LSTM神经网络有推理能力吗?
首先推理是用以知来解读未知,在用证据来加强对未知答案的确定,这个事情就是这么发展的 ,而不是像1+1就是等于2这样肯定,想要肯定只能是用相关的线索来加强确定, 而LSTM神经网路的性质就是,1+1就是等于2,这样楼主能理解吗?也就是说它是不含推理能力的。
当前主流的语言模型是n-gram还是RNN/LSTM
语言模型主要分为规则模型和统计模型两种。
统计语言模型是用概率统计的方法来揭示语言单位内在的统计规律,其中N-Gram简单有效,被广泛使用。
N-Gram:该模型基于这样一种假设,第n个词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。
这些概率可以通过直接从语料中统计N个词同时出现的次数得到。
常用的是二元的Bi-Gram和三元的Tri-Gram。
语言模型的性能通常用交叉熵和复杂度(Perplexity)来衡量。
交叉熵的意义是用该模型对文本识别的难度,或者从压缩的角度来看,每个词平均要用几个位来编码。
复杂度的意义是用该模型表示这一文本平均的分支数,其倒数可视为每个词的平均概率。
平滑是指对没观察到的N元组合赋予一个概率值,以保证词序列总能通过语言模型得到一个概率值。
通常使用的平滑技术有图灵估计、删除插值平滑、Katz平滑和Kneser-Ney平滑。
LSTM神经网络输入输出究竟是怎样的
LSTM的三个门输出数字和向量的情况都有。
门(input,et,output)输出的维度和cell状态的维度一致即可。
也就是说三个门的输出分别控制被控制向量(cell input,cell(t-1),cell(t))中的元素。
举个例子,如果cell状态的维度是1,那么被控制向量(cell input,cell(t-1),cell(t))的维度也都是1,那么三个门的输出都是0-1之间的数字(选用sigmoid激活函数);如果cell状态的维度是N,那么被控制向量(cell input,cell(t-1),cell(t))的维度也分别都是N,那么三个门的输出都是0-1之间的向量(选用sigmoid激活函数),且门输出向量的维度都是N。
如何为LSTM重新构建输入数据
教程概述
本文分为4部分:
1. LSTM输入层。
2. 具有单输入样本的LSTM示例。
3. 具有多个输入特征的LSTM示例。
4. LSTM输入提示。
2
LSTM输入层
LSTM输入层是由神经网络第一个隐藏层上的“input_shape”参数指定的。
这可能会让初学者感到困惑。
例如,以下是具有一个隐藏的LSTM层和一个密集输出层组成的神经网络示例。
3
在这个例子中,我们可以看到LSTM()层必须指定输入的形状。
而且每个LSTM层的输入必须是三维的。
这输入的三个维度是:
样品。
一个序列是一个样本。
批次由一个或多个样本组成。
时间步。
一个时间步代表样本中的一个观察点。
特征。
一个特征是在一个时间步长的观察得到的。
这意味着输入层在拟合模型时以及在做出预测时,对数据的要求必须是3D数组,即使数组的特定维度仅包含单个值。
当定义LSTM网络的输入层时,网络假设你有一个或多个样本,并会给你指定时间步长和特征数量。
你可以通过修改“ input_shape ”的参数修改时间步长和特征数量。
例如,下面的模型定义了包含一个或多个样本,50个时间步长和2个特征的输入层。
具有单输入样本的LSTM示例
考虑到你可能会有多个时间步骤和一个特征序列的情况,所以我们先从这种情况讲起。
例如,这是一个包含10个数字的序列:
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
我们可以将这个数字序列定义为NumPy数组。
然后,我们可以使用NumPy数组中的reshape()函数将这个一维数组重构为三维数组,每个时间步长为1个样本,那么我们需要10个时间步长和1个特征。
在数组上调用的reshape()函数需要一个参数,它是定义数组新形状的元组。
我们不能干涉数据的重塑,重塑必须均匀地重组数组中的数据。
一旦重塑,我们可以打印阵列的新形状。
完整的例子如下:
运行示例打印单个样本的新3D形状:
该数据现在可以为input_shape(10,1)的LSTM的输入(X)。
具有多个输入功能的LSTM示例
你的模型可能有多个并行数据作为输入的情况,接下来我们来看看这种情况。
例如,这可以是两个并行的10个值:
series 1: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
series 2: 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1
我们可以将这些数据定义为具有10行的2列的矩阵:
该数据可以被设置为1个样本,具有10个时间步长和2个特征。
它可以重新整形为3D阵列,如下所示:
完整的例子如下:
运行示例打印单个样本的新3D形状。
(1, 10, 2)
该数据现在可以为input_shape(10,2)作为LSTM的输入(X)使用。
iON Cloud怎么样?iON Cloud升级了新加坡CN2 VPS的带宽和流量最低配的原先带宽5M现在升级为10M,流量也从原先的150G升级为250G。注意,流量也仅计算出站方向。iON Cloud是Krypt旗下的云服务器品牌,成立于2019年,是美国老牌机房(1998~)krypt旗下的VPS云服务器品牌,主打国外VPS云服务器业务,均采用KVM架构,整体性能配置较高,云服务器产品质量靠...
LOCVPS发来了针对元旦新年的促销活动,除了全场VPS主机8折优惠外,针对德国/荷兰KVM #1/美国KVM#2 VPS提供终身7折优惠码(限量50名,先到先得)。LOCVPS是一家成立于2012年的国人VPS服务商,提供中国香港、韩国、美国、日本、新加坡、德国、荷兰、俄罗斯等地区VPS服务器,基于KVM或XEN架构(推荐优先选择KVM),均选择直连或者优化线路,国内延迟低,适合建站或远程办公使...
Virmach商家我们是不是比较熟悉?速度一般,但是人家价格低,而且机房是比较多的。早年的时候有帮助一个有做外贸也许需要多个机房且便宜服务商的时候接触到这个商家,有曾经帮助够买过上百台这样的低价机器。这里需要提醒的,便宜但是速度一般,尤其是中文业务速度确实不快,如果是外贸业务,那肯定是没有问题。这几天,我们有看到Virmach推出了夏季优惠促销,VPS首年8折,最低年付仅7.2美元,多机房可选,如...
lstm为你推荐
stackoverflow电脑常出现stack overflow at line,是怎么回事,特殊别是在看地图时,还不容易去掉,请高手们解决一下。wmiprvse为什么进程里面会出现很多wmiprvse.exedeviceid如何查看自己安卓手机的Android Device ID保留两位有效数字什么叫保留两位有效数字ruby语言ruby什么意思?什么含义?问卷星登陆请问问卷星怎么设置答题时间?layoutsubviews如何自定义UISearchBar?cf加速器玩cf ping高用什么加速器比较好新手怎么制作表格怎样能学会制作表格新手怎么制作表格怎么制作表格?
1g虚拟主机 香港主机租用 免费域名申请 罗马假日广场 t楼 l5639 博客主机 双11抢红包攻略 青果网 好看的桌面背景图 eq2 空间服务商 权嘉云 河南移动邮件系统 免费申请网站 免费cdn 安徽双线服务器 www789 免费ftp 秒杀品 更多