弗洛伊德算法弗洛伊德算法和地杰斯特拉算法的区别
弗洛伊德算法 时间:2021-07-22 阅读:(
)
matlab实现弗洛伊德算法的代码,。
function [d,r]=floyd(a)
%floyd.m
%采用floyd算法计算图a中每对顶点最短路
%d是矩离矩阵
%r是路由矩阵
n=size(a,1);
d=a;
for i=1:n
for j=1:n
r(i,j)=j;
end
end
r
for k=1:n
for i=1:n
for j=1:n
if d(i,k)+d(k,j)什么是威廉姆斯算法和弗洛伊德算法?堆排序
1991年计算机先驱奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德(Robert W.Floyd)和威廉姆斯(J.Williams)在1964年共同发明了著名的堆排序算法HEAPSORT
http://202.207.12.200/whjc/jisuanjifazhanshi/xianqu/65.htm
1、 堆排序定义
n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):
(1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ )
若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。
【例】关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1)和(2),故它们均是堆,其对应的完全二叉树分别如小根堆示例和大根堆示例所示。
2、大根堆和小根堆
根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆。
根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆。
注意:
①堆中任一子树亦是堆。
②以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。
3、堆排序特点
堆排序(HeapSort)是一树形选择排序。
堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系【参见二叉树的顺序存储结构】,在当前无序区中选择关键字最大(或最小)的记录。
4、堆排序与直接插入排序的区别
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。
事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。
5、堆排序
堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。
(1)用大根堆排序的基本思想
① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区
② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
③ 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。
然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。
……
直到无序区只有一个元素为止。
(2)大根堆排序算法的基本操作:
① 初始化操作:将R[1..n]构造为初始堆;
② 每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。
注意:
①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。
②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。
堆排序和直接选择排序相反:在任何时刻,堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止。
(3)堆排序的算法:
void HeapSort(SeqIAst R)
{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元
int i;
BuildHeap(R); //将R[1-n]建成初始堆
for(i=n;i>1;i--){ //对当前无序区R[1..i]进行堆排序,共做n-1趟。
R[0]=R[1];R[1]=R[i];R[i]=R[0]; //将堆顶和堆中最后一个记录交换
Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质
} //endfor
} //HeapSort
(4) BuildHeap和Heapify函数的实现
因为构造初始堆必须使用到调整堆的操作,先讨论Heapify的实现。
① Heapify函数思想方法
每趟排序开始前R[l..i]是以R[1]为根的堆,在R[1]与R[i]交换后,新的无序区R[1..i-1]中只有R[1]的值发生了变化,故除R[1]可能违反堆性质外,其余任何结点为根的子树均是堆。
因此,当被调整区间是R[low..high]时,只须调整以R[low]为根的树即可。
"筛选法"调整堆
R[low]的左、右子树(若存在)均已是堆,这两棵子树的根R[2low]和R[2low+1]分别是各自子树中关键字最大的结点。
若R[low].key不小于这两个孩子结点的关键字,则R[low]未违反堆性质,以R[low]为根的树已是堆,无须调整;否则必须将R[low]和它的两个孩子结点中关键字较大者进行交换,即R[low]与R[large](R[large].key=max(R[2low].key,R[2low+1].key))交换。
交换后又可能使结点R[large]违反堆性质,同样由于该结点的两棵子树(若存在)仍然是堆,故可重复上述的调整过程,对以R[large]为根的树进行调整。
此过程直至当前被调整的结点已满足堆性质,或者该结点已是叶子为止。
上述过程就象过筛子一样,把较小的关键字逐层筛下去,而将较大的关键字逐层选上来。
因此,有人将此方法称为"筛选法"。
算法实例:
#include<stdio.h>
#include<stdlib.h>
inline int LEFT(int i);
inline int RIGHT(int i);
inline int PATENT(int i);
void MAX_HEAPIFY(int A[],int heap_size,int i);
void BUILD_MAX_HEAP(int A[],int heap_size);
void HEAPSORT(int A[],int heap_size);
void output(int A[],int size);
int main()
{
FILE *fin;
int m,size,i;
fin = fopen("array.in","r");
int* a;
fscanf(fin," %d",&size);
a = (int *)malloc(size + 1);
a[0]=size;
for(i = 1;i <= size; i++ )
{
fscanf(fin," %d",&m);
a[i] = m;
}
HEAPSORT(a,a[0]);
printf("$$$$$$$$$ Result$$$$$$$$
");
output(a,a[0]);
free(a);
return 0;
}
inline int LEFT(int i)
{
return 2 * i;
}
inline int RIGHT(int i)
{
return 2 * i + 1;
}
inline int PARENT(int i)
{
return i / 2;
}
void MAX_HEAPIFY(int A[],int heap_size,int i)
{
int temp,largest,l,r;
largest = i;
l = LEFT(i);
r = RIGHT(i);
if ((l <= heap_size) && (A[l] > A[i])) largest = l;
if ((r <= heap_size) && (A[r] > A[largest])) largest = r;
if (largest != i)
{
temp = A[largest];
A[largest] = A[i];
A[i] = temp;
MAX_HEAPIFY(A,heap_size,largest);
}
}
void BUILD_MAX_HEAP(int A[],int heap_size)
{
int i;
for (i = heap_size / 2;i >= 1;i--) MAX_HEAPIFY(A,heap_size,i);
}
void HEAPSORT(int A[],int heap_size)
{
int i;
BUILD_MAX_HEAP(A,heap_size);
for (i = heap_size;i >= 2; i--)
{
int temp;
temp = A[1];
A[1] = A[i];
A[i] = temp;
MAX_HEAPIFY(A,i-1,1);
}
}
void output(int A[],int size)
{
int i = 1;
FILE *out = fopen("result.in","w+");
for (; i <= size; i++){
printf("%d ",A[i]);
fprintf(out,"%d ",A[i]);
}
printf("
");
}
②BuildHeap的实现
要将初始文件R[l..n]调整为一个大根堆,就必须将它所对应的完全二叉树中以每一结点为根的子树都调整为堆。
显然只有一个结点的树是堆,而在完全二叉树中,所有序号 的结点都是叶子,因此以这些结点为根的子树均已是堆。
这样,我们只需依次将以序号为 , -1,…,1的结点作为根的子树都调整为堆即可。
具体算法【参见教材】。
5、大根堆排序实例
对于关键字序列(42,13,24,91,23,16,05,88),在建堆过程中完全二叉树及其存储结构的变化情况参见【动画演示】。
6、 算法分析
堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。
堆排序的最坏时间复杂度为O(nlgn)。
堆排序的平均性能较接近于最坏性能。
由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。
堆排序是就地排序,辅助空间为O(1),
它是不稳定的排序方法。
参考资料:/wiki?title=%E5%A0%86%E6%8E%92%E5%BA%8F&;diff=prev&oldid=374531求严蔚敏教材上弗洛伊德算法的时间复杂度,在网上查了下,说法不一,有O(n3),有O(n4),大家怎么看?
分n 个阶段,用邻接矩阵求关联和权值时间O(1),每个阶段需要对n^2个元素对比较
因此时间复杂度为O(n^3)
至于求路径,参加其原文,又多了一个循环,效率不高,最好是用路径矩阵,这样求路径的时间复杂度也是O(n^3)弗洛伊德算法和地杰斯特拉算法的区别
弗洛伊德是 求多个点对的最短路。
运行一次可以算出图中任意两点的最短路 复杂度 o(n^3)
地杰斯特拉算法
是求单源点的最短路一次运算可以算出,从这个点出发到任意点的最短路。
复杂度可以优化到O(|E|log|v|)
野草云服务器怎么样?野草云是一家成立了9年的国人主机商家,隶属于香港 LucidaCloud Limited (HongKong Registration No. 2736053 / 香港網上查冊中心)。目前,野草云主要销售香港、美国的VPS、虚拟主机及独立服务器等产品,本站也给大家分享过多次他家的优惠了,目前商家开启了优惠活动,香港/美国洛杉矶CN2+BGP云服务器,1核1G仅38元/月起!点击...
ZJI又上新了!商家是原Wordpress圈知名主机商:维翔主机,成立于2011年,2018年9月启用新域名ZJI,提供中国香港、台湾、日本、美国独立服务器(自营/数据中心直营)租用及VDS、虚拟主机空间、域名注册等业务。本次商家新上韩国BGP+CN2线路服务器,国内三网访问速度优秀,适用8折优惠码,优惠后韩国服务器最低每月440元起。韩国一型CPU:Intel 2×E5-2620 十二核二十四线...
春节期间我们很多朋友都在忙着吃好喝好,当然有时候也会偶然的上网看看。对于我们站长用户来说,基本上需要等到初八之后才会开工,现在有空就看看是否有商家的促销。这里看到来自HMBcloud半月湾服务商有提供两款春节机房方案的VPS主机88折促销活动,分别是来自洛杉矶CN2 GIA和日本CN2的方案。八八折优惠码:CNY-GIA第一、洛杉矶CN2 GIA美国原生IP地址、72小时退款保障、三网回程CN2 ...
弗洛伊德算法为你推荐
防恶意点击怎么才能做到防止恶意点击的行为发生呢?qq业务代码最新的手机开通QQ业务的代码百度创业史百度能创业成功的原因是什么腾讯汽车论坛腾讯·大楚网的核心产品双色球在线选号器求一款6120c双色球选号软件qq空间克隆素材qq空间克隆联通玩电信游戏我联通的能进电信去玩吗云桌面是什么意思云桌面虚拟化办公有哪些优点?vsanexsi vsan 实际使用怎么样flash菜单怎么修改FLASH菜单
国外虚拟空间 长春域名注册 duniu kdata debian7 网站挂马检测工具 合肥鹏博士 seednet idc资讯 流量计费 免费智能解析 网通服务器托管 双线机房 vul 德隆中文网 防cc攻击 酸酸乳 实惠 免费php空间 server2008 更多