LSTM神经网络有推理能力吗?
首先推理是用以知来解读未知,在用证据来加强对未知答案的确定,这个事情就是这么发展的 ,而不是像1+1就是等于2这样肯定,想要肯定只能是用相关的线索来加强确定, 而LSTM神经网路的性质就是,1+1就是等于2,这样楼主能理解吗?也就是说它是不含推理能力的。
当前主流的语言模型是n-gram还是RNN/LSTM
语言模型主要分为规则模型和统计模型两种。
统计语言模型是用概率统计的方法来揭示语言单位内在的统计规律,其中N-Gram简单有效,被广泛使用。
N-Gram:该模型基于这样一种假设,第n个词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。
这些概率可以通过直接从语料中统计N个词同时出现的次数得到。
常用的是二元的Bi-Gram和三元的Tri-Gram。
语言模型的性能通常用交叉熵和复杂度(Perplexity)来衡量。
交叉熵的意义是用该模型对文本识别的难度,或者从压缩的角度来看,每个词平均要用几个位来编码。
复杂度的意义是用该模型表示这一文本平均的分支数,其倒数可视为每个词的平均概率。
平滑是指对没观察到的N元组合赋予一个概率值,以保证词序列总能通过语言模型得到一个概率值。
通常使用的平滑技术有图灵估计、删除插值平滑、Katz平滑和Kneser-Ney平滑。
LSTM神经网络输入输出究竟是怎样的
LSTM的三个门输出数字和向量的情况都有。
门(input,et,output)输出的维度和cell状态的维度一致即可。
也就是说三个门的输出分别控制被控制向量(cell input,cell(t-1),cell(t))中的元素。
举个例子,如果cell状态的维度是1,那么被控制向量(cell input,cell(t-1),cell(t))的维度也都是1,那么三个门的输出都是0-1之间的数字(选用sigmoid激活函数);如果cell状态的维度是N,那么被控制向量(cell input,cell(t-1),cell(t))的维度也分别都是N,那么三个门的输出都是0-1之间的向量(选用sigmoid激活函数),且门输出向量的维度都是N。
如何为LSTM重新构建输入数据
教程概述
本文分为4部分:
1. LSTM输入层。
2. 具有单输入样本的LSTM示例。
3. 具有多个输入特征的LSTM示例。
4. LSTM输入提示。
2
LSTM输入层
LSTM输入层是由神经网络第一个隐藏层上的“input_shape”参数指定的。
这可能会让初学者感到困惑。
例如,以下是具有一个隐藏的LSTM层和一个密集输出层组成的神经网络示例。
3
在这个例子中,我们可以看到LSTM()层必须指定输入的形状。
而且每个LSTM层的输入必须是三维的。
这输入的三个维度是:
样品。
一个序列是一个样本。
批次由一个或多个样本组成。
时间步。
一个时间步代表样本中的一个观察点。
特征。
一个特征是在一个时间步长的观察得到的。
这意味着输入层在拟合模型时以及在做出预测时,对数据的要求必须是3D数组,即使数组的特定维度仅包含单个值。
当定义LSTM网络的输入层时,网络假设你有一个或多个样本,并会给你指定时间步长和特征数量。
你可以通过修改“ input_shape ”的参数修改时间步长和特征数量。
例如,下面的模型定义了包含一个或多个样本,50个时间步长和2个特征的输入层。
具有单输入样本的LSTM示例
考虑到你可能会有多个时间步骤和一个特征序列的情况,所以我们先从这种情况讲起。
例如,这是一个包含10个数字的序列:
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
我们可以将这个数字序列定义为NumPy数组。
然后,我们可以使用NumPy数组中的reshape()函数将这个一维数组重构为三维数组,每个时间步长为1个样本,那么我们需要10个时间步长和1个特征。
在数组上调用的reshape()函数需要一个参数,它是定义数组新形状的元组。
我们不能干涉数据的重塑,重塑必须均匀地重组数组中的数据。
一旦重塑,我们可以打印阵列的新形状。
完整的例子如下:
运行示例打印单个样本的新3D形状:
该数据现在可以为input_shape(10,1)的LSTM的输入(X)。
具有多个输入功能的LSTM示例
你的模型可能有多个并行数据作为输入的情况,接下来我们来看看这种情况。
例如,这可以是两个并行的10个值:
series 1: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
series 2: 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1
我们可以将这些数据定义为具有10行的2列的矩阵:
该数据可以被设置为1个样本,具有10个时间步长和2个特征。
它可以重新整形为3D阵列,如下所示:
完整的例子如下:
运行示例打印单个样本的新3D形状。
(1, 10, 2)
该数据现在可以为input_shape(10,2)作为LSTM的输入(X)使用。
全新PHP短网址系统URL缩短器平台,它使您可以轻松地缩短链接,根据受众群体的位置或平台来定位受众,并为缩短的链接提供分析见解。系统使用了Laravel框架编写,前后台双语言使用,可以设置多域名,还可以开设套餐等诸多功能,值得使用。链接: https://pan.baidu.com/s/1ti6XqJ22tp1ULTJw7kYHog?pwd=sarg 提取码: sarg文件解压密码 www.wn7...
RAKsmart发布了新年钜惠活动,即日起到2月28日,商家每天推出限量服务器秒杀,美国服务器每月30美元起,新上了韩国服务器、GPU服务器、香港/日本/美国常规+站群服务器、1-10Gbps不限流量大带宽服务器等大量库存;VPS主机全场提供7折优惠码,同时针对部分特惠套餐无码直购每月仅1.99美元,支持使用PayPal或者支付宝等方式付款,有中英文网页及客服支持。爆款秒杀10台/天可选精品网/大...
青云互联怎么样?青云互联是一家成立于2020年6月份的主机服务商,致力于为用户提供高性价比稳定快速的主机托管服务,目前提供有美国免费主机、香港主机、香港服务器、美国云服务器,让您的网站高速、稳定运行。目前,美国洛杉矶cn2弹性云限时七折,美国cera机房三网CN2gia回程 13.3元/月起,可选Windows/可自定义配置。点击进入:青云互联官网青云互联优惠码:七折优惠码:dVRKp2tP (续...
lstm为你推荐
重庆干部网络学院重庆大学网络教育学院学历认可吗firstname英语中的first name 和last name具体指什么md5值文件名后缀为MD5是什么文件。策略组怎样打开组策略???最开放的浏览器我国最出名的十种浏览器layout_gravityandroid 布局中 为什么能够通过android:layout_above 、android:layout_alignTop 、等 还要在之前加入jqlDX5JQL8WDPMW求大神帮查下是不是行货苹果保留两位有效数字物理中保留两位有效数字是保留小数点后的两位还是从小数点前不是0的数开始保留两位?民生电商民生电商招的仓库操作工是干什么的相似图片搜索怎么找手机上的一张相似图片?
美国vps主机 抗投诉vps主机 韩国俄罗斯 优惠码 优key 国外php空间 地址大全 嘉洲服务器 台湾谷歌地址 免费活动 河南移动网 免费外链相册 国内域名 个人免费邮箱 SmartAXMT800 windowsserver2008r2 超低价 linuxvi命令 crontab 赵 更多