克鲁斯卡尔数据结构中图的克鲁斯卡尔算法的基本思想是?

克鲁斯卡尔  时间:2021-06-08  阅读:()

无论用普里姆算法或者是克鲁斯卡尔算法求最小生成树,得出的结果应该一样么?

不总是一样的,克鲁斯卡尔算法是精确算法,即每次都能求得最优解,但对于规模较大的最小生成树问题,求解速度较慢。

而普里姆算法是近似求解算法,虽然对于大多数最小生成树问题都能求得最优解,但相当一部分求得的是近似最优解。

这是我个人见解。

最小生成树 普里姆算法和克鲁斯卡尔算法

kruskal算法的时间复杂度主要由排序方法决定,其排序算法只与带权边的个数有关,与图中顶点的个数无关,当使用时间复杂度为O(eloge)的排序算法时,克鲁斯卡算法的时间复杂度即为O(eloge),因此当带权图的顶点个数较多而边的条数较少时,使用克鲁斯卡尔算法构造最小生成树效果最好! 克鲁斯卡尔算法 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。

之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。

依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。

普里姆算法 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,TV 是 WN 上最小生成树中顶点的集合,TE 是最小生成树中边的集合。

显然,在算法执行结束时,TV=V,而 TE 是 E 的一个子集。

在算法开始执行时,TE 为空集,TV 中只有一个顶点,因此,按普里姆算法构造最小生成树的过程为:在所有“其一个顶点已经落在生成树上,而另一个顶点尚未落在生成树上”的边中取一条权值为最小的边,逐条加在生成树上,直至生成树中含有 n-1条边为止。

--以上传自/valyanprogramming/blog/item/1bc960e6095f9726b93820d9.html 1.Kruskal //题目地址:/JudgeOnline/problem?id=1258 #include<cstdio> #include<cstdlib> #include<iostream> using namespace std; struct node { int v1; int v2; int len; }e[10000];//定义边集 int cmp(const void *a,const void *b)//快排比较函数 { return ((node*)a)->len-((node*)b)->len; } int v[100],a[100][100];//v为点集 void makeset(int n) { for(int i=0;i<n;i++) v[i]=i; } int find(int x) { int h=x; while(h!=v[h]) h=v[h]; return h; } int main() { int n,i,j,r1,r2,p,total; while(scanf("%d",&n)!=EOF) { p=0; total=0; makeset(n); for(i=0;i<n;i++) { for(j=0;j<n;j++) { scanf("%d",&a[i][j]); e[p].v1=i; e[p].v2=j; e[p].len=a[i][j]; p++; } } qsort(e,p,sizeof(e[0]),cmp); for(i=0;i<p;i++) { r1=find(e[i].v1); r2=find(e[i].v2); if(r1!=r2) { total+=e[i].len; v[r1]=r2; } } printf("%d ",total); } system("pause"); return 0; } 2.Prim //题目地址同上 #include <iostream> using namespace std; #define M 101 #define maxnum 100001 int dis[M][M]; int prim(int n) { bool used[M]={}; int d[M],i,j,k; for(i=1; i<=n; i++) d[i] = dis[1][i]; used[1] = true; int sum=0; for(i=1; i<n; i++){ int temp=maxnum; for(j=1; j<=n; j++){ if( !used[j] && d[j]<temp ){ temp = d[j]; k = j; } } used[k] = true; sum += d[k]; for(j=1; j<=n; j++){ if( !used[j] && dis[k][j]<d[j] ) d[j] = dis[k][j]; // 与Dijksta算法的差别之处 } } return sum; } int main() { int n,i,j; while( cin>>n ){ for(i=1; i<=n; i++){ for(j=1; j<=n; j++){ scanf("%d",&dis[i][j]); if( !dis[i][j] ) dis[i][j] = maxnum; } } cout<<prim(n)<<endl; } return 0; } 代码来自网络

数据结构里提到的普里母和克鲁斯卡尔分别是哪个国家的?

普里母算法和克鲁斯卡尔方法求最小生成树完整程序 1、普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。

意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。

该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。

因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法 2、Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。

用来解决同样问题的还有Prim算法和Boruvka算法等。

三种算法都是贪婪算法的应用。

和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。

数据结构中图的克鲁斯卡尔算法的基本思想是?

基本思想是:设有一个有n个顶点的连通网络N={V,E},最 初先构造一个只有n个顶点,没有边的非连通图 T={ V,¢},图中每个顶点自成一个 连通分量。

当在E中选到一条具有最小权值的边时,若该边的两个顶点落在不同的连通 分量上,则将此边加人到T中;否则将此边舍去,重新选择一条权值最小的边。

如此重复 下去,直到所有顶点在同一个连通分量上为止。

易探云香港云服务器价格多少钱1个月/1年?

易探云怎么样?易探云是目前国内少数优质的香港云服务器服务商家,目前推出多个香港机房的香港云服务器,有新界、九龙、沙田、葵湾等机房,还提供CN2、BGP及CN2三网直连香港云服务器。近年来,许多企业外贸出海会选择香港云服务器来部署自己的外贸网站,使得越来越多的用户会选择易探云作为网站服务提供平台。今天,云服务器网(yuntue.com)小编来谈谈易探云和易探云服务器怎么样?具体香港云服务器多少钱1个...

justhost:“第4次VPS测评”,8.3元/月,200M带宽,不限流量,KVM虚拟,4个俄罗斯机房应有适合你的

justhost.ru官方来消息说已经对网络进行了比较全面的优化,针对中国电信、联通、移动来说,4个机房总有一个适合中国用户,让站长进行一下测试,这不就有了这篇有关justhost的VPS的第四次测评。本帖主要关注的是网络,对于其他的参数一概不管! 官方网站:https://justhost.ru 最低配VPS:8.3元/月,KVM,512M内存,5G硬盘,200M带宽,不限流量 购买链接:...

Vultr再次发布充值多少送多少活动

昨天我们很多小伙伴们应该都有看到,包括有隔壁的一些博主们都有发布Vultr商家新的新用户注册福利活动。以前是有赠送100美元有效期30天的,这次改成有效期14天。早年才开始的时候有效期是60天的,这个是商家行为,主要还是吸引到我们后续的充值使用,毕竟他们的体验金赠送,在同类商家中算是比较大方的。昨天活动内容:重新调整Vultr新注册用户赠送100美元奖励金有效期14天今天早上群里的朋友告诉我,两年...

克鲁斯卡尔为你推荐
ostringstream#include<sstream.h>是什么作用股价图简单易懂的股票图外加说明iso20000认证ISO20000认证企业资源管理系统企业管理系统都有什么功能网络审计网络安全审计系统的背景模式识别算法研究生研究方向:数据挖掘、模式识别、启发算法这三者哪个有前途天翼校园宽带天翼校园宽带怎么样用手机打开这个页面登陆币众筹众筹平台开发哪家好labelforhtml标签中lable的for属性有什么作用?papertiger亚瑟士 艾斯克斯 tiger有什么区别吗
郑州虚拟主机 cn域名价格 个人域名备案流程 唯品秀 softlayer gitcafe html空间 免费全能空间 国外免费全能空间 工信部icp备案号 php空间购买 vip购优惠 傲盾官网 gtt 如何建立邮箱 东莞服务器托管 netvigator 万网服务器 免费获得q币 塔式服务器 更多