LSTM神经网络有推理能力吗?
首先推理是用以知来解读未知,在用证据来加强对未知答案的确定,这个事情就是这么发展的 ,而不是像1+1就是等于2这样肯定,想要肯定只能是用相关的线索来加强确定, 而LSTM神经网路的性质就是,1+1就是等于2,这样楼主能理解吗?也就是说它是不含推理能力的。
当前主流的语言模型是n-gram还是RNN/LSTM
语言模型主要分为规则模型和统计模型两种。
统计语言模型是用概率统计的方法来揭示语言单位内在的统计规律,其中N-Gram简单有效,被广泛使用。
N-Gram:该模型基于这样一种假设,第n个词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。
这些概率可以通过直接从语料中统计N个词同时出现的次数得到。
常用的是二元的Bi-Gram和三元的Tri-Gram。
语言模型的性能通常用交叉熵和复杂度(Perplexity)来衡量。
交叉熵的意义是用该模型对文本识别的难度,或者从压缩的角度来看,每个词平均要用几个位来编码。
复杂度的意义是用该模型表示这一文本平均的分支数,其倒数可视为每个词的平均概率。
平滑是指对没观察到的N元组合赋予一个概率值,以保证词序列总能通过语言模型得到一个概率值。
通常使用的平滑技术有图灵估计、删除插值平滑、Katz平滑和Kneser-Ney平滑。
LSTM神经网络输入输出究竟是怎样的
LSTM的三个门输出数字和向量的情况都有。
门(input,et,output)输出的维度和cell状态的维度一致即可。
也就是说三个门的输出分别控制被控制向量(cell input,cell(t-1),cell(t))中的元素。
举个例子,如果cell状态的维度是1,那么被控制向量(cell input,cell(t-1),cell(t))的维度也都是1,那么三个门的输出都是0-1之间的数字(选用sigmoid激活函数);如果cell状态的维度是N,那么被控制向量(cell input,cell(t-1),cell(t))的维度也分别都是N,那么三个门的输出都是0-1之间的向量(选用sigmoid激活函数),且门输出向量的维度都是N。
如何为LSTM重新构建输入数据
教程概述
本文分为4部分:
1. LSTM输入层。
2. 具有单输入样本的LSTM示例。
3. 具有多个输入特征的LSTM示例。
4. LSTM输入提示。
2
LSTM输入层
LSTM输入层是由神经网络第一个隐藏层上的“input_shape”参数指定的。
这可能会让初学者感到困惑。
例如,以下是具有一个隐藏的LSTM层和一个密集输出层组成的神经网络示例。
3
在这个例子中,我们可以看到LSTM()层必须指定输入的形状。
而且每个LSTM层的输入必须是三维的。
这输入的三个维度是:
样品。
一个序列是一个样本。
批次由一个或多个样本组成。
时间步。
一个时间步代表样本中的一个观察点。
特征。
一个特征是在一个时间步长的观察得到的。
这意味着输入层在拟合模型时以及在做出预测时,对数据的要求必须是3D数组,即使数组的特定维度仅包含单个值。
当定义LSTM网络的输入层时,网络假设你有一个或多个样本,并会给你指定时间步长和特征数量。
你可以通过修改“ input_shape ”的参数修改时间步长和特征数量。
例如,下面的模型定义了包含一个或多个样本,50个时间步长和2个特征的输入层。
具有单输入样本的LSTM示例
考虑到你可能会有多个时间步骤和一个特征序列的情况,所以我们先从这种情况讲起。
例如,这是一个包含10个数字的序列:
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
我们可以将这个数字序列定义为NumPy数组。
然后,我们可以使用NumPy数组中的reshape()函数将这个一维数组重构为三维数组,每个时间步长为1个样本,那么我们需要10个时间步长和1个特征。
在数组上调用的reshape()函数需要一个参数,它是定义数组新形状的元组。
我们不能干涉数据的重塑,重塑必须均匀地重组数组中的数据。
一旦重塑,我们可以打印阵列的新形状。
完整的例子如下:
运行示例打印单个样本的新3D形状:
该数据现在可以为input_shape(10,1)的LSTM的输入(X)。
具有多个输入功能的LSTM示例
你的模型可能有多个并行数据作为输入的情况,接下来我们来看看这种情况。
例如,这可以是两个并行的10个值:
series 1: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
series 2: 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1
我们可以将这些数据定义为具有10行的2列的矩阵:
该数据可以被设置为1个样本,具有10个时间步长和2个特征。
它可以重新整形为3D阵列,如下所示:
完整的例子如下:
运行示例打印单个样本的新3D形状。
(1, 10, 2)
该数据现在可以为input_shape(10,2)作为LSTM的输入(X)使用。
从介绍看啊,新增的HostYun 俄罗斯机房采用的是双向CN2线路,其他的像香港和日本机房,均为国内直连线路,访问质量不错。HostYun商家通用九折优惠码:HostYun内存CPUSSD流量带宽价格(原价)购买地址1G1核10G300G/月200M28元/月购买链接1G1核10G500G/月200M38元/月购买链接1G1核20G900G/月200M68元/月购买链接2G1核30G1500G/月...
Virmach 商家算是比较久且一直在低价便宜VPS方案中玩的不亦乐乎的商家,有很多同时期的商家纷纷关闭转让,也有的转型到中高端用户。而前一段时间也有分享过一次Virmach商家推出所谓的一次性便宜VPS主机,比如很低的价格半年时间,时间到服务器也就关闭。这不今天又看到商家有提供这样的产品。这次的活动产品包括圣何塞和水牛城两个机房,为期六个月,一次性付费用完将会取消,就这么特别的产品,适合短期玩玩...
百纵科技:美国高防服务器,洛杉矶C3机房 独家接入zenlayer清洗 带金盾硬防,CPU全系列E52670、E52680v3 DDR4内存 三星固态盘阵列!带宽接入了cn2/bgp线路,速度快,无需备案,非常适合国内外用户群体的外贸、搭建网站等用途。官方网站:https://www.baizon.cnC3机房,双程CN2线路,默认200G高防,3+1(高防IP),不限流量,季付送带宽美国洛杉矶C...
lstm为你推荐
科来网络分析系统如何破解电信星空极速?foxmail邮箱注册如何注册一个foxmail邮箱oracle索引什么是Oracle的函数索引?电子日历我想做个项目 如何在电子日历中进行时间的选择tvosTVOS推广怎么样?editplus破解版DBTools Manager Professional 破解版在哪里可以下载?索引超出了数组界限什么是索引超出了数组界限spawning在c语言编译时出现Error spawning cl.exe,是怎么回事?radius认证如何写一个C#的Radius认证客户端微信论坛手机微信论坛如何实现
gitcafe 42u标准机柜尺寸 好看的留言 NetSpeeder 美国php空间 服务器怎么绑定域名 英文站群 三拼域名 京东商城0元抢购 腾讯总部在哪 阿里云免费邮箱 永久免费空间 实惠 如何登陆阿里云邮箱 云服务是什么意思 789电视剧网 google搜索打不开 zcloud 免 windowsserver2008 更多