快速傅里叶变换快速傅立叶变换的输入是什么,输出是什么,有什么物理意义?

快速傅里叶变换  时间:2021-06-02  阅读:()

什么是快速傅立叶计算机?

傅立叶变换分为: 连续傅立叶变换; 离散傅立叶变换; 这两种变换应用到计算机中都有一种近似的快速数值算法,叫做快速傅立叶变换。

具体的理论推导这里也说不清,我也有点忘了。

这个你可以在数学分析、信号与系统等学科的教材里找到。

你所谓的光学傅立叶变换应该就是一般的没有经过优化近似的傅立叶变换,而且应该是连续的,即“连续傅立叶变换”。

而计算机领域,尤其是信号处理领域,你因该知道计算机处理的数据都是离散的,如果你学过数值计算,就知道计算机都是用离散来逼近连续函数的。

所以计算机的信号处理领域多是用离散傅立叶变换,而且由于计算机要求实时处理,要快,所以又发明了一种快速算法。

所以就是“快速离散傅立叶变换”。

用C语言编写快速傅立叶变换源代码

// 函数名: 快速傅立叶变换(来源《C常用算法集》) // 本函数测试OK,可以在TC2.0,VC++6.0,Keil C51测试通过。

// 如果你的MCS51系统有足够的RAM时,可以验证一下用单片机处理FFT有多么的慢。

// // 入口参数: // l: l = 0, 傅立叶变换; l = 1, 逆傅立叶变换 // il: il = 0,不计算傅立叶变换或逆变换模和幅角;il = 1,计算模和幅角 // n: 输入的点数,为偶数,一般为32,64,128,...,1024等 // k: 满足n=2^k(k>0),实质上k是n个采样数据可以分解为偶次幂和奇次幂的次数 // pr[]: l="0时",存放N点采样数据的实部 // l="1时", 存放傅立叶变换的N个实部 // pi[]: l="0时",存放N点采样数据的虚部 // l="1时", 存放傅立叶变换的N个虚部 // // 出口参数: // fr[]: l="0", 返回傅立叶变换的实部 // l="1", 返回逆傅立叶变换的实部 // fi[]: l="0", 返回傅立叶变换的虚部 // l="1", 返回逆傅立叶变换的虚部 // pr[]: il = 1,i = 0 时,返回傅立叶变换的模 // il = 1,i = 1 时,返回逆傅立叶变换的模 // pi[]: il = 1,i = 0 时,返回傅立叶变换的辐角 // il = 1,i = 1 时,返回逆傅立叶变换的辐角 // data: 2005.8.15,Mend Xin Dong kkfft(double pr[], double pi[], int n, int k, double fr[], double fi[], int l, int il) { int it,m,is,i,j,nv,l0; double p,q,s,vr,vi,poddr,poddi; for (it=0; it<=n-1; it++) { m = it; is = 0; for(i=0; i<=k-1; i++) { j = m/2; is = 2*is+(m-2*j); m = j; } fr[it] = pr[is]; fi[it] = pi[is]; } //---------------------------- pr[0] = 1.0; pi[0] = 0.0; p = 6.283185306/(1.0*n); pr[1] = cos(p); pi[1] = -sin(p);

if (l!=0) pi[1]=-pi[1];

for (i=2; i<=n-1; i++) { p = pr[i-1]*pr[1]; q = pi[i-1]*pi[1]; s = (pr[i-1]+pi[i-1])*(pr[1]+pi[1]); pr[i] = p-q; pi[i] = s-p-q; }

for (it=0; it<=n-2; it="it"+2) { vr = fr[it]; vi = fi[it]; fr[it] = vr+fr[it+1]; fi[it] = vi+fi[it+1]; fr[it+1] = vr-fr[it+1]; fi[it+1] = vi-fi[it+1]; } m = n/2; nv = 2;

for (l0=k-2; l0>=0; l0--) { m = m/2; nv = 2*nv; for(it=0; it<=(m-1)*nv; it="it"+nv) for (j=0; j<=(nv/2)-1; j++) { p = pr[m*j]*fr[it+j+nv/2]; q = pi[m*j]*fi[it+j+nv/2]; s = pr[m*j]+pi[m*j]; s = s*(fr[it+j+nv/2]+fi[it+j+nv/2]); poddr = p-q; poddi = s-p-q; fr[it+j+nv/2] = fr[it+j]-poddr; fi[it+j+nv/2] = fi[it+j]-poddi; fr[it+j] = fr[it+j]+poddr; fi[it+j] = fi[it+j]+poddi; } }

if(l!=0) { for(i=0; i<=n-1; i++) { fr[i] = fr[i]/(1.0*n); fi[i] = fi[i]/(1.0*n); } } if(il!=0) { for(i=0; i<=n-1; i++) { pr[i] = sqrt(fr[i]*fr[i]+fi[i]*fi[i]); if(fabs(fr[i])<0.000001*fabs(fi[i])) { if ((fi[i]*fr[i])>0) pi[i] = 90.0; else pi[i] = -90.0; } else pi[i] = atan(fi[i]/fr[i])*360.0/6.283185306; } } return; }

快速傅立叶变换的输入是什么,输出是什么,有什么物理意义?

输入是一个非周期,长度为N点序列,输出同样是一个非周期,长度为N点序列,只是各点的值不一样。

它把时域信号转变到频域进行分析处理。

输入是在时间轴上的各个值,而输出则是输入序列各频率分量的值。

需要注意的是,输入是非周期的N点序列,但运算时我们却把它以N为周期做周期延拓,然后进行运算;而输出按理应该是周期的,但只需要取一个周期就可以表示出整个序列,所以我们只取一个周期的N点。

对快速傅立叶变换进行其他运算时,需要注意其隐含的周期性。

这个是数字信号处理领域里的一个具有划时代意义的发现,使得离散傅立叶变换的计算量减少了几个数量级,使计算机实现实时处理成为可能。

自从库利,图基两人的关于快速傅立叶变换计算方法的论文发表以来,数字信号处理从连续信号处理中独立出来,形成一个完整体系。

它是近代计算机技术飞速发展的基础。

关于复数序列,你可以把复数放到成自然常数e的指数上去,就是对这个函数的采样。

RackNerd 黑色星期五5款年付套餐

RackNerd 商家从2019年上线以来争议也是比较大的,一直低价促销很多网友都认为坚持时间不长可能会跑路。不过,目前看到RackNerd还是在坚持且这次黑五活动也有发布,且活动促销也是比较多的,不过对于我们用户来说选择这些低价服务商尽量的不要将长远项目放在上面,低价年付套餐服务商一般都是用来临时业务的。RackNerd商家这次发布黑五促销活动,一共有五款年付套餐,涉及到多个机房。最低年付的套餐...

月神科技-美国CERA 5折半价倒计时,上新华中100G高防云59起!

官方网站:点击访问月神科技官网优惠码:美国优惠方案:CPU:E5-2696V2,机房:国人热衷的优质 CeraNetworks机房,优惠码:3wuZD43F 【过期时间:5.31,季付年付均可用】活动方案:1、美国机房:洛杉矶CN2-GIA,100%高性能核心:2核CPU内存:2GB硬盘:50GB流量:Unmilited端口:10Mbps架构:KVM折后价:15元/月、150元/年传送:购买链接洛...

美国云服务器 2核4G限量 24元/月 香港云服务器 2核4G限量 24元/月 妮妮云

妮妮云的来历妮妮云是 789 陈总 张总 三方共同投资建立的网站 本着“良心 便宜 稳定”的初衷 为小白用户避免被坑妮妮云的市场定位妮妮云主要代理市场稳定速度的云服务器产品,避免新手购买云服务器的时候众多商家不知道如何选择,妮妮云就帮你选择好了产品,无需承担购买风险,不用担心出现被跑路 被诈骗的情况。妮妮云的售后保证妮妮云退款 通过于合作商的友好协商,云服务器提供2天内全额退款到网站余额,超过2天...

快速傅里叶变换为你推荐
山东省云服务教育平台山东省云服务教育平台以前填的填的,来能改吗?迅雷地址转换网页上的迅雷下载功能是怎么实现的,难道是用链接转换工具把普通下载地址转换成迅雷下载地址?谢谢 谢谢华为总裁女儿为啥姓孟总裁文女主姓孟,女主父母抱错孩子,后来将错就错,养父母对女主很好腾讯汽车网可以了解汽车知识的权威网站大概有哪些扫图问个非常白痴的问题撒,扫图是什么意思?12种颜色12种颜色的英语怎么写,用中文怎么读star413CONVERSE和ALLSTAR有什么区别assemblyinfocsgo很跟cs有什么区别天翼校园宽带中国电信校园宽带怎么样?单元测试规范如何写线程池的单元测试
国外永久服务器 ddos 美国主机推荐 pw域名 免备案空间 60g硬盘 万网优惠券 云鼎网络 刀片式服务器 双十一秒杀 空间合租 美国免费空间 个人免费主页 测速电信 购买空间 xshell5注册码 windowssever2008 web服务器 时间同步服务器 台式机主机 更多