producedsolved

solved  时间:2021-01-17  阅读:()
1ElectronicSupplementaryInformationIonizedFormofAcetaminophenwithImprovedCompactionPropertiesSathyanarayanaReddyPerumalla,LiminShi,andDepartmentofPharmaceutics,CollegeofPharmacy,UniversityofMinnesota,9-127BWeaver-DensfordHall,ChangquanCalvinSun*308HarvardStreetS.
E.
,Minneapolis,MN55455.
Fax:612-626-2125;Tel:612-624-3722;Email:sunx0053@umn.
eduS1.
Syntheticprocedurefor1.
FigureS1.
X-RaydifferenceFouriermapintheregionoftheatomsO(7)andO(100)inthecrystalstructureof1.
FigureS2.
ORTEPdiagramofasymmetricunitof2.
S2.
MechanicalpropertiesdeterminedbynanoindentationFigureS3.
Nanoindentationload-unloadcurvesofACMFormIand1.
S3.
PowdercompactionS4.
PowderX-raydiffractometryFigureS4.
CalculatedandmeasuredPXRDpatternsof1forbulkpowder.
S5.
X-RaycrystallographicdatacollectionstrategyandrefinementTableS1.
X-Raycrystaldataandstructurerefinementfor1.
TableS2.
X-Raycrystaldataandstructurerefinementfor2.
References2S1.
Synthesisof1:Acetaminophen(ACM,302mg)wasdissolvedinCon.
HCl(1.
6mL)withslightheatingthencooledtoroomtemperature.
Singlecrystalsof1suitableforstructuredeterminationbyX-raydiffractionmethodwereformedwithin30min.
AnX-raydifferenceFouriermaprevealsthatthesiteofprotonationistheamideoxygen,O(7)(FigureS1),whichisconsistentwiththeobservationmadeinliterature(Refs4and7inthepaper).
FigureS1.
X-RaydifferenceFouriermapintheregionoftheatomsO(7)andO(100)inthecrystalstructureof1.
Thesinglemaximumof0.
63e-3neartheatomO7correspondstoprotonatedhydrogen;itsdistancefromO(7)is0.
89,anditsdistancefromO(100)is1.
61.
Wepreparedbulkpowdersof1byeitherlinearlyscalinguptheabove-mentionedreactionorbysuspendingACM(15g)inCon.
HCl(75mL)atroomtemperaturefor12hours.
Ifprolongedheatingisapplied,crystalsof2areproduced(FigureS2).
3FigureS2.
ORTEPdiagramofasymmetricunitof2.
S2.
MechanicalpropertiesdeterminedbynanoindentationCrystalhardness,H,weredeterminedusingananoindenter(TriboIndenterTI-900,HysitronInc.
,MN,USA)withaBerkovichdiamondindentertip.
Beforenanoindentationtesting,thetipareafunctionwasderivedfromaseriesofindentationsonafusedquartzstandard.
Thenanoindentationexperimentswereperformedunderthedisplacementcontrolmode.
Theratesofloadingandunloadingwereboth100nm/sanda10sholdingwasappliedatthemaximumindentationdepthof500nm.
Nanoindentationdatawereanalyzedfollowingthestandardprocedure.
S1RepresentativenanoindentationdataforACMFormIand1areshowninFigureS3.
40100200300400500012341Load(mN)Displacement(nm)FormIFigureS3.
Nanoindentationload-unloadcurvesofACMFormIand1.
Amuchlowerforceisrequiredtomakeanindentofthesamesizeon1thanonACM.
S3.
PowdercompactionAmaterialtestingmachine(model1485,Zwick/Roell,Kennesaw,GA)wasusedtoperformcompactionstudyofbulkpowderof1ataloadingrateof1mm/s.
Powderwasgrindedinamortarusingapestletoreduceparticlesizebeforecompactionstudiesatpressuresrangingfrom25to350MPa,whereadie(round,8mmdiameter)andflat-facedpuncheslubricatedwithmagnesiumstearatewereemployed.
Tabletswererelaxedunderambientenvironmentfor24hbeforemeasuringdiametricalbreakingforceusingatextureanalyzer(TA-XT2i,TextureTechnologiesCorp.
,Scarsdale,NY).
Tablettensilestrengthwascalculatedfromthebreakingforceandtabletdimensionsfollowingstandardprocedure.
S25S4.
PowderX-raydiffractometryX-Raypowderdiffractogramwasobtainedonawide-anglediffractometer(D5005,BruckerAXS).
CuKαradiationwasused.
Thevoltageandcurrentappliedwere45kVand40mArespectively.
Themeasurementwasperformedwithastepsizeof0.
02ofrom5oto35o681012141618202224262830323402040608010012014016018020068101214161820222426283032340204060801001201401601802001recordedRelativeintensityDiffractionangle2θ1calculatedtwothetaandadwelltimeof1s.
PXRDdatawereanalyzedusingacommercialsoftware(JADE,MaterialsDataInc.
,Livermore,CA).
Asidefromthedifferentpeakintensities,whichisattributedtothephenomenonofpreferredorientation,experimentalPXRDpatternofthebulkpowderusedforcompactionmatcheswellwiththecalculatedPXRDpattern(FigureS4).
FigureS4.
CalculatedandmeasuredPXRDpatternsof1forbulkpowder.
6S5.
X-RaycrystallographicdatacollectionstrategyandrefinementSuitablesinglecrystalwasplacedontothetipofa0.
1mmdiameterglassfiberandmountedonaBrukerApexIICCDareadetectordiffractometerfordatacollectionat173(2)KusingMoKαradiation(graphitemonochromator).
S3DataprocessingwasaccomplishedwiththeSAINTprocessingprogram.
ThestructurewassolvedusingBrukerSHELXTLandrefinedusingBrukerSHELXTL.
S4Adirect-methodssolutionwascalculated,whichprovidedmostnon-hydrogenatomsfromtheE-map.
Full-matrixleastsquares/differenceFouriercycleswereperformed,whichlocatedtheremainingnon-hydrogenatoms.
Allnon-hydrogenatomswererefinedwithanisotropicdisplacementparameters.
AllhydrogenatomswerelocatedfromthedifferenceFouriermapandallowedtorideontheirparentatomsintherefinementcycles.
KeycrystaldataanddatacollectionparametersaresummarizedinTableS1andS2for1and2respectively.
DatacollectionandstructuresolutionwereconductedattheX-RayCrystallographicLaboratory,S146KolthoffHall,DepartmentofChemistry,UniversityofMinnesota.
7TableS1.
X-Raycrystaldataandstructurerefinementfor1.
EmpiricalformulaC8H12ClNO3Formulaweight205.
64Temperature173(2)KWavelength0.
71073CrystalsystemMonoclinicSpacegroupP2(1)/cUnitcelldimensionsa=6.
2761(6)α=90°.
b=22.
345(2)β=97.
2570(10)°.
c=6.
8833(7)γ=90°.
Volume957.
56(16)3Z4Density(calculated)1.
426Mg/m3Absorptioncoefficient0.
374mm-1F(000)432Crystalsize0.
36x0.
26x0.
16mm3Thetarangefordatacollection1.
82to26.
84°.
Indexranges-72sigma(I)]R1=0.
0272,wR2=0.
0734Rindices(alldata)R1=0.
0306,wR2=0.
0760Largestdiff.
peakandhole0.
193and-0.
243e.
-38TableS2.
Crystaldataandstructurerefinementfor2.
EmpiricalformulaC6H8ClNOFormulaweight145.
58Temperature173(2)KWavelength0.
71073CrystalsystemMonoclinicSpacegroupP2(1)/cUnitcelldimensionsa=6.
4919(6)α=90°.
b=6.
1159(6)β=90.
0320(10)°.
c=16.
8700(16)γ=90°.
Volume669.
80(11)3Z4Density(calculated)1.
444Mg/m3Absorptioncoefficient0.
480mm-1F(000)304Crystalsize0.
19x0.
16x0.
15mm3Thetarangefordatacollection2.
41to27.
56°.
Indexranges-82sigma(I)]R1=0.
0226,wR2=0.
0658Rindices(alldata)R1=0.
0228,wR2=0.
0660Extinctioncoefficient0.
017(3)Largestdiff.
peakandhole0.
271and-0.
207e.
-39References:(S1)W.
C.
Oliver,G.
M.
Pharr,J.
Mater.
Res.
1992,7,1564-1583(S2)J.
T.
Fell,J.
M.
Newton,J.
Pharm.
Sci.
1970,59,688-691.
(S3)Bruker(2007).
APEX2,SADABSandSAINT.
BrukerAXSInc.
,Madison,Wisconsin,USA.
(S4)G.
M.
Sheldrick,ActaCrystallogr.
2008,A64,112–122.

华纳云CN2高防1810M带宽独享,三网直cn218元/月,2M带宽;独服/高防6折购

华纳云怎么样?华纳云是香港老牌的IDC服务商,成立于2015年,主要提供中国香港/美国节点的服务器及网络安全产品、比如,香港服务器、香港云服务器、香港高防服务器、香港高防IP、美国云服务器、机柜出租以及云虚拟主机等。以极速 BGP 冗余网络、CN2 GIA 回国专线以及多年技能经验,帮助全球数十万家企业实现业务转型攀升。华纳云针对618返场活动,华纳云推出一系列热销产品活动,香港云服务器低至3折,...

80VPS:香港服务器月付420元;美国CN2 GIA独服月付650元;香港/日本/韩国/美国多IP站群服务器750元/月

80vps怎么样?80vps最近新上了香港服务器、美国cn2服务器,以及香港/日本/韩国/美国多ip站群服务器。80vps之前推荐的都是VPS主机内容,其实80VPS也有独立服务器业务,分布在中国香港、欧美、韩国、日本、美国等地区,可选CN2或直连优化线路。如80VPS香港独立服务器最低月付420元,美国CN2 GIA独服月付650元起,中国香港、日本、韩国、美国洛杉矶多IP站群服务器750元/月...

云俄罗斯VPSJusthost俄罗斯VPS云服务器justg:JustHost、RuVDS、JustG等俄罗斯vps主机

俄罗斯vps云服务器商家推荐!俄罗斯VPS,也叫毛子主机(毛子vps),因为俄罗斯离中国大陆比较近,所以俄罗斯VPS的延迟会比较低,国内用户也不少,例如新西伯利亚机房和莫斯科机房都是比较热门的俄罗斯机房。这里为大家整理推荐一些好用的俄罗斯VPS云服务器,这里主要推荐这三家:justhost、ruvds、justg等俄罗斯vps主机,方便大家对比购买适合自己的俄罗斯VPS。一、俄罗斯VPS介绍俄罗斯...

solved为你推荐
.net虚拟主机哪里有支持net4.0的虚拟主机asp主机空间Asp空间是什么空间啊?跟有的网站提供的免费空间有什么区别吗?域名服务什么是域名服务?域名服务的主要作用是什么?asp虚拟空间ASP空间是什么意思?免费网站空间如何免费做网站 免费域名+免费空间+免费网站深圳网站空间怎样申请免费网站空间便宜虚拟主机哪里有国内便宜虚拟主机虚拟主机管理系统急!高分!比较好用的虚拟主机管理系统有哪些?上海虚拟主机我想购买虚拟主机,选个品牌。大家给点意见。电信为主。当然肯定要支持多线。大连虚拟主机大连横展网络科技有限公司怎么样?
国外网站空间 拜登买域名批特朗普 特价空间 主机屋免费空间 win8.1企业版升级win10 轻量 java空间 小米数据库 重庆电信服务器托管 net空间 中国linux atom处理器 华为k3 浙江服务器 杭州电信 七牛云存储 双11促销 godaddy中文 侦探online 中国域名根服务器 更多