reciprocal魔兽世界服务器维护
魔兽世界服务器维护 时间:2021-01-13 阅读:(
)
CURRICULUMINSPIRATIONS:www.
maa.
org/ciInnovativeOnlineCourses:www.
gdaymath.
comTantonTidbits:www.
jamestanton.
comWOW!
COOLMATH!
CURIOUSMATHEMATICSFORFUNANDJOYAPRIL2016PROMOTIONALCORNER:Haveyouanevent,aworkshop,awebsite,somematerialsyouwouldliketosharewiththeworldLetmeknow!
Iftheworkisaboutdeep,joyous,andrealmathematicaldoingI'llhappilymentionithere.
***Peopledomathvideos!
CheckoutMarcChamberlain'shttps://www.
youtube.
com/watchv=bCiQOwP4LrY.
WhydoesworkTHISMONTH'SPUZZLER:Itispossibletocolorthefirsteightcountingnumberseacheitherredorbluesothatweneverhavethreedistinctintegers,,andallthesamecolor.
CanthesametaskbecompletedwiththefirstninecountingnumbersWhatisthesmallestsothateverycoloringofthenumbers1,2,3,…,eitherredorblueissuretohaveamonochromatictripleHowdoestheanswerchangeifwepermitgeneric"triples"with(Nowweneedeachandtobedistinctcolorstoo.
)JamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comRAMSEYTHEORYHereisaclassicresult:Ifsixuniversitystudentsareselectedatrandom,thenthereissuretobeeitherthreestudentsamongthesixwhoaremutualfriendsorthreestudentswhoaremutualstrangers(orboth).
(Weareassumingherethatfriendshipisreciprocal:IfAlbertisfriendswithBilbert,thenBilbertisalsofriendswithAlbert.
Beingastrangerisreciprocaltoo.
)Here'sthereasoning:Chooseoneofthesixstudents,Cuthbert.
Therearefiveotherstudentseachofwhichheiseitherfriendswithorastrangerto.
SupposeCuthbertisfriendswithamajorityofthesefive,thatis,friendswithatleastthreeofthem.
(If,instead,heisastrangertoamajority,thenswitchthewordsfriendandstrangerinwhatfollows.
)Amongthesethreepeople,ifanytwoaremutualfriends,thenwehaveatripleoffriends:Cuthbertandthosetwo.
Ifnoneofthosethreearefriends,thenwehavefoundatripleofstrangers.
Theresultisnottrueforjustfivepeopleselectedatrandomasseenbythisgraphic.
Hereeachdotrepresentsastudentandarededgeindicatesmutualfriendsandablueedgemutualstrangers.
Nothreepeopleareconnectedbyedgesallofthesameonecolor.
Intermsofcoloreddiagrams,ourpartyresulttranslatesasfollows:Drawsixdotsonapageandthe15edgesbetweenallpossiblepairsofdots.
Itisimpossibletocolorthoseedgesredandblueandavoidamonochromatictriangle.
Togeneralizethisidealetdenotetheleastnumberofdotsoneneedstodrawonapagesothatifweconnectallpairsofdotswitheitherredorblueedges,thereissuretobeeitherasetofdotswithalltheedgesamongthemredorasetofdotswithalltheedgesamongthosedotsblue.
(Thisisassumingthatsuchaleastnumberexists!
Maybenomatterhowmanydotsonedrawsonecanalwaysavoidred"cliques"ofsizeandbluecliquesofsize)Theideaofstudyingthenecessarysizeofasystemtoensurecertainsub-substructuresexistswasfirstformallyexploredbyBritishmathematicianFrankRamsey(1903–1930).
ThisworkistodaycalledRamseyTheoryinhishonor.
Ourpartyresultreadsas.
(Drawsixdotsandcolortheedgesbetweenthenredandblue.
Eitheraredtriangleissuretoappearorablueone.
)Itisnothardtoseethat.
(Ifwedrawdotsonapageandcolortheedges,theneitheroneisredandwe'vefoundredcliqueofsizeoralledgesareblueandwehaveabluecliqueofsize.
Also,isnotorsmaller:coloringalltheedgesbetweendotsblueillustratesthis.
)JamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comComputingRamseynumbersisstillaveryactiveareaofresearch.
Onlythesefewvaluesarecurrentlyknown.
(Ofcourse,:justswitchcolors.
)Generalizing…Setastheleastnumberofdotsoneneedstodrawonthepagetoensurethat,incoloringtheedgesred,blueandgold,eitheracliqueofdotswithnothingbutrededgesbetweenthem,oracliqueofdotswithnothingbutblueedgesbetweenthem,oracliqueofdotswithnothingbutgoldedgesbetweenthemissuretoappear.
Itisknownthat.
(Draw17dotsonapageandcoloreachofthe153edgesbetweenthemeitherred,blue,orgold.
Thenamonochromatictriangleissuretoappear.
Also,itispossibletoavoidmonochromatictriangleswithonly16dotsonthepage.
)Andforfullgeneralitysetastheleastnumberofdotsoneneedstodrawonapagesothat,incoloringeachoftheedgesbetweenapairofdotsoneofcolors,thereissuretobeacliqueofdotswithalltheedgesbetweenthemthethcolor,forsome.
Ofcourse,weareassumingthatthisnumberexists-thatthereisaleastnumberofdotsthatassuresamonochromaticstructureappears.
Ramsey'sTheorem:Eachisindeedameaningfulfinitenumber.
Let'sillustratewhy.
ThevaluedoesnotappearonthelistofknownRamseynumbers.
Butwecanprovethatitisafinitenumber.
Wehave,fromthelist,and.
Drawdotsonthepageandcolortheedgesbetweenthemredandblue.
Weshallnowreasonthateitheracliqueofdotsexistswithalledgesbetweenthemredoracliqueofdotsexistswithalledgesbetweenthemblue.
Thiswillestablishthat.
Inourdiagramofdotswithedgescolored,chooseoneparticulardot.
CallitDilbert.
Dilberthassomerededgesemanatingfromitconnectingitto,say,otherdots.
TheremainingedgesemanatingfromDilbertareblue,connectingtootherdots,say.
Here.
Nowitcan'tbethatbothand.
Soeitherisatleastorisatleast.
Case:ConsiderthedotsthatconnecttoDilbertbyrededges.
Becausethereiseitheraredcliqueofamongthesedotsorthereisbluecliqueofamongthem.
Ifthereisaredcliqueof3,thenincludingDilbertintheclique(alledgestoDilbertarered)actuallymeanswehavearedcliqueof,oneofthetwostructureswearehopingtoseefor.
If,ontheotherhand,thereisabluecliqueof,thenwehaveabluecliqueof!
Eitherwaywehavefoundoneofthetwothingswearelookingfor.
JamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comCase:ConsiderthedotsthatconnecttoDilbertviablueedges.
Because,amongthesedotsthereiseitheraredcliqueof(oneofthepossibilitieswewerehopingfor)orabluecliqueof.
Inthelattercase,sincealltheedgestoDilberthereareblue,addingDilberttothecliqueoffiveactuallymakesabluecliqueof!
Again,wearesuretohaveatleastoneofthetwostructureswewerelookingfor.
Ingeneral,onecanprovejustthiswaytheinequality:.
ThenfromknowingthatRamseynumberswithsmallerindicesarefinitewecanreasonthateveryRamseynumberisfinite.
GeneralizedRamsey'sTheorem:Eachvalueisfinite.
Wehavejustshownthateachofthevaluesfortwocoloringsisafinitenumber.
Let'sshowhowwecanusethisfacttoestablishthateachofthenumbersforthreecoloringsmustalsobefinite.
Consider.
Wewanttoshowthatthereisanumbersothatifwedrawdotsonthepageandcolortheedgeseitherred,blue,orgold,thereissuretobeeitheraredcliqueofdots,orabluecliqueofdots,oragoldcliqueofdots.
Sometimeswhenwesquintoureyes,redandbluecanstarttoeachlookpurple.
Soadiagramwithedgespaintedwiththreecolors,red,blue,andgold,canlooklikeadiagramwithedgespaintedjusttwocolors,purpleandgold,undersquintyeyes.
Thisgivesawaytobringthree-coloringsbacktotwo-colorings.
Let.
(Soanydiagramofdotswithedgespaintedredandbluehaseitheraredcliqueofdotsorabluecliqueofdots.
)Let.
(Soanydiagramofdotswithedgespaintedpurpleorgoldhaseitherapurplecliqueofdotsoragoldcliqueofdots.
)Nowdrawdotsonthepageandcolortheedgesred,blue,andgold.
(Remember,wearelookingforeitheraredcliqueofdotsorabluecliqueofdotsoragoldcliqueofdots.
)Squintyoureyesandseeonlypurpleandgold.
Byourchoiceofwe'reeitherseeingapurplecliqueofdotsoragoldcliqueofdots.
Ifwe'reinthelattercase,thenwe'vefoundoneofthethreethingswewerehopingtosee.
Ifwe'reintheformercase,thenweareseeingapurplecliqueofdots,which,whenweunsquintoureyes,isasetofdotswithredandblueedgesbetweenthem.
Butourchoiceofwasspecial:itguaranteesthateitherwehavearedcliqueofdotsorabluecliqueofdots.
Soagain,weareseeingoneofthethreethingswewerehopingtosee.
Soisfiniteanumber:itisboundedbythenumberwith.
Ingeneral,onereasonsthiswaytoshowthatwith.
Nowknowingthatallthethree-colorRamseyvaluesarefinite,weJamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comcanusethistoarguethatallthefour-colorRamseynumbersarefinite,whichleadstoallthefive-colorRamseynumbersbeingfinite,andsoon.
CONNECTIONSTOTHEOPENINGPUZZLERHere'saboldclaim:Itisimpossibletocolorthecountingnumberseachoneoffiftypossiblecolorsandavoidamonochromatictriple,,.
(Thegenericcaseisallowed.
)(Thenumber50isimmaterialhere:anyfinitenumberofcolorswilldo!
)Here'swhy.
WejustprovedthattheRamseyvalue,withfiftycolors,isafinitevalue.
Letbeitsvalue.
Soifwedrawdotsonapageandcolortheedgesusingfiftydifferentcolors,thenwearesuretofindamonochromaticcliqueofthree.
Thatis,we'dfindamonochromatictriangle.
Supposewehavecoloredthecountingnumbers1,2,3,…eachoneoffiftycolors.
Drawadotaboveeachofthefirstcountingnumbersanddrawanedgebetweeneachpairdots.
Nowcoloreachedgeaccordingtothefollowingrule:Painttheedgeconnectingthenumbertothenumber(assumehere)withthecolorofnumber.
Amonochromatictriangleissuretoexist.
Fromthistrianglewehavethatthecolorofisthesamethecolorof,whichisthesameasthecolorof.
Butobserve:.
Wehavefoundthreenumbers,,andallthesamecolor.
Exercise:Coloreachpositiveintegeronecolorfromagivenfinitesetofcolors.
Musttherebeamonochromatictriple,,RESEARCHCORNER1.
Letbethesmallestvaluesothatifwecolortheeachofthenumberswithoneofcolorsthereissuretobeamonochromatic"triple".
(Wejustprovedthatexistsand,byeasyextension,thateachvalueexists.
)Wehaveand(ifyoudidthesecondpartoftheopeningexercise).
Canyoudetermineanyothervaluesof2.
Letbethesmallestvaluesothatifwecolortheeachofthenumberswithoneofcolorsthereissuretobeamonochromatictriple.
Wehaveand.
CanyouadjustthepreviousprooftoestablishthatthevaluesexistJamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
com3.
Explorecoloringthepositiveintegerswithafinitepaletteofcolorsandestablishingtheexistenceofamonochromaticquadruple,,,,with.
2016JamesTantontanton.
math@gmail.
com
柚子互联官网商家介绍柚子互联(www.19vps.cn)本次给大家带来了盛夏促销活动,本次推出的活动是湖北十堰高防产品,这次老板也人狠话不多丢了一个6.5折优惠券而且还是续费同价,稳撸。喜欢的朋友可以看看下面的活动详情介绍,自从站长这么久以来柚子互联从19年开始算是老商家了。六五折优惠码:6kfUGl07活动截止时间:2021年9月30日客服QQ:207781983本次仅推荐部分套餐,更多套餐可进...
DiyVM是一家成立于2009年的国人主机商,提供的产品包括VPS主机、独立服务器租用等,产品数据中心包括中国香港、日本大阪和美国洛杉矶等,其中VPS主机基于XEN架构,支持异地备份与自定义镜像,VPS和独立服务器均可提供内网IP功能。商家VPS主机均2GB内存起步,三个地区机房可选,使用优惠码后每月69元起;独立服务器开设在香港沙田电信机房,CN2线路,自动化开通上架,最低499元/月起。下面以...
10gbiz怎么样?10gbiz 美国万兆带宽供应商,主打美国直连大带宽,真实硬防。除美国外还提供线路非常优质的香港、日本等数据中心可供选择,全部机房均支持增加独立硬防。洛杉矶特色线路去程三网直连(电信、联通、移动)回程CN2 GIA优化,全天低延迟。中国大陆访问质量优秀,最多可增加至600G硬防。香港七星级网络,去程回程均为电信CN2 GIA+联通+移动,大陆访问相较其他香港GIA线路平均速度更...
魔兽世界服务器维护为你推荐
虚拟主机价格个人虚拟主机选择多大的价格多少的合适?vps虚拟主机虚拟主机和VPS的主要区别有哪些?主要是哪些参数不一样?域名服务商域名服务商所属区域怎么填写国内ip代理谁给我几个北京或国内的IP代理啊,高分,能用的韩国虚拟主机香港虚拟主机和韩国虚拟主机比较,哪个更好?合肥虚拟主机虚拟主机怎么弄!厦门虚拟主机我想用我自己的电脑做虚拟主机怎么弄啊www二级域名请问 www.aaa.bbb.com 是一级域名还是二级域名啊?能否备案?怎么备案?域名网站域名和网址一样吗?中文域名什么是中文域名?
域名估价 国际域名抢注 俄罗斯vps 阿云浏览器 缓存服务器 koss godaddy域名优惠码 http500内部服务器错误 轻量 vip购优汇 新天域互联 免费活动 tna官网 cn3 美国免费空间 免费网页申请 申请网页 跟踪路由命令 cdn服务 双十二促销 更多