reciprocal魔兽世界服务器维护
魔兽世界服务器维护 时间:2021-01-13 阅读:(
)
CURRICULUMINSPIRATIONS:www.
maa.
org/ciInnovativeOnlineCourses:www.
gdaymath.
comTantonTidbits:www.
jamestanton.
comWOW!
COOLMATH!
CURIOUSMATHEMATICSFORFUNANDJOYAPRIL2016PROMOTIONALCORNER:Haveyouanevent,aworkshop,awebsite,somematerialsyouwouldliketosharewiththeworldLetmeknow!
Iftheworkisaboutdeep,joyous,andrealmathematicaldoingI'llhappilymentionithere.
***Peopledomathvideos!
CheckoutMarcChamberlain'shttps://www.
youtube.
com/watchv=bCiQOwP4LrY.
WhydoesworkTHISMONTH'SPUZZLER:Itispossibletocolorthefirsteightcountingnumberseacheitherredorbluesothatweneverhavethreedistinctintegers,,andallthesamecolor.
CanthesametaskbecompletedwiththefirstninecountingnumbersWhatisthesmallestsothateverycoloringofthenumbers1,2,3,…,eitherredorblueissuretohaveamonochromatictripleHowdoestheanswerchangeifwepermitgeneric"triples"with(Nowweneedeachandtobedistinctcolorstoo.
)JamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comRAMSEYTHEORYHereisaclassicresult:Ifsixuniversitystudentsareselectedatrandom,thenthereissuretobeeitherthreestudentsamongthesixwhoaremutualfriendsorthreestudentswhoaremutualstrangers(orboth).
(Weareassumingherethatfriendshipisreciprocal:IfAlbertisfriendswithBilbert,thenBilbertisalsofriendswithAlbert.
Beingastrangerisreciprocaltoo.
)Here'sthereasoning:Chooseoneofthesixstudents,Cuthbert.
Therearefiveotherstudentseachofwhichheiseitherfriendswithorastrangerto.
SupposeCuthbertisfriendswithamajorityofthesefive,thatis,friendswithatleastthreeofthem.
(If,instead,heisastrangertoamajority,thenswitchthewordsfriendandstrangerinwhatfollows.
)Amongthesethreepeople,ifanytwoaremutualfriends,thenwehaveatripleoffriends:Cuthbertandthosetwo.
Ifnoneofthosethreearefriends,thenwehavefoundatripleofstrangers.
Theresultisnottrueforjustfivepeopleselectedatrandomasseenbythisgraphic.
Hereeachdotrepresentsastudentandarededgeindicatesmutualfriendsandablueedgemutualstrangers.
Nothreepeopleareconnectedbyedgesallofthesameonecolor.
Intermsofcoloreddiagrams,ourpartyresulttranslatesasfollows:Drawsixdotsonapageandthe15edgesbetweenallpossiblepairsofdots.
Itisimpossibletocolorthoseedgesredandblueandavoidamonochromatictriangle.
Togeneralizethisidealetdenotetheleastnumberofdotsoneneedstodrawonapagesothatifweconnectallpairsofdotswitheitherredorblueedges,thereissuretobeeitherasetofdotswithalltheedgesamongthemredorasetofdotswithalltheedgesamongthosedotsblue.
(Thisisassumingthatsuchaleastnumberexists!
Maybenomatterhowmanydotsonedrawsonecanalwaysavoidred"cliques"ofsizeandbluecliquesofsize)Theideaofstudyingthenecessarysizeofasystemtoensurecertainsub-substructuresexistswasfirstformallyexploredbyBritishmathematicianFrankRamsey(1903–1930).
ThisworkistodaycalledRamseyTheoryinhishonor.
Ourpartyresultreadsas.
(Drawsixdotsandcolortheedgesbetweenthenredandblue.
Eitheraredtriangleissuretoappearorablueone.
)Itisnothardtoseethat.
(Ifwedrawdotsonapageandcolortheedges,theneitheroneisredandwe'vefoundredcliqueofsizeoralledgesareblueandwehaveabluecliqueofsize.
Also,isnotorsmaller:coloringalltheedgesbetweendotsblueillustratesthis.
)JamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comComputingRamseynumbersisstillaveryactiveareaofresearch.
Onlythesefewvaluesarecurrentlyknown.
(Ofcourse,:justswitchcolors.
)Generalizing…Setastheleastnumberofdotsoneneedstodrawonthepagetoensurethat,incoloringtheedgesred,blueandgold,eitheracliqueofdotswithnothingbutrededgesbetweenthem,oracliqueofdotswithnothingbutblueedgesbetweenthem,oracliqueofdotswithnothingbutgoldedgesbetweenthemissuretoappear.
Itisknownthat.
(Draw17dotsonapageandcoloreachofthe153edgesbetweenthemeitherred,blue,orgold.
Thenamonochromatictriangleissuretoappear.
Also,itispossibletoavoidmonochromatictriangleswithonly16dotsonthepage.
)Andforfullgeneralitysetastheleastnumberofdotsoneneedstodrawonapagesothat,incoloringeachoftheedgesbetweenapairofdotsoneofcolors,thereissuretobeacliqueofdotswithalltheedgesbetweenthemthethcolor,forsome.
Ofcourse,weareassumingthatthisnumberexists-thatthereisaleastnumberofdotsthatassuresamonochromaticstructureappears.
Ramsey'sTheorem:Eachisindeedameaningfulfinitenumber.
Let'sillustratewhy.
ThevaluedoesnotappearonthelistofknownRamseynumbers.
Butwecanprovethatitisafinitenumber.
Wehave,fromthelist,and.
Drawdotsonthepageandcolortheedgesbetweenthemredandblue.
Weshallnowreasonthateitheracliqueofdotsexistswithalledgesbetweenthemredoracliqueofdotsexistswithalledgesbetweenthemblue.
Thiswillestablishthat.
Inourdiagramofdotswithedgescolored,chooseoneparticulardot.
CallitDilbert.
Dilberthassomerededgesemanatingfromitconnectingitto,say,otherdots.
TheremainingedgesemanatingfromDilbertareblue,connectingtootherdots,say.
Here.
Nowitcan'tbethatbothand.
Soeitherisatleastorisatleast.
Case:ConsiderthedotsthatconnecttoDilbertbyrededges.
Becausethereiseitheraredcliqueofamongthesedotsorthereisbluecliqueofamongthem.
Ifthereisaredcliqueof3,thenincludingDilbertintheclique(alledgestoDilbertarered)actuallymeanswehavearedcliqueof,oneofthetwostructureswearehopingtoseefor.
If,ontheotherhand,thereisabluecliqueof,thenwehaveabluecliqueof!
Eitherwaywehavefoundoneofthetwothingswearelookingfor.
JamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comCase:ConsiderthedotsthatconnecttoDilbertviablueedges.
Because,amongthesedotsthereiseitheraredcliqueof(oneofthepossibilitieswewerehopingfor)orabluecliqueof.
Inthelattercase,sincealltheedgestoDilberthereareblue,addingDilberttothecliqueoffiveactuallymakesabluecliqueof!
Again,wearesuretohaveatleastoneofthetwostructureswewerelookingfor.
Ingeneral,onecanprovejustthiswaytheinequality:.
ThenfromknowingthatRamseynumberswithsmallerindicesarefinitewecanreasonthateveryRamseynumberisfinite.
GeneralizedRamsey'sTheorem:Eachvalueisfinite.
Wehavejustshownthateachofthevaluesfortwocoloringsisafinitenumber.
Let'sshowhowwecanusethisfacttoestablishthateachofthenumbersforthreecoloringsmustalsobefinite.
Consider.
Wewanttoshowthatthereisanumbersothatifwedrawdotsonthepageandcolortheedgeseitherred,blue,orgold,thereissuretobeeitheraredcliqueofdots,orabluecliqueofdots,oragoldcliqueofdots.
Sometimeswhenwesquintoureyes,redandbluecanstarttoeachlookpurple.
Soadiagramwithedgespaintedwiththreecolors,red,blue,andgold,canlooklikeadiagramwithedgespaintedjusttwocolors,purpleandgold,undersquintyeyes.
Thisgivesawaytobringthree-coloringsbacktotwo-colorings.
Let.
(Soanydiagramofdotswithedgespaintedredandbluehaseitheraredcliqueofdotsorabluecliqueofdots.
)Let.
(Soanydiagramofdotswithedgespaintedpurpleorgoldhaseitherapurplecliqueofdotsoragoldcliqueofdots.
)Nowdrawdotsonthepageandcolortheedgesred,blue,andgold.
(Remember,wearelookingforeitheraredcliqueofdotsorabluecliqueofdotsoragoldcliqueofdots.
)Squintyoureyesandseeonlypurpleandgold.
Byourchoiceofwe'reeitherseeingapurplecliqueofdotsoragoldcliqueofdots.
Ifwe'reinthelattercase,thenwe'vefoundoneofthethreethingswewerehopingtosee.
Ifwe'reintheformercase,thenweareseeingapurplecliqueofdots,which,whenweunsquintoureyes,isasetofdotswithredandblueedgesbetweenthem.
Butourchoiceofwasspecial:itguaranteesthateitherwehavearedcliqueofdotsorabluecliqueofdots.
Soagain,weareseeingoneofthethreethingswewerehopingtosee.
Soisfiniteanumber:itisboundedbythenumberwith.
Ingeneral,onereasonsthiswaytoshowthatwith.
Nowknowingthatallthethree-colorRamseyvaluesarefinite,weJamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comcanusethistoarguethatallthefour-colorRamseynumbersarefinite,whichleadstoallthefive-colorRamseynumbersbeingfinite,andsoon.
CONNECTIONSTOTHEOPENINGPUZZLERHere'saboldclaim:Itisimpossibletocolorthecountingnumberseachoneoffiftypossiblecolorsandavoidamonochromatictriple,,.
(Thegenericcaseisallowed.
)(Thenumber50isimmaterialhere:anyfinitenumberofcolorswilldo!
)Here'swhy.
WejustprovedthattheRamseyvalue,withfiftycolors,isafinitevalue.
Letbeitsvalue.
Soifwedrawdotsonapageandcolortheedgesusingfiftydifferentcolors,thenwearesuretofindamonochromaticcliqueofthree.
Thatis,we'dfindamonochromatictriangle.
Supposewehavecoloredthecountingnumbers1,2,3,…eachoneoffiftycolors.
Drawadotaboveeachofthefirstcountingnumbersanddrawanedgebetweeneachpairdots.
Nowcoloreachedgeaccordingtothefollowingrule:Painttheedgeconnectingthenumbertothenumber(assumehere)withthecolorofnumber.
Amonochromatictriangleissuretoexist.
Fromthistrianglewehavethatthecolorofisthesamethecolorof,whichisthesameasthecolorof.
Butobserve:.
Wehavefoundthreenumbers,,andallthesamecolor.
Exercise:Coloreachpositiveintegeronecolorfromagivenfinitesetofcolors.
Musttherebeamonochromatictriple,,RESEARCHCORNER1.
Letbethesmallestvaluesothatifwecolortheeachofthenumberswithoneofcolorsthereissuretobeamonochromatic"triple".
(Wejustprovedthatexistsand,byeasyextension,thateachvalueexists.
)Wehaveand(ifyoudidthesecondpartoftheopeningexercise).
Canyoudetermineanyothervaluesof2.
Letbethesmallestvaluesothatifwecolortheeachofthenumberswithoneofcolorsthereissuretobeamonochromatictriple.
Wehaveand.
CanyouadjustthepreviousprooftoestablishthatthevaluesexistJamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
com3.
Explorecoloringthepositiveintegerswithafinitepaletteofcolorsandestablishingtheexistenceofamonochromaticquadruple,,,,with.
2016JamesTantontanton.
math@gmail.
com
pacificrack发布了7月最新vps优惠,新款促销便宜vps采用的是魔方管理,也就是PR-M系列。提一下有意思的是这次支持Windows server 2003、2008R2、2012R2、2016、2019、Windows 7、Windows 10,当然啦,常规Linux系统是必不可少的!1Gbps带宽、KVM虚拟、纯SSD raid10、自家QN机房洛杉矶数据中心...支持PayPal、...
ZJI怎么样?ZJI是一家成立于2011年的商家,原名维翔主机,主要从事独立服务器产品销售,目前主打中国香港、日本、美国独立服务器产品,是一个稳定、靠谱的老牌商家。详情如下:月付/年付优惠码:zji??下物理服务器/VDS/虚拟主机空间订单八折终身优惠(长期有效)一、ZJI官网点击直达香港葵湾特惠B型 CPU:E5-2650L核心:6核12线程内存:16GB硬盘:480GB SSD带宽:5Mbps...
中秋节快到了,spinservers针对中国用户准备了几款圣何塞机房特别独立服务器,大家知道这家服务器都是高配,这次推出的机器除了配置高以外,默认1Gbps不限制流量,解除了常规机器10TB/月的流量限制,价格每月179美元起,机器自动化上架,一般30分钟内,有基本自助管理功能,带IPMI,支持安装Windows或者Linux操作系统。配置一 $179/月CPU:Dual Intel Xeon E...
魔兽世界服务器维护为你推荐
域名注册申请域名怎么申请和注册cm域名注册.Cm是什么域名 网址尾部是.CM的是哪里的网址?哪可以注册?网络服务器租用现在网站服务器租赁一年多少钱?美国vps租用如何租用到最快的美国服务器台湾vps虚拟主机,VPS,服务器,其中哪个流量最大?台湾vps台湾服务器 哪里稳定速度快?虚拟空间哪个好虚拟内存一般设多大比较好?免费网站空间有没有免费的网站空间推荐深圳网站空间怎么样建立网站重庆网站空间重庆有没有发展空间?
jsp虚拟主机 免费申请域名和空间 themeforest mach5 cloudstack 外国空间 表单样式 华为云主机 ev证书 150邮箱 qingyun 微信收钱 空间技术网 流媒体加速 域名与空间 英雄联盟台服官网 电信网络测速器 阿里云邮箱登陆 徐州电信 万网注册 更多