mobilebw1

bw1  时间:2021-01-24  阅读:()
EcologicalEngineering94(2016)574–582ContentslistsavailableatScienceDirectEcologicalEngineeringjournalhomepage:www.
elsevier.
com/locate/ecolengEffectofrockfragmentscontentonwaterconsumption,biomassandwater-useefciencyofplantsunderdifferentwaterconditionsMeixiaMia,Ming'anShaoa,b,,BingxiaLiucaKeyLaboratoryofEcosystemNetworkObservationandModeling,InstituteofGeographicSciencesandNaturalResourcesResearch,ChineseAcademyofSciences,Beijing100101,ChinabStateKeyLaboratoryofSoilErosionandDrylandFarmingontheLoessPlateau,InstituteofSoilandWaterConservation,ChineseAcademyofSciences&MinistryofWaterResources,Yangling712100,ChinacKeyLaboratoryofAgriculturalWaterResources,CenterforAgriculturalResourcesResearch,InstituteofGeneticsandDevelopmentalBiology,ChineseAcademyofSciences,286HuaizhongRoad,Shijiazhuang050021,ChinaarticleinfoArticlehistory:Received22December2015Receivedinrevisedform18May2016Accepted16June2016Availableonline15July2016Keywords:RockfragmentPlantWaterconsumptionBiomassWater-useefciencyabstractTheproportionofrockfragmentsinsoilaffectswateravailabilityandthereforethecharacteristicsofplants.
Theobjectiveofthisstudywastoevaluatetheeffectofrock-fragmentcontentonplantwaterconsumption,biomass,growthandwater-useefciency(WUE)underdifferentwaterconditions.
Fourgravimetrictreatmentsofrock-fragmentcontents(0,10,30and50%)andfourtreatmentsofwatercon-tentweretestedinsandyloamysoils.
Thewatercontentsoftherock-freesoilwere15–19%(80–100%ofeldcapacity),11–15%(60–80%ofeldcapacity),9–11%(47–60%ofeldcapacity)and6–9%(32–47%ofeldcapacity).
Transpiration,plantheight,basalstemdiameterandbiomassofkorshinskpeashrubsinthetreatmentsweremeasuredandcompared.
Plantsgrowninthesoilwithrockfragmentstranspiredless,especiallyunderwell-wateredconditions.
Themeandailytranspirationofplantsinthesoilswith30and50%rock-fragmentcontentswas18%(P=0.
021)and34%(P=0.
001)lower,respectively,in2014,and25%(P=0.
008)and31%(P=0.
002)lower,respectively,in2015relativetothesoilwithoutrockfragmentsandwasnotlowerinthesoilwith10%rockfragments.
Plantheight,basalstemdiameterandbiomassdidnotdiffersignicantlybetweenrock-fragmentcontentsof0and30%butwerelowerat50%.
WUE,theratiobetweentotaltranspirationandbiomass,washighestat30%andthendecreasedat50%.
IncreasingplantwaterstresscouldthusimproveWUE.
Therockfragmentsinthesoilhadsignicanteffectsonplantwaterconsumption,biomass,growthandWUE.
Optimizingtherock-fragmentcontentisnecessarywhentherelationshipsbetweenplantsandwaterinstonyecosystemsareevaluated.
2016ElsevierB.
V.
Allrightsreserved.
1.
IntroductionAsoilrockfragmentisdenedasaparticlewithadiameter>2mm.
Fragmentsformingasaresultofprocessesofsoilgenesisandhumanactivityexistatthesoilsurfaceandwithinthesoil.
Stonysoilsarewidespreadandcanreachland-coverratiosupto60%intheMediterraneanregionofWesternEurope(PoesenandLavee,1994).
Theproportionofstonysoilis>30%ontheLoessPlateauofChina(Hou,1993).
Thepresenceofrockfragmentssignicantlyaffectshydrologi-calfunctioningsuchaswaterstorage,inltrationandevaporationandsoilhydraulicpropertiessuchashydraulicconductivityandwaterretention(VanWesemaeletal.
,1996;MaandShao,2008;Correspondenceto:11#,DaTunRoad,ChaoYangDistrict,Beijing,China.
E-mailaddress:shaoma@igsnrr.
ac.
cn(M.
Shao).
Lietal.
,2008;Zhouetal.
,2009;Baetensetal.
,2009;Maetal.
,2010;Nováketal.
,2011;Teteganetal.
,2011).
Watermovementin,andthehydraulicpropertiesof,soilsarestronglydependentontheavailabilityofwaterforplants.
Rockfragmentsinstonyareasshouldthereforebeconsideredinstudiesofwateravailabilityforplantsandofwaterexchangeamongplants,rockfragmentsandsoils.
Teteganetal.
(2011)proposedpedotransferfunctionsbasedonthelinearrelationshipbetweentheavailablewatercontent(AWC)ofrockfragmentsandtheNapierianlogarithmofbulkden-sityandtherelationshipbetweenwatercontentat100and15840hPa.
Thesimulationshowedthatexcluding30%ofthepebblesinastonyhorizonunderestimatedthesoilavailablewatercontent(SAWC)by5%forchertpebblesandby33%forchalkpebbles.
NovákandKˇnava(2012)demonstratedthatthepresenceofstonescandecreasesoilwater-holdingcapacityandhydraulicconductivity,whichcandecreasetheavailabilityofsoilwaterfortrees.
Teteganhttp://dx.
doi.
org/10.
1016/j.
ecoleng.
2016.
06.
0440925-8574/2016ElsevierB.
V.
Allrightsreserved.
M.
Mietal.
/EcologicalEngineering94(2016)574–582575Table1Mainphysicalpropertiesofthenesoil.
Sand>0.
02mm(%)Silt0.
02–0.
002mm(%)Clay40mm(%)2.
156.
6952.
9211.
3826.
86contentofcalciumcarbonate(ZhuandShao,2008).
Theconcretionshaveformedbythesyntheticactionofpedogenesis,soilerosion,andhumanactivityandarerandomlydistributedinandonthesurfaceofthesoil.
Theserockfragmentshavethecapacitytoabsorbwater.
Thesoilandrockfragmentsforthisstudywerecollectedfromthecatchment.
Thesoilusedinthisstudywassandyloam,classiedaccordingtotheISSS(InternationalSocietyofSoilScience)system.
ThemainphysicalpropertiesofthesoilarepresentedinTable1.
FieldcapacitywasdeterminedbythemodiedWilcoxmethod(Hanksetal.
,1954).
ThesizedistributionoftherockfragmentsispresentedinTable2.
Fragmentsizesof20–30mmrepresentedthelargestproportion(>50%),followedbyfragments>40mm.
2.
2.
ExperimentaldesignandtreatmentsTheexperimentwasconductedbeneathamobileplasticrainshelterfromMaytoOctober2014and2015usingPVCcolumns1mhighand20cmindiameter.
Thene(BW1andBW2inthetreatmentswith10%rock-fragmentcontentin2015andbetweenDW1andDW2inthetreatmentswith50%rock-fragmentcontent.
Maintainingsimilardailytranspirationisreasonableunderhighwatercondi-tions,eventhoughthewatercontentsdifferedsignicantly.
Variousplantsphysiologicalindices(suchastranspirationrate,photosyn-theticrate,andplantheight)begantodecreasewhenwatercontentM.
Mietal.
/EcologicalEngineering94(2016)574–582577Table3Changesofwatercontentduringtheexperiment.
Rock-fragmentcontent(%)Treatment20142015Rangeofwatercontent(gg1)Averagewatercontent(gg1)Rangeofwatercontent(gg1)Averagewatercontent(gg1)0AW10.
121–0.
1380.
1300.
097–0.
1360.
119AW20.
099–0.
1100.
105*0.
080–0.
1070.
093*AW30.
071–0.
0800.
0770.
062–0.
0800.
070AW40.
050–0.
0640.
0600.
055–0.
0650.
061§10BW10.
117–0.
1310.
1270.
095–0.
1310.
113BW20.
092–0.
1040.
100*0.
070–0.
1050.
090*BW30.
069–0.
0780.
0750.
060–0.
0770.
069BW40.
057–0.
0640.
0610.
052–0.
0630.
058#30CW10.
112–0.
1190.
1150.
090–0.
1160.
105CW20.
081–0.
0960.
0890.
072–0.
0950.
085CW30.
061–0.
0730.
0680.
063–0.
0720.
068CW40.
048–0.
0600.
0560.
056–0.
0610.
05950DW10.
092–0.
1030.
0980.
076–0.
1030.
091*DW20.
080–0.
0870.
0840.
063–0.
0880.
076DW30.
060–0.
0680.
0660.
057–0.
0680.
064§DW40.
049–0.
0570.
0550.
051–0.
0590.
055#Note:Thesamesymbolsafterthenumbersinthesamecolumnindicatethatthedifferenceofwatercontentamongthetreatmentswasnotsignicant.
Fig.
1.
Thedynamicchangeofmeandailytranspiration(±SE)in2014and2015.
A,B,C,andDrepresentrock-fragmentcontentsof0,10,30,and50%,respectively.
W1,W2,W3,andW4representthefourwatertreatmentsforthenesoilof15–19,11–15,9–11,and6–9%,respectively.
AW,BW,CW,andDWrepresentmeandailytranspirationofthefourwatertreatmentsforrock-fragmentcontentsof0,10,30,and50%,respectively.
578M.
Mietal.
/EcologicalEngineering94(2016)574–582Fig.
2.
Mean(±SE)stemheightanddiameterfromMay2014toSeptember2015.
A,B,C,andDrepresentrock-fragmentcontentsof0,10,30,and50%,respectively.
W1,W2,W3,andW4representthefourwatertreatmentsforthenesoilof15–19,11–15,9–11,and6–9%,respectively.
Table4Comparisonoftranspirationforthedifferentrock-fragmentcontentsinthewater-contenttreatments.
Signicantdifferences(PBW10.
179ab24.
867ab0.
376a41.
584abBW20.
174ab23.
981abc0.
302bc33.
633cdBW30.
092f12.
106efg0.
186ef20.
686fgBW40.
069gh9.
063g0.
129g14.
169gh30CW10.
163bc22.
498abc0.
318bc35.
182bcdCW20.
148cd19.
766bcd0.
262cd29.
097deCW30.
123e11.
431fg0.
136fg15.
081fghCW40.
082fg10.
015fg0.
065h7.
200ij50DW10.
143cd19.
543cd0.
314bc35.
024cdDW20.
123e15.
147def0.
239de26.
692efDW30.
081fg8.
717g0.
112gh11.
297hjiDW40.
050h9.
237g0.
065h7.
177jisbelowacriticalvalue(Bielorai,1973;Sinclairetal.
,1998;Wuetal.
,2011b,c).
Dailytranspirationtendedtodecreaseastheproportionofrockfragmentsinthesoilincreased.
Theresultsofcomparisonsofmeandailytranspirationforeachrock-fragmentcontentshowedthatthedailytranspirationforplantsgrownwithoutrockfragments(0%)washigherthanforplantsgrownwithrock-fragmentcontentsof30and50%(Table5):18and34%higher,respectively,in2014andM.
Mietal.
/EcologicalEngineering94(2016)574–582579Table5Comparisonofmeantranspirationforthefourrock-fragmentcontents.
Signicantdifferences(PBW1>CW1>DW1(Fig.
1andTable4).
DailytranspirationwashigherforAW1thanforCW1andDW1.
Dailytranspirationin2014forwater-contenttreatmentW1with50%rockfrag-mentswas39%lowerthanwithoutrockfragments.
Thedescendingorderofdailytranspirationforwater-contenttreatmentW2was:AW2>BW2>CW2>DW2.
ThedifferencesofdailytranspirationbetweenBW2andCW2andbetweenCW2andDW2in2014weresignicant.
Dailytranspirationforwater-contenttreatmentW3wassimilartothatfortreatmentW2.
Dailytranspirationforwater-contenttreatmentW4,didnotdiffersignicantlyamongAW4,BW4andCW4in2014andamongAW4,CW4andDW4in2015.
Changesinplanttranspirationmaydependontheratioofwatercontentbetweenthenesoilandrockfragments.
Thesaturatedwatercontentoftherockfragmentsinthisstudywas0.
08gg1,whichwaslowerthantheeldcapacityofthenesoil(0.
14gg1).
Theratiowashigherinthetreatmentswithhighwatercontentsthaninthetreatmentswithlowwatercontents.
Thepresenceoftherockfragmentsdecreasedthewatercontentofthestonysoilrel-ativetotherock-freesoilunderwell-wateredconditions(Teteganetal.
,2015b).
Theratioofwatercontentbetweenthenesoilandtherockfragmentsdecreasedgraduallyto1or60%ofeldcapacity).
2.
Plantsgrowninsoilwith50%rockfragmentswereshorter,hadsmallerbasalstemdiametersandhadlowerbiomassesandcom-ponentbiomasses(stems,leaves,androots)thanplantsgrowninrock-freesoil.
Theseparametersdidnotdiffersignicantlybetweentheplantsgrownwith10and30%rockfragments,buttendedtoincreasewhentherock-fragmentcontentincreasedfrom0to30%.
3.
WUErstincreasedandthendecreasedwithincreasinggravi-metricrockfragment.
WUEwaslowestfortheplantsgrowinginthesoilwith50%rockfragments,butwaterstresscouldincreaseWUE.
TherockfragmentcontenttothemaximumWUEwasintherangefrom10%to50%.
Wethereforerecommendmatch-ingrock-fragmentcontentwithmaximumWUEwhendesigningstrategiesofwaterconservationforstonysoils,especiallyinaridandsemiaridareas.
AcknowledgementsThisstudywassupportedbytheNationalNaturalScienceFoun-dationofChina(41530854and41571130081).
Wethanktheeditorandreviewersfortheircommentsandsuggestionsthatimprovedthequalityofthispaper.
ReferencesArshad,M.
A.
,Lowery,B.
,Grossman,B.
,1996.
Physicaltestsformonitoringsoilquality.
In:Doran,J.
W.
,Jones,A.
J.
(Eds.
),MethodsforAssessingSoilQuality.
SSSASpecialPub.
49SoilSci.
Soc.
Am.
,Madison,WI,pp.
123–141.
Baetens,J.
M.
,Verbist,K.
,Cornelis,W.
M.
,Gabrils,D.
,Soto,G.
,2009.
Ontheinuenceofcoarsefragmentsonsoilwaterretention.
WaterResour.
Res.
45,W07408,http://dx.
doi.
org/10.
1029/2008WR007402.
Bielorai,H.
,1973.
PredictionofIrrigationNeeds.
SpringerBerlin.
Blum,A.
,2009.
Effectiveuseofwater(EUW)andnotwater-useefciency(WUE)isthetargetofcropyieldimprovementunderdroughtstress.
FieldCropsRes.
112,119–123.
Bornyasz,M.
A.
,Graham,R.
C.
,Allen,M.
F.
,2005.
Ectomycorrhizaeinasoil-weatheredgraniticbedrockregolith:linkingmatrixresourcestoplants.
Geoderma126,141–160.
Carrick,S.
,Palmer,D.
,Webb,T.
,Scott,J.
,Lilburne,L.
,2013.
Stonysoilsareamajorchallengefornutrientmanagementunderirrigationdevelopment.
In:Currie,L.
D.
,Christensen,C.
L.
(Eds.
),AccurateandEfcientUseofNutrientsonFarms.
OccasionalRep.
26.
FertilizerandLimeResearchCentre,MasseyUniv.
,PalmerstonNorth,NewZealand.
Cheng,J.
,Wang,J.
B.
,Cheng,J.
M.
,Luo,Z.
K.
,2013.
Spatial-temporalvariabilityofCaraganakorshinskiivegetationgrowthintheLoessPlateau.
Sci.
Sil.
Sin.
49,14–20.
Danalatos,N.
G.
,Kosmas,C.
S.
,Moustakas,N.
C.
,Yassouglou,N.
,1995.
RockfragmentsIITheirimpactonsoilphysicalpropertiesandbiomassproductionunderMediterraneanconditions.
SoilUseManage.
11,121–126.
Ercoli,L.
,Masoni,A.
,Mariotti,M.
,Arduini,I.
,2006.
Drymatteraccumulationandremobilizationofdurumwheatasaffectedbysoilgravelcontent.
CerealRes.
Commun.
34,1299–1306.
Estrada-Medina,H.
,Graham,R.
C.
,Allen,M.
F.
,Jiménez-Osornio,J.
J.
,Robles-Casolco,S.
,2013.
TheimportanceoflimestonebedrockanddissolutionkarstfeaturesontreerootdistributioninnorthernYucatán,México.
PlantSoil362(1–2),37–50.
Feng,Z.
W.
,Wang,X.
K.
,Wu,G.
,1999.
TheBiomassandProductivityoftheForestryEcosysteminChinaBeijing.
ScienticPublishing,pp.
18–39.
Fu,X.
,Shao,M.
,Wei,X.
,Wang,H.
,Zeng,C.
,2012.
EffectsofmonovegetationrestorationtypesonsoilwaterdistributionandbalanceonahillslopeinnorthernLoessPlateauofChina.
J.
Hydrol.
Eng.
18(4),413–421.
Hanks,R.
J.
,Holmes,W.
E.
,Tanner,C.
B.
,1954.
Fieldcapacityapproximationbasedonthemoisture-transmittingpropertiesofthesoil.
SoilSci.
Soc.
Am.
J.
18,252–254.
Hou,Q.
C.
,1993.
Comprehensiveanalysisonnaturalconditionsandenvironmentalharnessingintheexperimentalarea.
Memoirofthenorthwesterninstituteofsoilandwaterconservation.
Acad.
Sin.
Minist.
WaterRes.
02,136–144.
Jia,X.
X.
,Shao,M.
A.
,Wei,X.
R.
,2011.
Estimatingtotalnetprimaryproductivityofmanagedgrasslandsbyastate-spacemodelingapproachinasmallcatchmentontheLoessPlateau,China.
Geoderma160,281–291.
Li,X.
Y.
,Contreras,S.
,Solé-Benet,A.
,2008.
Unsaturatedhydraulicconductivityinlimestonedolines:inuenceofvegetationandrockfragments.
Geoderma145(3),288–294.
Ma,D.
H.
,Shao,M.
A.
,2008.
Simulatinginltrationintostonysoilswithadual-porositymodel.
Eur.
J.
SoilSci.
59(5),950–959.
Ma,D.
,Shao,M.
,Zhang,J.
,Wang,Q.
,2010.
Validationofananalyticalmethodfordeterminingsoilhydraulicpropertiesofstonysoilsusingexperimentaldata.
Geoderma159(3),262–269.
Meyers,R.
J.
K.
,Foale,M.
A.
,Done,A.
A.
,1984.
ResponseofgrainsorghumtovaryingirrigationfrequencyintheOrdirrigationarea.
II.
Evapotranspirationwater-useefciency.
Aust.
J.
Agric.
Res.
35,31–42.
Novák,V.
,Kˇnava,K.
,2012.
Theinuenceofstoninessandcanopypropertiesonsoilwatercontentdistribution:simulationofwatermovementinforeststonysoil.
Eur.
J.
For.
Res.
131(6),1727–1735.
Novák,V.
,Kˇnava,K.
,ˇSimunek,J.
,2011.
Determiningtheinuenceofstonesonhydraulicconductivityofsaturatedsoilsusingnumericalmethod.
Geoderma161(3),177–181.
Poesen,J.
,Lavee,H.
,1994.
Rockfragmentsintopsoils:signicanceandprocesses.
Catena23(1),1–28.
Qin,Y.
,Yi,S.
,Chen,J.
,Ren,S.
,Ding,Y.
,2015.
EffectsofgravelonsoilandvegetationpropertiesofalpinegrasslandontheQinghai-Tibetanplateau.
Ecol.
Eng.
74,351–355.
Schwinning,S.
,2013.
Doweneednewrhizospheremodelsforrock-dominatedlandscapesPlantSoil362(1–2),25–31.
Shao,M.
A.
,Ma,D.
H.
,Zhu,Y.
Y.
,2009.
StudyonSoilWaterinStonySoilontheLoessPlateau.
ScienticPublishing,Beijing.
Sinclair,T.
R.
,Hammond,L.
C.
,Harrison,J.
,1998.
Extractablesoilwaterandtranspirationrateofsoybeanonsandysoils.
Agron.
J.
90(3),363–368.
Smaill,S.
J.
,Clinton,P.
W.
,Allen,R.
B.
,Davis,M.
R.
,2014.
Newevidenceindicatesthecoarsesoilfractionisofgreaterrelevancetoplantnutritionthanpreviouslysuggested.
PlantSoil374(1–2),371–379.
Tetegan,M.
,Nicoullaud,B.
,Baize,D.
,Bouthier,A.
,Cousin,I.
,2011.
Thecontributionofrockfragmentstotheavailablewatercontentofstonysoils:propositionofnewpedotransferfunctions.
Geoderma165,40–49.
Tetegan,M.
,deForges,A.
R.
,Verbeque,B.
,Nicoullaud,B.
,Desbourdes,C.
,Bouthier,A.
,Cousin,I.
,2015a.
Theeffectofsoilstoninessontheestimationofwaterretentionpropertiesofsoils:acasestudyfromcentralFrance.
Catena129,95–102.
Tetegan,M.
,Korboulewsky,N.
,Bouthier,A.
,Samoulian,A.
,Cousin,I.
,2015b.
Theroleofpebblesinthewaterdynamicsofastonysoilcultivatedwithyoungpoplars.
PlantSoil391(1–2),307–320.
VanWesemael,B.
,Poesen,J.
,Kosmas,C.
S.
,Danalatos,N.
G.
,Nachtergaele,J.
,1996.
Evaporationfromcultivatedsoilscontainingrockfragments.
J.
Hydrol.
182(1),65–82.
Wang,Y.
,Shao,M.
,Shao,H.
,2010.
ApreliminaryinvestigationofthedynamiccharacteristicofdriedsoillayersontheLoessPlateauofChina.
J.
Hydrol.
(Amsterdam)381(1–2),9–17.
Wu,Y.
,Huang,M.
,Warrington,D.
N.
,2011a.
Growthandtranspirationofmaizeandwinterwheatinresponsetowaterdecitsinpotsandplots.
Environ.
Exp.
Bot.
71(1),65–71.
Wu,Y.
,Huang,M.
,Gallichand,J.
,2011b.
Transpirationalresponsetowateravailabilityforwinterwheatasaffectedbysoiltextures.
Agric.
WaterManage.
98(4),569–576.
Wu,X.
,Zhao,L.
,Fang,H.
,Chen,J.
,Pang,Q.
,Wang,Z.
,Chen,M.
,Ding,Y.
,2011c.
SoilenzymeactivitiesinpermafrostregionsofthewesternQinghai-Tibetanplateau.
SoilSci.
Soc.
Am.
J.
76,1280–1289.
Zhou,B.
B.
,Shao,M.
A.
,Shao,H.
B.
,2009.
EffectsofrockfragmentsonwatermovementandsolutetransportinaLoessPlateausoil.
C.
R.
Geosci.
341(6),462–472.
Zhu,Y.
,Shao,M.
,2008.
Spatialdistributionofsurfacerockfragmentonhill-slopesinasmallcatchmentinwind-watererosioncrisscrossregionoftheLoessPlateau.
Sci.
ChinaSeriesD:EarthSci.
51(6),862–870.

Megalayer优化带宽和VPS主机主机方案策略 15M CN2优化带宽和30M全向带宽

Megalayer 商家主营业务是以独立服务器和站群服务器的,后来也陆续的有新增香港、菲律宾数据中心的VPS主机产品。由于其线路的丰富,还是深受一些用户喜欢的,有CN2优化直连线路,有全向国际线路,以及针对欧美的国际线路。这次有看到商家也有新增美国机房的VPS主机,也有包括15M带宽CN2优化带宽以及30M带宽的全向线路。Megalayer 商家提供的美国机房VPS产品,提供的配置方案也是比较多,...

PhotonVPS:美国Linux VPS半价促销2.5美元/月起,可选美国洛杉矶/达拉斯/芝加哥/阿什本等四机房

photonvps怎么样?photonvps现在针对旗下美国vps推出半价促销优惠活动,2.5美元/月起,免费10Gbps DDoS防御,Linux系统,机房可选美国洛杉矶、达拉斯、芝加哥、阿什本。以前觉得老牌商家PhotonVPS贵的朋友可以先入手一个月PhotonVPS美国Linux VPS试试了。PhotonVPS允许合法大人内容,支持支付宝、paypal和信用卡,30天退款保证。Photo...

ZJI:台湾CN2/香港高主频服务器7折每月595元起,其他全场8折

ZJI原名维翔主机,是原来Wordpress圈知名主机商家,成立于2011年,2018年9月更名为ZJI,提供香港、日本、美国独立服务器(自营/数据中心直营)租用及VDS、虚拟主机空间、域名注册业务。ZJI今年全新上架了台湾CN2线路服务器,本月针对香港高主频服务器和台湾CN2服务器提供7折优惠码,其他机房及产品提供8折优惠码,优惠后台湾CN2线路E5服务器月付595元起。台湾一型CPU:Inte...

bw1为你推荐
金士顿内存卡真假怎么看金士顿内存卡真伪?朗逸和速腾哪个好大众速腾和朗逸哪个好啊?音乐播放器哪个好目前音质最好的音乐播放器手机音乐播放器哪个好哪种手机音乐播放器最好炒股软件哪个好用玩股票哪个软件好?看书软件哪个好推荐几个好用的手机看书软件辽宁联通网上营业厅中国联通网上营业厅固定电话费查询qq网盘在哪里QQ网盘在哪里上海dns服务器地址谁知道上海移动无线网卡的DNS服务器地址360云u盘介绍一下360云u盘
网站域名备案查询 域名备案网站 asp.net主机 bandwagonhost 优惠码 hostker 泉州电信 网络空间租赁 河南移动网 metalink gtt shopex主机 cloudlink 太原联通测速 免费网络 lamp是什么意思 存储服务器 国外代理服务器 建站技术 服务器机柜 更多