弗洛伊德算法弗洛伊德算法和地杰斯特拉算法的区别
弗洛伊德算法 时间:2021-07-22 阅读:(
)
matlab实现弗洛伊德算法的代码,。
function [d,r]=floyd(a)
%floyd.m
%采用floyd算法计算图a中每对顶点最短路
%d是矩离矩阵
%r是路由矩阵
n=size(a,1);
d=a;
for i=1:n
for j=1:n
r(i,j)=j;
end
end
r
for k=1:n
for i=1:n
for j=1:n
if d(i,k)+d(k,j)什么是威廉姆斯算法和弗洛伊德算法?堆排序
1991年计算机先驱奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德(Robert W.Floyd)和威廉姆斯(J.Williams)在1964年共同发明了著名的堆排序算法HEAPSORT
http://202.207.12.200/whjc/jisuanjifazhanshi/xianqu/65.htm
1、 堆排序定义
n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):
(1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ )
若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。
【例】关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1)和(2),故它们均是堆,其对应的完全二叉树分别如小根堆示例和大根堆示例所示。
2、大根堆和小根堆
根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆。
根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆。
注意:
①堆中任一子树亦是堆。
②以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。
3、堆排序特点
堆排序(HeapSort)是一树形选择排序。
堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系【参见二叉树的顺序存储结构】,在当前无序区中选择关键字最大(或最小)的记录。
4、堆排序与直接插入排序的区别
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。
事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。
5、堆排序
堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。
(1)用大根堆排序的基本思想
① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区
② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
③ 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。
然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。
……
直到无序区只有一个元素为止。
(2)大根堆排序算法的基本操作:
① 初始化操作:将R[1..n]构造为初始堆;
② 每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。
注意:
①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。
②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。
堆排序和直接选择排序相反:在任何时刻,堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止。
(3)堆排序的算法:
void HeapSort(SeqIAst R)
{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元
int i;
BuildHeap(R); //将R[1-n]建成初始堆
for(i=n;i>1;i--){ //对当前无序区R[1..i]进行堆排序,共做n-1趟。
R[0]=R[1];R[1]=R[i];R[i]=R[0]; //将堆顶和堆中最后一个记录交换
Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质
} //endfor
} //HeapSort
(4) BuildHeap和Heapify函数的实现
因为构造初始堆必须使用到调整堆的操作,先讨论Heapify的实现。
① Heapify函数思想方法
每趟排序开始前R[l..i]是以R[1]为根的堆,在R[1]与R[i]交换后,新的无序区R[1..i-1]中只有R[1]的值发生了变化,故除R[1]可能违反堆性质外,其余任何结点为根的子树均是堆。
因此,当被调整区间是R[low..high]时,只须调整以R[low]为根的树即可。
"筛选法"调整堆
R[low]的左、右子树(若存在)均已是堆,这两棵子树的根R[2low]和R[2low+1]分别是各自子树中关键字最大的结点。
若R[low].key不小于这两个孩子结点的关键字,则R[low]未违反堆性质,以R[low]为根的树已是堆,无须调整;否则必须将R[low]和它的两个孩子结点中关键字较大者进行交换,即R[low]与R[large](R[large].key=max(R[2low].key,R[2low+1].key))交换。
交换后又可能使结点R[large]违反堆性质,同样由于该结点的两棵子树(若存在)仍然是堆,故可重复上述的调整过程,对以R[large]为根的树进行调整。
此过程直至当前被调整的结点已满足堆性质,或者该结点已是叶子为止。
上述过程就象过筛子一样,把较小的关键字逐层筛下去,而将较大的关键字逐层选上来。
因此,有人将此方法称为"筛选法"。
算法实例:
#include<stdio.h>
#include<stdlib.h>
inline int LEFT(int i);
inline int RIGHT(int i);
inline int PATENT(int i);
void MAX_HEAPIFY(int A[],int heap_size,int i);
void BUILD_MAX_HEAP(int A[],int heap_size);
void HEAPSORT(int A[],int heap_size);
void output(int A[],int size);
int main()
{
FILE *fin;
int m,size,i;
fin = fopen("array.in","r");
int* a;
fscanf(fin," %d",&size);
a = (int *)malloc(size + 1);
a[0]=size;
for(i = 1;i <= size; i++ )
{
fscanf(fin," %d",&m);
a[i] = m;
}
HEAPSORT(a,a[0]);
printf("$$$$$$$$$ Result$$$$$$$$
");
output(a,a[0]);
free(a);
return 0;
}
inline int LEFT(int i)
{
return 2 * i;
}
inline int RIGHT(int i)
{
return 2 * i + 1;
}
inline int PARENT(int i)
{
return i / 2;
}
void MAX_HEAPIFY(int A[],int heap_size,int i)
{
int temp,largest,l,r;
largest = i;
l = LEFT(i);
r = RIGHT(i);
if ((l <= heap_size) && (A[l] > A[i])) largest = l;
if ((r <= heap_size) && (A[r] > A[largest])) largest = r;
if (largest != i)
{
temp = A[largest];
A[largest] = A[i];
A[i] = temp;
MAX_HEAPIFY(A,heap_size,largest);
}
}
void BUILD_MAX_HEAP(int A[],int heap_size)
{
int i;
for (i = heap_size / 2;i >= 1;i--) MAX_HEAPIFY(A,heap_size,i);
}
void HEAPSORT(int A[],int heap_size)
{
int i;
BUILD_MAX_HEAP(A,heap_size);
for (i = heap_size;i >= 2; i--)
{
int temp;
temp = A[1];
A[1] = A[i];
A[i] = temp;
MAX_HEAPIFY(A,i-1,1);
}
}
void output(int A[],int size)
{
int i = 1;
FILE *out = fopen("result.in","w+");
for (; i <= size; i++){
printf("%d ",A[i]);
fprintf(out,"%d ",A[i]);
}
printf("
");
}
②BuildHeap的实现
要将初始文件R[l..n]调整为一个大根堆,就必须将它所对应的完全二叉树中以每一结点为根的子树都调整为堆。
显然只有一个结点的树是堆,而在完全二叉树中,所有序号 的结点都是叶子,因此以这些结点为根的子树均已是堆。
这样,我们只需依次将以序号为 , -1,…,1的结点作为根的子树都调整为堆即可。
具体算法【参见教材】。
5、大根堆排序实例
对于关键字序列(42,13,24,91,23,16,05,88),在建堆过程中完全二叉树及其存储结构的变化情况参见【动画演示】。
6、 算法分析
堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。
堆排序的最坏时间复杂度为O(nlgn)。
堆排序的平均性能较接近于最坏性能。
由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。
堆排序是就地排序,辅助空间为O(1),
它是不稳定的排序方法。
参考资料:/wiki?title=%E5%A0%86%E6%8E%92%E5%BA%8F&;diff=prev&oldid=374531求严蔚敏教材上弗洛伊德算法的时间复杂度,在网上查了下,说法不一,有O(n3),有O(n4),大家怎么看?
分n 个阶段,用邻接矩阵求关联和权值时间O(1),每个阶段需要对n^2个元素对比较
因此时间复杂度为O(n^3)
至于求路径,参加其原文,又多了一个循环,效率不高,最好是用路径矩阵,这样求路径的时间复杂度也是O(n^3)弗洛伊德算法和地杰斯特拉算法的区别
弗洛伊德是 求多个点对的最短路。
运行一次可以算出图中任意两点的最短路 复杂度 o(n^3)
地杰斯特拉算法
是求单源点的最短路一次运算可以算出,从这个点出发到任意点的最短路。
复杂度可以优化到O(|E|log|v|)
前些天赵容分享过DogYun(狗云)香港BGP线路AMD 5950X经典低价云服务器的信息(点击查看),刚好账户还有点余额够开个最低配,所以手贱尝试下,这些贴上简单测试信息,方便大家参考。官方网站:www.dogyun.com主机配置我搞的是最低款优惠后14.4元/月的,配置单核,512MB内存,10GB硬盘,300GB/50Mbps月流量。基本信息DogYun的VPS主机管理集成在会员中心,包括...
HostKvm是一家成立于2013年的国外主机服务商,主要提供基于KVM架构的VPS主机,可选数据中心包括日本、新加坡、韩国、美国、中国香港等多个地区机房,均为国内直连或优化线路,延迟较低,适合建站或者远程办公等。目前商家发布了夏季特别促销活动,针对香港国际/韩国机房VPS主机提供7折优惠码,其他机房全场8折,优惠后2GB内存套餐月付5.95美元起。下面分别列出几款主机套餐配置信息。套餐:韩国KR...
腾讯云轻量应用服务器又要免费升级配置了,之前已经免费升级过一次了(腾讯云轻量应用服务器套餐配置升级 轻量老用户专享免费升配!),这次在上次的基础上再次升级。也许这就是良心云吧,名不虚传。腾讯云怎么样?腾讯云好不好。腾讯云轻量应用服务器 Lighthouse 是一种易于使用和管理、适合承载轻量级业务负载的云服务器,能帮助个人和企业在云端快速构建网站、博客、电商、论坛等各类应用以及开发测试环境,并提供...
弗洛伊德算法为你推荐
电量监控有哪些可以查看手机电池损耗度的appqq业务代码求所有开QQ业务代码qq空间维护QQ空间正在维护中,暂不支持访问,这是什么意思,什么时候才能好?qq空间维护qq空间打不开怎么维护spotlight搜索是什么如何启动Spotlight搜索微信语音在哪个文件夹【求助】微信语音的文件夹在哪里??2020带来好运的微信头像女人带来好运的微信网名是什么?vs2005快捷键VS2005的快捷方式是哪个文件啊?腾讯汽车论坛腾讯·大楚网的核心产品Costco茅台被抢光Costco在中国大陆第一家店开业首日被挤爆,为什么人们都特别青睐洋货?
免费网站空间 二级域名 怎么注册域名 免费国际域名 樊云 stablehost uk2 ssh帐号 tightvnc gg广告 100x100头像 中国电信测速112 韩国名字大全 中国电信测网速 可外链网盘 国外代理服务器软件 昆明蜗牛家 drupal安装 服务器维护 阿里云手机官网 更多