spannedlet美人2

let美人2  时间:2021-01-15  阅读:()
Tightrelative2-designsontwoshellsinJohnsonassociationschemeYanZhuJointwithEiichiBannaiandEtsukoBannaiShanghaiJiaoTongUniversityMay24,2014AssociationschemeX=aniteset,{R0,R1,Rd}=thesetofrelationsonX(i.
e.
,RiX*X).
R0={(x,x)|x∈X}.
R0R1.
.
.
Rd=X*X,andRiRj=ifi=j.
tRi=Rjforsomej∈{0,1,d},wheretRi={(y,x)|(x,y)∈Ri}.
Given(x,y)∈Rk,then|{z∈X|(x,z)∈Ri,(z,y)∈Rj}|=pki,j.
ThenX=(X,{Ri}0≤i≤d)isanassociationscheme.
Moreover,XissymmetriciftRi=Ri.
2/21AdjacencymatrixThei-thadjacencymatrixAiofXisdenedby(Ai)xy=1,if(x,y)∈Ri0,otherwiseA0=I.
A0+A1Ad=J.
tAi=Ajforsomej∈{0,1,d}.
AiAj=di=0pki,jAk=AjAi.
{A0,A1,Ad}formanalgebrawhichiscalledtheBose-Mesneralgebraoftheassociationscheme.
3/21MatrixversionSymmetricassociationscheme:X=(X,{Ri}i=0,.
.
.
,d).
Adjacencymatrices:A0,Ad.
Primitiveidempotents:E0,Ed.
Bose-Mesneralgebra:C[A0,Ad]=C[E0,Ed]AiAj=di=0pki,jAkandEiEj=1|X|di=0qki,jEk.
Eigenmatrices:(A0,Ad)=(E0,Ed)P(E0,Ed)=1|X|(A0,Ad)Q4/21Denition1.
1LetXbeacollectionofd-elementsubsetsof[v]withd≤v2.
(x,y)∈Riif|x∩y|=di.
ThenX=(X,{Ri}0≤i≤d)isasymmetricassociationschemeofclassdandiscalledJohnsonassociationschemeJ(v,d).
u0∈X:axedpointarbitrarily.
Xi={x∈X|(u0,x)∈Ri},thenX0,X1,XdarecalledshellsofX.
F(X):thevectorspaceconsistsofalltherealvaluedfunctionsonX.
Lj(X):thesubspaceofF(X)spannedbyallthecolumnsofEj.
F(X)=L0(X)⊥L1(XLd(X).
5/21Denition1.
2[1]Let(Y,w)beaweightedsubsetofXwithpositivefunctionwonY.
(Y,w)iscalledarelativet-designwithrespecttou0ifthefollowingconditionholds.
pi=1x∈XriWri|Xri|f(x)=y∈Yw(y)f(y)foranyfunctionf∈L0(X)⊥L1(XLt(X),whereWri=y∈Yriw(y),i=1,2,p.
Let{r1,r2,rp}={r|XrY=}andS=Xr1Xr2.
.
.
Xrp.
DenoteYri=YXri,i=1,2,p.
XiscalledaQ-polynomialschemewithrespecttoE0,E1,Ed,ifthereexistsomepolynomialsvi(x)ofdegreeisuchthatEi=vi(E1).
6/21Theorem1.
3[1]Let(Y,w)bearelative2e-designofaQ-polynomialscheme.
Thenthefollowinginequalityholds.
|Y|≥dim(L0(S)+L1(S)Le(S))()whereLj(S)={f|S,f∈Lj(X)},j=0,1,e.
Denition1.
4Ifequalityholdsin(),then(Y,w)iscalledatightrelative2e-designwithrespecttou0.
Theorem1.
5[2]XisaQ-polynomialschemeandG=Aut(X).
Let(Y,w)beatightrelative2e-designwithrespecttou0.
AssumethatthestabilizerGu0actstransitivelyoneveryshellXr,1≤r≤d.
ThenweightfunctionwisconstantoneachYri(1≤i≤p).
7/21Theorem2.
1TakeasequenceelementsfromXasu0={1,2,d},ui={1,2,d1,d+i+1},(1≤i≤vd1)ui={1,2,d,d+1}\{i(vd)+1},(vd≤i≤v1)i.
e.
,u1={1,2,d1,d+2}u2={1,2,d1,d+3}.
.
.
uvd1={1,2,d1,v}uvd={2,3,d1,d,d+1}uvd+1={1,3,d1,d,d+1}.
.
.
uv1={1,2,d1,d+1}Then{φ0|S,φ1|Sφv1|S}isabasisofL0(S)+L1(S),whereS=Xr1Xr2.
8/21Somenotationsφ0(x)=φ(0)u0(x)=|X|E0(x,u0)≡1,φi(x)=φ(1)ui(x)=|X|E1(x,ui).
Innerproductisdenedby=2i=1Wri|Xri|x∈Xrif(x)g(x).
d0=,c0=,for1≤i≤v1c1,5=,for1≤i≤v1c1,1=,for1≤i=j≤vd1c1,2=,forvd≤i=j≤v2c1,3=,for1≤i≤vd1c1,4=,forvd≤i≤v2c2=.
for1≤i≤vd1,vd≤j≤v29/21OrthonormalbasisGram-Schmidt'smethod:{φ1,φv1,φ0}→{1,2,v}.
1=φ1c0,i=1√Di1Di.
.
.
.
.
φ1φ2.
.
.
φiTheGramdeterminantDiisgivenbyDi=.
.
.
.
.
10/21PropertyoforthonormalbasisMatrixHisindexedbyY*[v]whose(y,j)-entryisdenedbyw(y)j(y).
Then(tHH)j,k=δj,kand(HtH)x,y=δx,yimplyy∈Yw(y)j(y)k(y)=δj,kvj=1w(y)j(x)j(y)=δx,yx∈Xri(i=1,2),x={1,2,dri,d+1,d+2,d+ri}1wri=vs=12s(x).
(1)11/21x,y∈Xriand(x,y)∈Rαi,i=1,2.
x={1,2,dri,d+1,d+2,d+ri},y={1,2,ai,dri+1,2d2riai,d+1,2dαiai,d+ri+1,2ri+αi+ai},(d2ri≤ai≤dri).
vs=1s(x)s(y)=f(Wr1,Wr2,v,d,ri,αi,ai)g(Wr1,Wr2,v,d,ri,αi,ai).
(2)x∈Xr1,y∈Xr2,(x,y)∈Rγ,r1x={1,2,dr1,d+1,d+2,d+r1},y={1,2,a3,dr1+1,2dr1r2a3,d+1,2dγa3,d+r1+1,r1+r2+γ+a3},(dr1r2≤a3≤dr2).
vs=1s(x)s(y)=f(Wr1,Wr2,v,d,r1,r2,a3,γ)g(Wr1,Wr2,v,d,r1,r2,a3,γ).
(3)12/21Determineparametersetvs=1s(x)s(y)=0fordistinctx,y∈Y,i.
e.
,numeratorsof(2)and(3)haveacommonfactork1Wr1k2Wr2suchthatk2k1ispositive.
Step1:Givenv,d,r1,r2,solvetheequationsvs=1s(x)s(y)=0.
Ifthenumeratorofthesethreeexpressionshavesuchcommonfactor,thenkeeptheparametersv,d,r1,r2,α1,a1,α2,a2,γ,a3.
13/21Step2:Assumewr1=1,thenWr1=Nr1,Wr2=(vNr1)wr2.
1wr1=vs=12s(x)forx∈Xr1.
Weobtainwr2(Nr1).
Step3:Substitutealltheparametersaboveintovs=1s(x)s(y)=0forx,y∈Xr1.
SolveNr1(=|Yr1|)andkeeptheintegralsolutions.
14/21Listofpossibleparameters4≤v≤50vdr1r2α1a1α2a2γa3Nr1Nr2wr1wr212424304030102851663540240,14010611996852304113681328123956708324423281281284406024412321210129260602752336157109269049051521136157119112294333107361610169240803151231361610161054080315123115/21vdr1r2α1a1α2a2γa3Nr1Nr2wr1wr23912912931008036310940151015907091337711451281190390,190,13312145151015100901003965465451891811090120423674518918116701203873557451812181127010038721384518151890908042327355018161814290904289145020152012280100446325516/21Example2(16,6,2)design={v,d,r1,r2,Nr1,Nr2}={16,6,3,5,10,6}G=Z4*Z4BaseblockDandB={gD|g∈G}.
Du001230***1*2*3*=01230**1**2**3Xr1={gD|g∈G},whereG={(0,0),(0,1),(0,2),(1,1),(1,3),(2,2),(2,3),(1,0),(2,0),(3,0)}.
Xr2=B\Xr1.
17/21vdr1r2α1a1α2a2γa3Nr1wr1wr21663540240,1401013615710926904905151451281190390,190,133164281418160121601016010361642815211601216061607561962015191604160,1160,176110045222725120250182501845181361536196179024076919993621362301318024092182318/21FutureworkDoeseverytightrelative2-designontwoshellsinJ(v,d)havethestructureofcoherentcongurationArethereanysuchdesignswithnon-constantweight19/21ReferenceEi.
Bannai,Et.
Bannai,Remarksontheconceptsoftdesigns,J.
ApplMathComput.
40no.
1-2,(2012),195-207.
Ei.
Bannai,Et.
Bannai,Hi.
Bannai,Ontheexistenceoftightrelative2-designsonbinaryHammingassociationschemes,arXiv:1304.
5760Ei.
Bannai,Et.
Bannai,S.
Suda,H.
Tanaka,Onrelativet-designsinpolynomialassociationschemes,arXiv:1303.
7163Ei.
Bannai,Ta.
Ito,AlgebraiccombinatoricsI:Associationschemes,Benjamin/Cummings,MenloPark,CA,1984.
Th.
Beth,D.
Jungnickel,H.
Lenz,Designtheory,BibliographischesInstistu,1985.
20/21Thankyou!

速云:深圳独立服务器,新品上线,深港mpls免费体验,多重活动!

速云怎么样?速云是一家国人商家。速云商家主要提供广州移动、深圳移动、广州茂名联通、香港HKT等VDS和独立服务器。目前,速云推出深圳独服优惠活动,机房为深圳移动机房,购买深圳服务器可享受5折优惠,目前独立服务器还支持申请免费试用,需要提交工单开通免费体验试用,次月可享受永久8折优惠,也是需工单申请哦!点击进入:速云官方网站地址活动期限至 2021年7月22日速云云服务器优惠活动:活动1:新购首月可...

gcorelabs:美国GPU服务器,8张RTX2080Ti,2*Silver-4214/256G内存/1T SSD/

gcorelabs提供美国阿什本数据中心的GPU服务器(显卡服务器),默认给8路RTX2080Ti,服务器网卡支持2*10Gbps(ANX),CPU为双路Silver-4214(24核48线程),256G内存,1Gbps独享带宽仅需150欧元、10bps带宽仅需600欧元,不限流量随便跑吧。 官方网站 :https://gcorelabs.com/hosting/dedicated/gpu/ ...

georgedatacenter:美国VPS可选洛杉矶/芝加哥/纽约/达拉斯机房,$20/年;洛杉矶独立服务器39美元/月

georgedatacenter怎么样?georgedatacenter这次其实是两个促销,一是促销一款特价洛杉矶E3-1220 V5独服,性价比其实最高;另外还促销三款特价vps,大家可以根据自己的需要入手。georgedatacenter是一家成立于2019年的美国vps商家,主营美国洛杉矶、芝加哥、达拉斯、新泽西、西雅图机房的VPS、邮件服务器和托管独立服务器业务。georgedatacen...

let美人2为你推荐
vps主机vps主机用途有哪些?虚拟主机推荐虚拟主机哪个好php虚拟空间怎样修改php虚拟空间单个文件上传大小限制韩国虚拟主机大家用的虚拟主机是国内的还是香港的还是韩国的还是美国的虚拟主机评测网哪里有可靠的免费虚拟主机1g虚拟主机网站空间1G是多少M,网站空间用1G虚拟主机够吗。价格多少,数据库和网站有什么关系虚拟主机服务商现在市场上那家服务商的虚拟主机性价比最高?虚拟主机评测浅谈建站新手如何挑选虚拟主机apache虚拟主机如何用Apache配置安全虚拟主机 - PHP进阶讨论北京虚拟主机虚拟主机 那个好用又实惠
域名拍卖 汉邦高科域名申请 精品网 警告本网站 我爱水煮鱼 刀片服务器的优势 域名和空间 umax120 支付宝扫码领红包 支持外链的相册 空间首页登陆 我的世界服务器ip 个人免费邮箱 空间服务器 asp空间 google搜索打不开 时间服务器 godaddy中文 防盗链 hosts文件 更多