快速傅里叶变换快速傅立叶变换的输入是什么,输出是什么,有什么物理意义?

快速傅里叶变换  时间:2021-06-02  阅读:()

什么是快速傅立叶计算机?

傅立叶变换分为: 连续傅立叶变换; 离散傅立叶变换; 这两种变换应用到计算机中都有一种近似的快速数值算法,叫做快速傅立叶变换。

具体的理论推导这里也说不清,我也有点忘了。

这个你可以在数学分析、信号与系统等学科的教材里找到。

你所谓的光学傅立叶变换应该就是一般的没有经过优化近似的傅立叶变换,而且应该是连续的,即“连续傅立叶变换”。

而计算机领域,尤其是信号处理领域,你因该知道计算机处理的数据都是离散的,如果你学过数值计算,就知道计算机都是用离散来逼近连续函数的。

所以计算机的信号处理领域多是用离散傅立叶变换,而且由于计算机要求实时处理,要快,所以又发明了一种快速算法。

所以就是“快速离散傅立叶变换”。

用C语言编写快速傅立叶变换源代码

// 函数名: 快速傅立叶变换(来源《C常用算法集》) // 本函数测试OK,可以在TC2.0,VC++6.0,Keil C51测试通过。

// 如果你的MCS51系统有足够的RAM时,可以验证一下用单片机处理FFT有多么的慢。

// // 入口参数: // l: l = 0, 傅立叶变换; l = 1, 逆傅立叶变换 // il: il = 0,不计算傅立叶变换或逆变换模和幅角;il = 1,计算模和幅角 // n: 输入的点数,为偶数,一般为32,64,128,...,1024等 // k: 满足n=2^k(k>0),实质上k是n个采样数据可以分解为偶次幂和奇次幂的次数 // pr[]: l="0时",存放N点采样数据的实部 // l="1时", 存放傅立叶变换的N个实部 // pi[]: l="0时",存放N点采样数据的虚部 // l="1时", 存放傅立叶变换的N个虚部 // // 出口参数: // fr[]: l="0", 返回傅立叶变换的实部 // l="1", 返回逆傅立叶变换的实部 // fi[]: l="0", 返回傅立叶变换的虚部 // l="1", 返回逆傅立叶变换的虚部 // pr[]: il = 1,i = 0 时,返回傅立叶变换的模 // il = 1,i = 1 时,返回逆傅立叶变换的模 // pi[]: il = 1,i = 0 时,返回傅立叶变换的辐角 // il = 1,i = 1 时,返回逆傅立叶变换的辐角 // data: 2005.8.15,Mend Xin Dong kkfft(double pr[], double pi[], int n, int k, double fr[], double fi[], int l, int il) { int it,m,is,i,j,nv,l0; double p,q,s,vr,vi,poddr,poddi; for (it=0; it<=n-1; it++) { m = it; is = 0; for(i=0; i<=k-1; i++) { j = m/2; is = 2*is+(m-2*j); m = j; } fr[it] = pr[is]; fi[it] = pi[is]; } //---------------------------- pr[0] = 1.0; pi[0] = 0.0; p = 6.283185306/(1.0*n); pr[1] = cos(p); pi[1] = -sin(p);

if (l!=0) pi[1]=-pi[1];

for (i=2; i<=n-1; i++) { p = pr[i-1]*pr[1]; q = pi[i-1]*pi[1]; s = (pr[i-1]+pi[i-1])*(pr[1]+pi[1]); pr[i] = p-q; pi[i] = s-p-q; }

for (it=0; it<=n-2; it="it"+2) { vr = fr[it]; vi = fi[it]; fr[it] = vr+fr[it+1]; fi[it] = vi+fi[it+1]; fr[it+1] = vr-fr[it+1]; fi[it+1] = vi-fi[it+1]; } m = n/2; nv = 2;

for (l0=k-2; l0>=0; l0--) { m = m/2; nv = 2*nv; for(it=0; it<=(m-1)*nv; it="it"+nv) for (j=0; j<=(nv/2)-1; j++) { p = pr[m*j]*fr[it+j+nv/2]; q = pi[m*j]*fi[it+j+nv/2]; s = pr[m*j]+pi[m*j]; s = s*(fr[it+j+nv/2]+fi[it+j+nv/2]); poddr = p-q; poddi = s-p-q; fr[it+j+nv/2] = fr[it+j]-poddr; fi[it+j+nv/2] = fi[it+j]-poddi; fr[it+j] = fr[it+j]+poddr; fi[it+j] = fi[it+j]+poddi; } }

if(l!=0) { for(i=0; i<=n-1; i++) { fr[i] = fr[i]/(1.0*n); fi[i] = fi[i]/(1.0*n); } } if(il!=0) { for(i=0; i<=n-1; i++) { pr[i] = sqrt(fr[i]*fr[i]+fi[i]*fi[i]); if(fabs(fr[i])<0.000001*fabs(fi[i])) { if ((fi[i]*fr[i])>0) pi[i] = 90.0; else pi[i] = -90.0; } else pi[i] = atan(fi[i]/fr[i])*360.0/6.283185306; } } return; }

快速傅立叶变换的输入是什么,输出是什么,有什么物理意义?

输入是一个非周期,长度为N点序列,输出同样是一个非周期,长度为N点序列,只是各点的值不一样。

它把时域信号转变到频域进行分析处理。

输入是在时间轴上的各个值,而输出则是输入序列各频率分量的值。

需要注意的是,输入是非周期的N点序列,但运算时我们却把它以N为周期做周期延拓,然后进行运算;而输出按理应该是周期的,但只需要取一个周期就可以表示出整个序列,所以我们只取一个周期的N点。

对快速傅立叶变换进行其他运算时,需要注意其隐含的周期性。

这个是数字信号处理领域里的一个具有划时代意义的发现,使得离散傅立叶变换的计算量减少了几个数量级,使计算机实现实时处理成为可能。

自从库利,图基两人的关于快速傅立叶变换计算方法的论文发表以来,数字信号处理从连续信号处理中独立出来,形成一个完整体系。

它是近代计算机技术飞速发展的基础。

关于复数序列,你可以把复数放到成自然常数e的指数上去,就是对这个函数的采样。

SugarHosts糖果主机,(67元/年)云服务器/虚拟主机低至半价

SugarHosts 糖果主机商也算是比较老牌的主机商,从2009年开始推出虚拟主机以来,目前当然还是以虚拟主机为主,也有新增云服务器和独立服务器。早年很多网友也比较争议他们家是不是国人商家,其实这些不是特别重要,我们很多国人商家或者国外商家主要还是看重的是品质和服务。一晃十二年过去,有看到SugarHosts糖果主机商12周年的促销活动。如果我们有需要香港、美国、德国虚拟主机的可以选择,他们家的...

CloudCone(12.95美元/月CN2 GT线路,KVM架构1 Gbps带宽

整理一下CloudCone商家之前推送的闪购VPS云服务器产品,数量有限,活动推出可能很快机器就售罄了,有需要美国便宜VPS云服务器的朋友可以关注一下。CloudCone怎么样?CloudCone服务器好不好?CloudCone值不值得购买?CloudCone是一家成立于2017年的美国服务器提供商,国外实力大厂,自己开发的主机系统面板,CloudCone主要销售美国洛杉矶云服务器产品,优势特点是...

HostSailor:罗马尼亚机房,内容宽松;罗马尼亚VPS七折优惠,罗马尼亚服务器95折

hostsailor怎么样?hostsailor成立多年,是一家罗马尼亚主机商家,机房就设在罗马尼亚,具说商家对内容管理的还是比较宽松的,商家提供虚拟主机、VPS及独立服务器,今天收到商家推送的八月优惠,针对所有的产品都有相应的优惠,商家的VPS产品分为KVM和OpenVZ两种架构,OVZ的比较便宜,有这方面需要的朋友可以看看。点击进入:hostsailor商家官方网站HostSailor优惠活动...

快速傅里叶变换为你推荐
股价图给你一张股票图你是怎么分析的具体的说svn服务器搭建如何在本机搭建SVN服务器应用雷达雷达是干什么用的?知识分享平台知识付费平台有哪些?chrome系统Chrome系统怎么进biosqq博客怎么开QQ博客啊!人肉搜索引擎人肉搜索引擎是干什么的?印度尼西亚国家代码手机上的国家代码是什么印度尼西亚国家代码印尼身份证号的编码规则是什么?(比如中国的1-6位是地址代码,7-14位是出生日期码等)印度尼西亚国家代码国际代码
网络服务器租用 北京服务器租用 香港服务器租用99idc 域名备案收费吗 金万维动态域名 bbr rak机房 l5520 魔兽世界台湾服务器 华为4核 qq数据库下载 怎样建立邮箱 cdn联盟 169邮箱 速度云 搜索引擎提交入口 我的世界服务器ip 免费的域名 国内域名 photobucket 更多