克鲁斯卡尔数据结构中图的克鲁斯卡尔算法的基本思想是?

克鲁斯卡尔  时间:2021-06-08  阅读:()

无论用普里姆算法或者是克鲁斯卡尔算法求最小生成树,得出的结果应该一样么?

不总是一样的,克鲁斯卡尔算法是精确算法,即每次都能求得最优解,但对于规模较大的最小生成树问题,求解速度较慢。

而普里姆算法是近似求解算法,虽然对于大多数最小生成树问题都能求得最优解,但相当一部分求得的是近似最优解。

这是我个人见解。

最小生成树 普里姆算法和克鲁斯卡尔算法

kruskal算法的时间复杂度主要由排序方法决定,其排序算法只与带权边的个数有关,与图中顶点的个数无关,当使用时间复杂度为O(eloge)的排序算法时,克鲁斯卡算法的时间复杂度即为O(eloge),因此当带权图的顶点个数较多而边的条数较少时,使用克鲁斯卡尔算法构造最小生成树效果最好! 克鲁斯卡尔算法 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。

之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。

依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。

普里姆算法 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,TV 是 WN 上最小生成树中顶点的集合,TE 是最小生成树中边的集合。

显然,在算法执行结束时,TV=V,而 TE 是 E 的一个子集。

在算法开始执行时,TE 为空集,TV 中只有一个顶点,因此,按普里姆算法构造最小生成树的过程为:在所有“其一个顶点已经落在生成树上,而另一个顶点尚未落在生成树上”的边中取一条权值为最小的边,逐条加在生成树上,直至生成树中含有 n-1条边为止。

--以上传自/valyanprogramming/blog/item/1bc960e6095f9726b93820d9.html 1.Kruskal //题目地址:/JudgeOnline/problem?id=1258 #include<cstdio> #include<cstdlib> #include<iostream> using namespace std; struct node { int v1; int v2; int len; }e[10000];//定义边集 int cmp(const void *a,const void *b)//快排比较函数 { return ((node*)a)->len-((node*)b)->len; } int v[100],a[100][100];//v为点集 void makeset(int n) { for(int i=0;i<n;i++) v[i]=i; } int find(int x) { int h=x; while(h!=v[h]) h=v[h]; return h; } int main() { int n,i,j,r1,r2,p,total; while(scanf("%d",&n)!=EOF) { p=0; total=0; makeset(n); for(i=0;i<n;i++) { for(j=0;j<n;j++) { scanf("%d",&a[i][j]); e[p].v1=i; e[p].v2=j; e[p].len=a[i][j]; p++; } } qsort(e,p,sizeof(e[0]),cmp); for(i=0;i<p;i++) { r1=find(e[i].v1); r2=find(e[i].v2); if(r1!=r2) { total+=e[i].len; v[r1]=r2; } } printf("%d ",total); } system("pause"); return 0; } 2.Prim //题目地址同上 #include <iostream> using namespace std; #define M 101 #define maxnum 100001 int dis[M][M]; int prim(int n) { bool used[M]={}; int d[M],i,j,k; for(i=1; i<=n; i++) d[i] = dis[1][i]; used[1] = true; int sum=0; for(i=1; i<n; i++){ int temp=maxnum; for(j=1; j<=n; j++){ if( !used[j] && d[j]<temp ){ temp = d[j]; k = j; } } used[k] = true; sum += d[k]; for(j=1; j<=n; j++){ if( !used[j] && dis[k][j]<d[j] ) d[j] = dis[k][j]; // 与Dijksta算法的差别之处 } } return sum; } int main() { int n,i,j; while( cin>>n ){ for(i=1; i<=n; i++){ for(j=1; j<=n; j++){ scanf("%d",&dis[i][j]); if( !dis[i][j] ) dis[i][j] = maxnum; } } cout<<prim(n)<<endl; } return 0; } 代码来自网络

数据结构里提到的普里母和克鲁斯卡尔分别是哪个国家的?

普里母算法和克鲁斯卡尔方法求最小生成树完整程序 1、普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。

意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。

该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。

因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法 2、Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。

用来解决同样问题的还有Prim算法和Boruvka算法等。

三种算法都是贪婪算法的应用。

和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。

数据结构中图的克鲁斯卡尔算法的基本思想是?

基本思想是:设有一个有n个顶点的连通网络N={V,E},最 初先构造一个只有n个顶点,没有边的非连通图 T={ V,¢},图中每个顶点自成一个 连通分量。

当在E中选到一条具有最小权值的边时,若该边的两个顶点落在不同的连通 分量上,则将此边加人到T中;否则将此边舍去,重新选择一条权值最小的边。

如此重复 下去,直到所有顶点在同一个连通分量上为止。

GreenCloudVPS$20/年,新加坡/美国/荷兰vps/1核/1GB/30GB,NVMe/1TB流量/10Gbps端口/KVM

greencloudvps怎么样?greencloudvps是一家国外主机商,VPS数据中心多,之前已经介绍过多次了。现在有几款10Gbps带宽的特价KVM VPS,Ryzen 3950x处理器,NVMe硬盘,性价比高。支持Paypal、支付宝、微信付款。GreenCloudVPS:新加坡/美国/荷兰vps,1核@Ryzen 3950x/1GB内存/30GB NVMe空间/1TB流量/10Gbps...

DiyVM:499元/月香港沙田服务器,L5630*2/16G内存/120G SSD硬盘/5M CN2线路

DiyVM是一家成立于2009年的国人主机商,提供的产品包括VPS主机、独立服务器租用等,产品数据中心包括中国香港、日本大阪和美国洛杉矶等,其中VPS主机基于XEN架构,支持异地备份与自定义镜像,VPS和独立服务器均可提供内网IP功能。商家VPS主机均2GB内存起步,三个地区机房可选,使用优惠码后每月69元起;独立服务器开设在香港沙田电信机房,CN2线路,自动化开通上架,最低499元/月起。下面以...

博鳌云¥799/月,香港110Mbps(含10M CN2)大带宽独立服务器/E3/8G内存/240G/500G SSD或1T HDD

博鳌云是一家以海外互联网基础业务为主的高新技术企业,运营全球高品质数据中心业务。自2008年开始为用户提供服务,距今11年,在国人商家中来说非常老牌。致力于为中国用户提供域名注册(国外接口)、免费虚拟主机、香港虚拟主机、VPS云主机和香港、台湾、马来西亚等地服务器租用服务,各类网络应用解決方案等领域的专业网络数据服务。商家支持支付宝、微信、银行转账等付款方式。目前香港有一款特价独立服务器正在促销,...

克鲁斯卡尔为你推荐
stay的过去式stay的过去式水晶易表如何获取和安装水晶易表Xcelsius2008应用雷达雷达有什么用途华为总裁女儿为啥姓孟孟姜女为什么不姓孟?印度尼西亚国家代码印尼身份证号的编码规则是什么?(比如中国的1-6位是地址代码,7-14位是出生日期码等)鄂n鄂A鄂B鄂C鄂D鄂E鄂F鄂G鄂H鄂J鄂K鄂L鄂M鄂N鄂P鄂Q鄂R鄂S鄂T鄂U分别代表湖北省的哪些城市遗传算法实例如何用C语言实现遗传算法的实际应用?activitygroupTabHost ActivityGroup里面activity里的webview是不是不支持一些JS比如 alert?移动硬盘文件或目录损坏且无法读取急:移动硬盘无法访问,打开提示”文件或目录损坏且无法读取”免费下载空间怎么才能免费安装空间播放器
广州主机租用 万网域名管理 美国便宜货网站 wdcp 华为云主机 天猫双十一抢红包 建立邮箱 nerds 流量计费 鲁诺 东莞主机托管 贵阳电信测速 日本代理ip netvigator 789电视剧网 电信主机托管 hdsky 脚本大全 zcloud 腾讯云平台 更多