManual3.
1.
3CoherentScatteringThetotalcrosssectionsforcoherent(Rayleigh)scatteringistakenfrom[Hubbell79]obtainedfromusingaproductoftheanalyticThompsonformulacombinedwithrelativisticHartree-FockatomicformfactorsF(Z,x)(wherexisthemomentumtransferandZistheatomicnumber).
ThesamplingoftheangleofthescatteredphotonisperformedbysamplingfromtheThompsoncrosssectionthenrejectingonF(Z,x)forsmallenergies(energiessmallerthan0.
002MeVtimesapowerofaneffectiveatomicnumberforthegivenmaterial),otherwisesamplingonF(Z,x)andrejectingontheThompsonformula.
Unlikethoseusedforthetotalcrosssections(usedtodeterminetherelativeprobabilityofhavingaCoherentinteraction),theF(Z,x)usedfortheanglesamplingarethenon-relativisticHartree-Fockatomicformfactorsof[Hubbell75].
Whenevaluatingtheatomicformfactors,cubicsplineinterpolationisused(whichisadditionallylog-logformomentumtransferslargerthan0.
1inverseAngstroms).
F(Z,x)isassumedtobezeroaboveamaterial-dependentmomentumtransfer(calculatedasxforwhichF(Z,x)=1.
E-6).
WhenxissampledfromF(Z,x),cubicsplineinterpolationisusedonthecumulativeprobabilityfunctionwhichisadditionallylogarithmicinmomemtumtransferforsampledprobabilitiesgreaterthan0.
1inverseAngstroms.
Forcompounds,aneffective(normalizedtounityatx=0)atomicformfactorisusedas[Seltzer89]Feff(x)=Σiwi(Zi2/Ai)[F(x,Zi)/Zi2]/where=Σiwi(Zi/Ai).
Itisassumednoenergylossisassociatedwithacoherentscatteringinteraction.
3.
1.
4PairProductionPairproductionisnotyetdiscussed.
4ElectronTransportElectrontransportistreatedina"ClassI"[Berger63]condensed-historyapproach,wheretheaccumulatedeffectsofscatteringoverapathlengtharetreatedinsteadofindividualinteractions.
Pathlengthsaretreatedontwolevels[Seltzer88]inITS.
Forenergy-losssampling,a"step"sizeisdefinedasthedistanceoverwhichaspecifiedaverageenergylossoccurs(theITSdefaultisabout8%sothat,after8stepstheelectron'senergyis,ontheaverage,halved.
).
Thesestepsizesarenaturallymappedtoalogarithmicenergygridonwhichmostoftheelectroncrosssectionsareevaluated.
Thisstepisfurtherdividedintomultiple(from2-15withlargernumbersforhigheratomicnumberofthematerial)substepstohelpcapturethespatialvariation("wiggliness"[Seltzer91])ofrealelectrontracks.
Thespatialdisplacementoverasubstepisdescribedinthefollowingsectionon"transportmechanics".
4.
1TransportMechanicsITSusesthesimplesttransportmechanicsscheme[Berger63]:straight-linemotioninthedirectionoftheunscatteredelectron,withtheaccumulatedangulardeflectionimposedattheendofthesubstep.
Otherapproaches(attemptingtobetterdescribethe"wiggliness"ofthescatteredelectronsoverasubstep)includestraight-linemotionwithexplicitpathlengthcorrections[Seltzer91],singleormultiplehinges[Kawrakow98],orsamplingfromdistributionsgeneratedfromsingle-scatteredcodes(whichdescribeDraftVersion1.
28ITS5TheoryManualwheretheelectronendsup,butnothowitgotthere).
[Ofthose,thesinglerandomly-placedhingehassomeattractiveproperties(approximatelypreservingmoments)whilemaintainingsimplicityforboundarycrossing.
ThismaybeexploredinfutureversionsofITS.
]4.
1.
1BoundaryCrossingDetailsWiththesimplestraight-aheadtransport,thespatiallocationofaboundarycrossingisstraightforward.
However,themachineryofthecondensed-historyalgorithms,whichisbasedonprecalculatingsamplingdistributionsoverapre-determinedpathlength,needtobemodified,sinceboththestepandsubteppathlengthshavebeentruncated.
Theenergyofanelectronwhichhascrossedaboundaryisresampledbasedontruncatedstep-size.
Thisenergylossisappliedtotheelectronattheboundary.
Theenergylossofthetruncatedsubsetissimplythescaledenergyloss(basedonthefullstep)forthatfractionofthesubstep.
Thisintroducesalackofcorrelationoftheenergylossalongthesubstepsalreadytraversed,butattemptstomaximizethepathlengthusedinthesampling(i.
e.
atruncatedstepinsteadofatruncatedsubstep).
Ontheaverage,themeanenergydepositedwillbepreserved,buttheenergystraggling(spread)fortheenergydepositedwillbedifferentfromtheenergystragglingoftheenergylostbytheelectronontheothersideoftheboundary.
Theangulardeflectionsarenowsampledwithaprocedure[Jensen88]whichrepresentsthemultipleangularsacatteringdistributionasacombinationofamodifiedGaussian[Berger88]withasingle-scatteringlarge-angletail.
Ifthepathlengthissufficientlyshort,onlythesinglescatteringangulardeflectionswillbesampled.
Thenumberoflarge-anglesinglescatters(ortotalsinglescatteringwhenthepathlengthistoosmalltohavemultiplescattering)isbasedonaPoissiondistributionoftheaveragenumberofthosescatters.
Thesingle-scatteringdistributions(forthesetruncatedsubsteps)arerepresentedanalyticallyasscreenedRutherforddistributions,evenbelow256keV,usingSeltzer'smodifiedscreeningparameter[Seltzer88]topreservethefirsttransportmomentofthemoreaccuratephase-shiftcalculations.
Thisaccumulatedscatteringisthenimposedattheboundary(i.
e.
theendofthetruncatedsubstep).
Finally,accumulatedscatteringswhichbringtheparticlebackintothepresentzone(i.
e.
,havenotcrossedtheboundary)arerejected.
Thenumberofanysecondariesproducedissimplyscaledbackbytheratioofthetruncatedtofullsubstep.
4.
2InteractionsModeled4.
2.
1CollisionalEnergyLossTheenergylossoverastepissampledfromamodified[Seltzer91]Landau/Blunck-Leisegangdistribution.
TwomodificationsweremadebySeltzer:(1)afinitemaximumenergylosswasdeterminedtopreservethemeanstoppingpower(calculatedfromtheBetheformulaforthetotalstoppingpower),and(2)asemi-empiricalcorrectiontothewidthwhichdramaticallyimprovescomparisonswithexperimentforsmallerstepsizes.
Withinastep,thesampledenergylossispartitionedequallyamongthesubsteps.
4.
2.
2ElasticScatteringTheGoudsmit-Saunderson(GS)distributionisaninfiniteserieswhosecoefficientsinvolvethetransportmoments(angularmoments)ofthesingle-scatteringcrosssection.
ThemethodofevaluationusedinITSwaslargelydevelopedinthelate50'searly60'swhencomputationalpowerwasverylimitedsoapremiumwasplacedonanalyticmanipulations.
Amorerobustmethodhasbeendescribedin[Berger88].
Atenergiesabove256keV,thecrosssectionisrepresentedastheproductofascreenedRutherfordwiththeratiooftheMotttoRutherford.
In[Berger88],Bergergivesatableoftheestimatederrorasabout5%inUat274keV(fallingoffathigherenergiesorlower-Z).
ThescreeningparameterηisessentiallythatofMoliere,butmodifiedbySeltzer[Seltzer88]whichweusetosmooththetransitiontotheuseofphase-shiftcalculationsbelow256keV.
Seltzer'smodificationisdesignedtoapproximatelypreservethefirsttransportmomentofthephase-shiftcrosssection.
TheMotttoRutherfordratioistreatedasnumericaldatafromNIST:evaluatedforeveryelement(Z=1to100)at18energiesand5angles(every45degrees).
(ThedataincludesasimilartabulationofMott-positronstoRutherfordratios.
)ThefunctionisinterpolatedbyDraftVersion1.
29ITS5TheoryManualpiecewisequadratic(Lagrange)interpolationinenergy.
Finally,thiscrosssectionisexpandedinpowersof(1-cosθ+η)wherefivecoefficientsaredeterminedbymatchingexactlyat5angles(every45degrees).
Atenergiesbelow256keV,phase-shiftcalculations[Riley75]havebeenperformedandexpandedina12-parameterfitofasumofdifferentpowersof(1-cosθ+B)combinedwithasumofafewLegendrePolynomials,whereBisoneofthefittingparameters.
Thefittingcoefficientshavebeendeterminedtopreservethefirsttwentytransportmomentsofthephase-shiftcalculations.
(WedohavenumericaltablesofBerger'sextensionofRiley'scrosssectionsto1MeV.
[Berger93])Byrepresentingthesinglescatteringcrosssectioninthisway,thetransport-momentintegrals(todeterminetheGScoefficients)canbedoneanalyticallyusingrecursionrelations,whichunfortunatelyareunstable.
Tomaintainaccuracytheseriesissummedto240terms(withthenexttermrepresentingtheunscatteredprobability)intheforwarddirectionwhenη1.
E-4,theseriesissummedtoexp(1.
794-.
397lnη),butneverlessthan10,inthebackwarddirection[Seltzer88].
Eachcoefficientisevaluatedattwoenergies:atthebeginningandendofthesubstep(whichiscenteredwithinthecorrespondingstep).
Thesameangulardistributionwillthenbeusedthroughoutthestep.
Thoughthismayintroducesomebiasinsituationswhereaboundaryiscrossedbeforethestepcyclecanbecompleted.
Thispermitsthecoefficientsofa2-parameterfit[Spencer55]todescribetheenergydependenceoftheGScoefficients,sotheymaybeintegratedanalyticallyoverenergy(i.
e.
overthesubstep)toaccountfortheenergylossoftheelectronoverthesubstep.
Thefinaldistributionisrepresentedasthedelta-functionplusahistograminangle(withadefaultsizeof33bins,morecloselyspacedatsmallangles).
AllofthesecomputationstakeplacewithinthecrosssectiongeneratingcodeXGEN,sothattheMonteCarloneedonlysamplefromthecumulativeprobabilityofthathistogram.
Thecumulativedistributionisnormalizedtothecomplementofthedelta-functionscattering.
4.
2.
3InelasticScatteringTheangulardeflectionsduetoinelasticscatteringareapproximatedbyincreasingtheelastic-scatteringcrosssectionby(Z+1)/ZwhiletheGScoefficientsaredetermined.
Withthistreatment,thelarge-anglecollisionswillbeuncorrelatedwiththeassociatedlargerenergyloss.
Thisincreasesthecrosssectionatallangles,sotheresultingdistributionisreducedbyZ/(Z+1)atallanglesgreaterthanthekinematicalcutoffangle[Seltzer88].
Analternativeprocedure,incorporatingthecorrectionperhapsalittlemoreconsistently,hasbeensuggestedin[Berger88].
4.
2.
4BremsstrahlungBremsstrahlungproductionissampledfromaPoissondistributionovereachsubstep.
Theenergyofeachphotonissubtractedfromtheparentelectron(hencethetwoarecorrelatedunlikeknock-onproduction).
Thestartingpositionofthephotonissampleduniformlyalongthesubsteppath.
TheangulardistributionofthebremsstrahlungphotonissampledfromBethe-Heitlercrosssections(Bornapproximations)[Koch59]differentialinbothenergyandangleoftheemittedphoton.
Phase-shiftcalculationsfortheseangulardistributionsarealsoavailableatorbelow500keV[Kissel83]andthedifferencesdiscussedin[Seltzer91].
Thedirectionoftheparentelectronistakentobethatatthebeginningorendofthesubstep,whicheveriscloser.
Thiscanleadtomeasurableartifacts[Faddegon93]andasimplesolutionhasbeenproposed[Hughes97]thoughnotyetimplementedinITS.
Thebremsstrahlungcrosssections,differentialinenergy,arediscussedmorefullyin[Seltzer88b].
Forenergiesbelow2MeV,theyincludephase-shiftcalculationsofPratt[Pratt77](withlinearextrapolationtoincludeZ=1andZabove92to100).
Seltzerevaluates"agreementisgenerallywithinthecombinedlimitsofexperimentaluncertaintyandatheoreticaluncertaintyestimatedtobe5to10%.
"[Seltzer88b]4.
2.
5Knock-onsTheproductionofknock-onelectronsissampledaccordingtotheMollercrosssection(whichignoresbindingeffects).
Theangulardistributionoftheknock-onsisbasedonMollerkinematicswiththeDraftVersion1.
210ITS5TheoryManualreferencedirectionoftheparentelectrontakentobethatatthebeginningorendofthesubstep,whicheveriscloser.
Thestartingpositionsoftheseknock-onsaresampleduniformlyoverthesubstep.
Nochangeoftheparentelectron'senergy(ordirection)ismadesincethisisalreadytakenintoaccountthroughusingthetotalstoppingpowerandLandua/Blunck-Leisegangdistribution(andourtreatmentofinelasticscattering).
Hence,theenergylossduetoknock-onsareuncorrelatedfromtheparentelectron.
4.
2.
6ImpactIonization4.
2.
6.
1VacancyRelaxation5GeometryTracking6Tallies7BiasingOptions8SourceDescriptions9Statistics10RandomNumberGenerators11References[Bambynek72]W.
Bambynek,B.
Casemann,R.
W.
Fink,H-U.
Freund,H.
Mark,C.
D.
Swift,R.
E.
Price,P.
V.
Rao,"X-RayFluorescenceYields,AugerandCoster-KronigTransitionProbabilities",Rev.
Mod.
Phys.
44,(4)p.
716(1972).
Erratain46,(4),p.
853(1974).
[Berger63]M.
J.
Berger,"MonteCarloCalculationofthePenetrationandDiffusionofFastChargedParticles",in"MethodsofComputationalPhysics",Vol1,Ed.
B.
Alder,S.
Fernbach,M.
Rotenberg(AcademicPress,NewYork),p.
135(1963).
[Berger87]M.
J.
Berger,J.
H.
Hubbell,"XCOM:PhotonCrossSectionsonAPersonalComputer",NBSIR-87-3597(1987).
[Berger88]M.
J.
Berger,R.
Wang,"Multiple-ScatteringAngularDeflectionsandEnergy-lossStraggling"in"MonteCarloTransportofElectronsandPhotons",Eds.
T.
M.
Jenkins,W.
R.
Nelson,A.
Rindi,pp21-56(1988).
[Berger93]M.
J.
Berger,S.
M.
Seltzer,R.
Wang,A.
Schechter,"ElasticScatteringofElectronsandPositronsbyAtoms:DatabaseELAST",NISTIR-5188(1993).
[Carlson75]T.
A.
Carlson,"PhotoelectronandAugerSpectroscopy",(Plenum,NY)(1975).
[DeMarco02]J.
J.
DeMarco,R.
E.
Wallace,K.
Boedeker,"AnanalysisofMCNPcrosssectionsandtallymethodsforlow-energyphotonemitters",Phys.
Med.
Biol.
47,(8)1321-1332(2002).
DraftVersion1.
211ITS5TheoryManual[Faddegon93]B.
A.
Faddegon,D.
W.
O.
Rogers,"Comparisonsofthick-targetbremsstrahlungcalculationsbyEGS4/PRESTAandITSversion2.
1",Nucl.
Instr.
Meth.
Phys.
Res.
A327,pp556-565(1993).
[Franke04]B.
C.
Franke,R.
P.
Kensek,T.
W.
Laub,"ITSVersion5.
0:TheIntegratedTIGERSeriesofCoupledElectron/PhotonMonteCarloTransportCodes",SandiaNationalLaboratoriesReportSAND2003-4173(2004).
[Halbleib78]J.
A.
Halbleib,J.
E.
Morel,"ImprovedAtomicShellExcitationandRelaxationintheTIGERSeriesCodes",SandiaNationalLaboratoriesReportSAND78-0580(1978).
[Halbleib92]J.
A.
Halbleib,R.
P.
Kensek,T.
A.
Mehlhorn,G.
D.
Valdez,S.
M.
Seltzer,M.
J.
Berger,"ITSVersion3.
0:TheIntegratedTIGERSeriesofCoupledElectron/PhotonMonteCarloTransportCodes",SandiaNationalLaboratoriesReportSAND91-1634UC405(1992).
[Hubbell75]J.
H.
Hubbell,W.
J.
Veigele,E.
A.
Briggs,R.
T.
Brown,D.
T.
Cromer,andR.
J.
Howerton,J.
Phys.
Chem.
Ref.
Data4,471(1975),erratainJ.
Phys.
Chem.
Ref.
Data6,615(1977).
[Hubbell79]J.
H.
Hubbell,I.
Overbo"Relativisticatomicformfactorsandphotoncoherentscatteringcrosssections",J.
Phys.
Chem.
Ref.
Data8,69(1979).
[Hubbell94]J.
H.
Hubbell,P.
N.
Trehan,N.
Singh,B.
Chand,D.
Mehta,M.
L.
Garg,R.
R.
Garg,SurinderSingh,andS.
Puri,"AReview,Bibliography,andTabulationofK,L,andHigherAtomicShellX-RayFluorescenceYields"J.
Phys.
Chem.
Ref.
Data,Vol.
23,p.
339(1994).
ErratuminVol.
33,p.
621(2004).
[Hubbell97]J.
H.
Hubbell,"SummaryofExistingInformationontheIncoherentScatteringofPhotons,ParticularlyontheValidityoftheUseoftheIncoherentScatteringFunction",Radiat.
Phys.
Chem.
Vol.
50,No.
1,pp.
113-124(1997).
[Hubbell99]J.
H.
Hubbell,"Reviewofphotoninteractioncrosssectiondatainthemedicalandbiologicalcontext",Phys.
Med.
Biol.
44ppR1-R22(1999).
[Hughes97]H.
G.
Hughes,"StatusofElectronTransportinMCNP",ProceedingsofJointInternationalConferenceonMathematicalMethodsandSupercomputingforNuclearApplications,Vol2.
pp1309-1318(1997).
[Jensen88]D.
C.
Jensen"MonteCarloCalculationofElectronMultipleScatteringinThinFoils,"Master'sThesis,NavalPostgraduateSchool,MontereyCA(1988).
[Kahn56]H.
Kahn,RandCorp.
ResearchMemorandumRM-1237-AEC(1956).
[Kawrakow98]I.
Kawrakow,A.
F.
Bielajew,"Onthecondensedhistorytechniqueforelectrontransport",Nucl.
Inst.
AndMeth.
B142pp253-280(1998).
[Kissel83]L.
Kissel,C.
A.
Quarles,R.
H.
Pratt,"ShapeFunctionsforAtomic-FieldBremsstrahlungfromElectronsofKineticEnergy1-500keVonSelectedNeutralAtoms1DataandNucl.
DataTables28p.
381(1983).
[Koblinger75]L.
Koblinger,Nucl.
Sci.
Eng.
56,218(1975),alsoin[Lux00].
[Koch59]W.
Koch,J.
W.
Motz,"BremsstrahlungCross-SectionFormulasandRelatedData",Rev.
Mod.
Phys.
31,p.
920(1959).
[Lorence89]L.
J.
Lorence,Jr.
,J.
E.
Morel,G.
D.
Valdez,"PhysicsGuidetoCEPXS:AMultigroupCoupledElectron-PhotonCross–SectionGeneratingCodeVersion1.
0",SandiaNationalLaboratoriesReportSAND-891685UC-505(1989).
DraftVersion1.
212ITS5TheoryManual[Lux00]I.
Lux,L.
Koblinger,"MonteCarloParticleTransportMethods:NeutronandPhotonCalculations",CRCPress(2000).
[MacCallum73]C.
J.
MacCallum,T.
A.
Dellin,"Photo-Comptoncurrentsinunboundedmedia",J.
Appl.
Phys.
Vol44,No.
4,pp1878-1884(1973).
[Poletti02]M.
E.
Poletti,O.
D.
Goncalves,I.
Mazzaro,"X-rayscatteringfromhumanbreasttissuesandbreast-equivalentmaterials",Phys.
Med.
Biol.
47pp47-63(2002).
[Pratt77]R.
H.
Pratt,H.
K.
Tseng,C.
M.
Lee,L.
Kissel,C.
MacCallum,M.
Riley,"BremstrahlungEnergySpectrafromElectronsofKineticEnergy1keVDataandNucl.
DataTables20,p175(1977).
Erratain26p.
477(1981).
[Rao04]D.
V.
Rao,S.
M.
Seltzer,P.
M.
Bergstrom,Jr,"Comptonscatteringcross-sectionsforindividualsubshellsforafewelementsofbiologicalinterestintheenergyregion5keV–10MeV,"Radiat.
Phys.
Chem.
Vol.
70,pp479-489(2004).
[Saloman87]E.
B.
SalomanandJ.
H.
Hubbell,"Criticalanalysisofsoftx-raycrosssectiondata",Nucl.
Instr.
Meth.
A255,pp.
38-42(1987).
[Saloman88]E.
B.
Saloman,J.
H.
Hubbell,J.
H.
Scofield,"X-rayAttenuationCrossSectionsforEnergies100eVto100keVandElementsZ=1toZ=92",Atom.
DataNucl.
DataTables38,pp1-197(1988).
[Scofield73]J.
H.
Scofield,LawrenceLivermoreNationalLaboratoryReportUCRL-51326(1973).
[Seltzer88]S.
M.
Seltzer,"AnOverviewofETRANMonteCarloMethods"in"MonteCarloTransportofElectronsandPhotons",EdsT.
M.
Jenkins,W.
R.
Nelson,A.
Rindi,pp153-181(Plenum1988).
[Seltzer88b]S.
M.
Seltzer"CrossSectionsforBremsstrahlungProductionandElectron-ImpactIonization"in"MonteCarloTransportofElectronsandPhotons",Eds.
T.
M.
Jenkins,W.
R.
Nelson,A.
Rindi,pp81-114(1988).
[Seltzer89]S.
M.
Seltzer,"ProgressonElectron-PhotonMonteCarloCodeDevelopment",(1989)[unpublished].
[Seltzer91]S.
M.
Seltzer,"Electron-PhotonMonteCarloCalculations:TheETRANCode",Appl.
Radiat.
Isot.
42,(10)pp917-941(1991).
[Seltzer93]S.
M.
Seltzer,"CalculationofPhotonMassEnergy-TransferandMassEnergy-AbsorptionCoefficients",Rad.
Res.
136,147-170(1993).
[Spencer55]L.
V.
Spencer,"TheoryofElectronPenetration",Phys.
Rev.
98,p1597(1955).

Megalayer 香港CN2优化线路VPS主机速度和性能综合评测

对于Megalayer云服务器提供商在之前也有对于他们家的美国服务器和香港服务器进行过评测和介绍,但是对于大部分网友来说需要独立服务器和站群服务器并不是特别的普及,我们很多网友使用较多的还是云服务器或者VPS主机比较多。在前面也有在"Megalayer新增香港VPS主机 1GB内存 50GB SSD 2M带宽 月59元"文章中有介绍到Megalayer商家有新增香港CN2优化VPS主机。那时候看这...

AlphaVPS(€3.99/月)VPS年付15欧,AMD EYPC+NVMe系列起

AlphaVPS是一家保加利亚本土主机商(DA International Group Ltd),提供VPS主机及独立服务器租用等,数据中心包括美国(洛杉矶/纽约)、德国、英国和保加利亚等,公司办公地点跟他们提供的保加利亚数据中心在一栋楼内,自有硬件,提供IPv4+IPv6,支持PayPal或者信用卡等方式付款。商家提供的大硬盘VPS主机,提供128GB-2TB磁盘,最低年付15欧元起,也可以选择...

易探云服务器怎么过户/转让?云服务器PUSH实操步骤

易探云服务器怎么过户/转让?易探云支持云服务器PUSH功能,该功能可将云服务器过户给指定用户。可带价PUSH,收到PUSH请求的用户在接收云服务器的同时,系统会扣除接收方的款项,同时扣除相关手续费,然后将款项打到发送方的账户下。易探云“PUSH服务器”的这一功能,可以让用户将闲置云服务器转让给更多需要购买的用户!易探云服务器怎么过户/PUSH?1.PUSH双方必须为认证用户:2.买家未接收前,卖家...

pp点点通2004为你推荐
国内免备案服务器我在国内租了一台服务器,国内服务器需备案.怎样才能不用备案?急....2014年万圣节是几月几日万圣节是几月几日桌面背景图片淡雅高清桌面背景图片怎么搞可爱桌面背景图片求好看的桌面背景图片涡轮增压和自然吸气哪个好涡轮增压和自然吸气哪个好迈腾和帕萨特哪个好迈腾和帕萨特哪个好轿车和suv哪个好轿车和SUV 哪个开起来更舒适手机音乐播放器哪个好手机音乐播放器音质好的APP是那款手机音乐播放器哪个好手机音乐播放器哪个好网页传奇哪个好玩传奇网页游戏哪个好玩的最新相关信息
buyvm 美国php主机 回程路由 java虚拟主机 太原联通测速平台 dux 刀片服务器是什么 刀片服务器的优势 免费活动 umax120 酷番云 移动服务器托管 独享主机 英国伦敦 我的世界服务器ip 西安主机 工信部网站备案查询 百度云空间 谷歌台湾 华为k3 更多