克鲁斯卡尔数据结构中图的克鲁斯卡尔算法的基本思想是?

克鲁斯卡尔  时间:2021-06-08  阅读:()

无论用普里姆算法或者是克鲁斯卡尔算法求最小生成树,得出的结果应该一样么?

不总是一样的,克鲁斯卡尔算法是精确算法,即每次都能求得最优解,但对于规模较大的最小生成树问题,求解速度较慢。

而普里姆算法是近似求解算法,虽然对于大多数最小生成树问题都能求得最优解,但相当一部分求得的是近似最优解。

这是我个人见解。

最小生成树 普里姆算法和克鲁斯卡尔算法

kruskal算法的时间复杂度主要由排序方法决定,其排序算法只与带权边的个数有关,与图中顶点的个数无关,当使用时间复杂度为O(eloge)的排序算法时,克鲁斯卡算法的时间复杂度即为O(eloge),因此当带权图的顶点个数较多而边的条数较少时,使用克鲁斯卡尔算法构造最小生成树效果最好! 克鲁斯卡尔算法 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。

之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。

依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。

普里姆算法 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,TV 是 WN 上最小生成树中顶点的集合,TE 是最小生成树中边的集合。

显然,在算法执行结束时,TV=V,而 TE 是 E 的一个子集。

在算法开始执行时,TE 为空集,TV 中只有一个顶点,因此,按普里姆算法构造最小生成树的过程为:在所有“其一个顶点已经落在生成树上,而另一个顶点尚未落在生成树上”的边中取一条权值为最小的边,逐条加在生成树上,直至生成树中含有 n-1条边为止。

--以上传自/valyanprogramming/blog/item/1bc960e6095f9726b93820d9.html 1.Kruskal //题目地址:/JudgeOnline/problem?id=1258 #include<cstdio> #include<cstdlib> #include<iostream> using namespace std; struct node { int v1; int v2; int len; }e[10000];//定义边集 int cmp(const void *a,const void *b)//快排比较函数 { return ((node*)a)->len-((node*)b)->len; } int v[100],a[100][100];//v为点集 void makeset(int n) { for(int i=0;i<n;i++) v[i]=i; } int find(int x) { int h=x; while(h!=v[h]) h=v[h]; return h; } int main() { int n,i,j,r1,r2,p,total; while(scanf("%d",&n)!=EOF) { p=0; total=0; makeset(n); for(i=0;i<n;i++) { for(j=0;j<n;j++) { scanf("%d",&a[i][j]); e[p].v1=i; e[p].v2=j; e[p].len=a[i][j]; p++; } } qsort(e,p,sizeof(e[0]),cmp); for(i=0;i<p;i++) { r1=find(e[i].v1); r2=find(e[i].v2); if(r1!=r2) { total+=e[i].len; v[r1]=r2; } } printf("%d ",total); } system("pause"); return 0; } 2.Prim //题目地址同上 #include <iostream> using namespace std; #define M 101 #define maxnum 100001 int dis[M][M]; int prim(int n) { bool used[M]={}; int d[M],i,j,k; for(i=1; i<=n; i++) d[i] = dis[1][i]; used[1] = true; int sum=0; for(i=1; i<n; i++){ int temp=maxnum; for(j=1; j<=n; j++){ if( !used[j] && d[j]<temp ){ temp = d[j]; k = j; } } used[k] = true; sum += d[k]; for(j=1; j<=n; j++){ if( !used[j] && dis[k][j]<d[j] ) d[j] = dis[k][j]; // 与Dijksta算法的差别之处 } } return sum; } int main() { int n,i,j; while( cin>>n ){ for(i=1; i<=n; i++){ for(j=1; j<=n; j++){ scanf("%d",&dis[i][j]); if( !dis[i][j] ) dis[i][j] = maxnum; } } cout<<prim(n)<<endl; } return 0; } 代码来自网络

数据结构里提到的普里母和克鲁斯卡尔分别是哪个国家的?

普里母算法和克鲁斯卡尔方法求最小生成树完整程序 1、普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。

意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。

该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。

因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法 2、Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。

用来解决同样问题的还有Prim算法和Boruvka算法等。

三种算法都是贪婪算法的应用。

和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。

数据结构中图的克鲁斯卡尔算法的基本思想是?

基本思想是:设有一个有n个顶点的连通网络N={V,E},最 初先构造一个只有n个顶点,没有边的非连通图 T={ V,¢},图中每个顶点自成一个 连通分量。

当在E中选到一条具有最小权值的边时,若该边的两个顶点落在不同的连通 分量上,则将此边加人到T中;否则将此边舍去,重新选择一条权值最小的边。

如此重复 下去,直到所有顶点在同一个连通分量上为止。

Pacificrack:新增三款超级秒杀套餐/洛杉矶QN机房/1Gbps月流量1TB/年付仅7美刀

PacificRack最近促销上瘾了,活动频繁,接二连三的追加便宜VPS秒杀,PacificRack在 7月中下旬已经推出了五款秒杀VPS套餐,现在商家又新增了三款更便宜的特价套餐,年付低至7.2美元,这已经是本月第三波促销,带宽都是1Gbps。PacificRack 7月秒杀VPS整个系列都是PR-M,也就是魔方的后台管理。2G内存起步的支持Windows 7、10、Server 2003\20...

2022年腾讯云新春采购季代金券提前领 领取满减优惠券和域名优惠

2022年春节假期陆续结束,根据惯例在春节之后各大云服务商会继续开始一年的促销活动。今年二月中旬会开启新春采购季的活动,我们已经看到腾讯云商家在春节期间已经有预告活动。当时已经看到有抢先优惠促销活动,目前我们企业和个人可以领取腾讯云代金券满减活动,以及企业用户可以领取域名优惠低至.COM域名1元。 直达链接 - 腾讯云新春采购活动抢先看活动时间:2022年1月20日至2022年2月15日我们可以在...

hostodo:美国大流量VPS,低至$3,8T流量/月-1.5G内存/1核/25gNVMe/拉斯维加斯+迈阿密

hostodo从2014年年底运作至今一直都是走低价促销侧率运作VPS,在市场上一直都是那种不温不火的品牌知名度,好在坚持了7年都还运作得好好的,站长觉得hostodo还是值得大家在买VPS的时候作为一个候选考虑项的。当前,hostodo有拉斯维加斯和迈阿密两个数据中心的VPS在促销,专门列出了2款VPS给8T流量/月,基于KVM虚拟+NVMe整列,年付送DirectAdmin授权(发ticket...

克鲁斯卡尔为你推荐
草莓派如何最简单的制作出好吃的草莓派?匹配函数Excel中vlookup函数数据匹配怎么用应用雷达雷达在各方面的用途数据监测毕业论文检测,万方数据检测结果可靠吗?跟知网的有多少差距啊?求以往学长学姐解释。vga接口定义VGA接口通常用来连接哪些设备,各个脚代表什么意思,它的连线是如何焊接的?awvawv格式是否等于MP4格式star413匡威jack star 的后标是不是真的?如图部署工具如何使用office2016部署软件什么是生态系统生态系统的功能有什么?labelforandroid:labelfor是什么意思
windows虚机 仿牌空间 fastdomain wdcp 网站监控 免费ddos防火墙 圣诞节促销 jsp空间 东莞数据中心 服务器干什么用的 免费申请网站 免费申请个人网站 美国堪萨斯 卡巴斯基免费试用版 空间登录首页 宏讯 shuang12 湖南idc 主机返佣 如何登陆阿里云邮箱 更多