聚类分析法什么叫聚类分析

聚类分析法  时间:2021-07-28  阅读:()

为什么要进行聚类分析

聚类分析是研究“物以类聚”的一种科学有效的方法,由实验测试得到的数据是原始数据,原始数据是没有进行分类的、无规律的、错综复杂的变量,要使得这些数据能够反映出一定的规律性或特殊的分类性,需要对数据或变量进行聚类分析,以使数据或变量呈现一定的分门别类的特征。

聚类分析的一般做法是:先确定聚类统计量,然后利用统计量对样品或者变量进行聚类,对n个样品进行聚类的方法称为Q型聚类,常用的统计量称为“距离”;对m个变量进行聚类的方法称为R型聚类,常用个统计量称为“相似系数”。

模糊聚类分析法和聚类分析法有什么区别,还有一种动态模糊分析法,它比模糊分析法有什么样的改进。

模糊聚类分析是聚类分析的一种。

聚类分析按照不同的分类标准可以进行不同的分类。

就好像人按照性别可以分成男人和女人,按照年龄可以分为老中青一样。

聚类分析如果按照隶属度的取值范围可以分为两类,一类叫硬聚类算法,另一类就是模糊聚类算法。

隶属度的概念是从模糊集理论里引申出来的。

传统硬聚类算法隶属度只有两个值 0 和 1。

也就是说一个样本只能完全属于某一个类或者完全不属于某一个类。

举个例子,把温度分为两类,大于10度为热,小于或者等于10度为冷,这就是典型的“硬隶属度”概念。

那么不论是5度 还是负100度都属于冷这个类,而不属于热这个类的。

而模糊集里的隶属度是一个取值在[0 1]区间内的数。

一个样本同时属于所有的类,但是通过隶属度的大小来区分其差异。

比如5度,可能属于冷这类的隶属度值为0.7,而属于热这个类的值为0.3。

这样做就比较合理,硬聚类也可以看做模糊聚类的一个特例。

你说的动态模糊分析法我在文献里很少见到好像并不主流,似乎没有专门的这样一种典型聚类算法,可能是个别人根据自己需要设计并命名的一种针对模糊聚类的改进方法,这个不好说了就。

我见过有把每个不同样本加权的,权值自己确定,这样就冠以“动态"二字,这都是作者自己起的。

也有别的也叫”动态“的,可能也不一样,似乎都是个别人自己提出的。

至于文献,你可以到中国知网搜索博士或者硕士毕业论文,有关模糊聚类为题目的,在第一章引言里面必然会有详细的介绍,或者联系我,我就是做这方面的。

希望能对你有所帮助,给点分吧,打的挺累的。

什么叫聚类分析

聚类通过把目标数据放入少数相对同源的组或“类”(cluster)里。

分析表达数据,(1)通过一系列的检测将待测的一组基因的变异标准化,然后成对比较线性协方差。

(2)通过把用最紧密关联的谱来放基因进行样本聚类,例如用简单的层级聚类(hierarchical clustering)方法。

这种聚类亦可扩展到每个实验样本,利用一组基因总的线性相关进行聚类。

(3)多维等级分析(multidimensional scaling analysis,MDS)是一种在二维Euclidean “距离”中显示实验样本相关的大约程度。

(4)K-means方法聚类,通过重复再分配类成员来使“类”内分散度最小化的方法。

聚类方法有两个显著的局限:首先,要聚类结果要明确就需分离度很好(well-separated)的数据。

几乎所有现存的算法都是从互相区别的不重叠的类数据中产生同样的聚类。

但是,如果类是扩散且互相渗透,那么每种算法的的结果将有点不同。

结果,每种算法界定的边界不清,每种聚类算法得到各自的最适结果,每个数据部分将产生单一的信息。

为解释因不同算法使同样数据产生不同结果,必须注意判断不同的方式。

对遗传学家来说,正确解释来自任一算法的聚类内容的实际结果是困难的(特别是边界)。

最终,将需要经验可信度通过序列比较来指导聚类解释。

第二个局限由线性相关产生。

上述的所有聚类方法分析的仅是简单的一对一的关系。

因为只是成对的线性比较,大大减少发现表达类型关系的计算量,但忽视了生物系统多因素和非线性的特点。

从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。

传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。

采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS、SAS等。

从机器学习的角度讲,簇相当于隐藏模式。

聚类是搜索簇的无监督学习过程。

与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。

聚类是观察式学习,而不是示例式的学习。

从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。

就数据挖掘功能而言,聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。

聚类分析还可以作为其他数据挖掘任务(如分类、关联规则)的预处理步骤。

数据挖掘领域主要研究面向大型数据库、数据仓库的高效实用的聚类分析算法。

无忧云( 9.9元/首月),河南洛阳BGP 2核 2G,大连BGP线路 20G高防 ,

无忧云怎么样?无忧云服务器好不好?无忧云值不值得购买?无忧云,无忧云是一家成立于2017年的老牌商家旗下的服务器销售品牌,现由深圳市云上无忧网络科技有限公司运营,是正规持证IDC/ISP/IRCS商家,自营有国内雅安高防、洛阳BGP企业线路、香港CN2线路、国外服务器产品等,非常适合需要稳定的线路的用户,如游戏、企业建站业务需求和各种负载较高的项目,同时还有自营的高性能、高配置的BGP线路高防物理...

IMIDC彩虹数据:日本站群多ip服务器促销;30Mbps带宽直连不限流量,$88/月

imidc怎么样?imidc彩虹数据或彩虹网络现在促销旗下日本多IP站群独立服务器,原价159美元的机器现在只需要88美元,而且给13个独立IPv4,30Mbps直连带宽,不限制月流量!IMIDC又名为彩虹数据,rainbow cloud,香港本土运营商,全线产品都是商家自营的,自有IP网络资源等,提供的产品包括VPS主机、独立服务器、站群独立服务器等,数据中心区域包括香港、日本、台湾、美国和南非...

Hostodo(年付12美元)斯波坎VPS六六折,美国西海岸机房

Hostodo是一家成立于2014年的国外VPS主机商,现在主要提供基于KVM架构的VPS主机,美国三个地区机房:拉斯维加斯、迈阿密和斯波坎,采用NVMe或者SSD磁盘,支持支付宝、PayPal、加密货币等付款方式。商家最近对于上架不久的斯波坎机房SSD硬盘VPS主机提供66折优惠码,适用于1GB或者以上内存套餐年付,最低每年12美元起。下面列出几款套餐配置信息。CPU:1core内存:256MB...

聚类分析法为你推荐
dreamweaver8激活码求Dreamweaver 8激活码stm32视频教程求STM32从基础到应用的全套教程防恶意点击怎么才能做到防止恶意点击的行为发生呢?win7无线局域网关于用win7系统建立无线局域网美国大选投票实时数据在今年的美国总统选举中奥巴马和罗姆尼的选票各是多少excel2003官方microsoft office 2003下载qq空间个性域名QQ空间里什么是 空间个性域名iphone12或支持北斗导航iphone12是问题机吗电梯物联网平台电梯物联网技术运用到电梯的远程监控上,能实现什么作用?北漂论坛请问北票有论坛吗
域名备案收费吗 域名优惠码 mobaxterm 光棍节日志 好看的桌面背景图 网站被封 一元域名 500m空间 中国电信测速网 免费测手机号 新世界服务器 河南移动梦网 lamp怎么读 美国迈阿密 空间服务器 sonya WHMCS 美国达拉斯 卡巴斯基免费版 火山互联 更多