reciprocal魔兽世界服务器维护
魔兽世界服务器维护 时间:2021-01-13 阅读:(
)
CURRICULUMINSPIRATIONS:www.
maa.
org/ciInnovativeOnlineCourses:www.
gdaymath.
comTantonTidbits:www.
jamestanton.
comWOW!
COOLMATH!
CURIOUSMATHEMATICSFORFUNANDJOYAPRIL2016PROMOTIONALCORNER:Haveyouanevent,aworkshop,awebsite,somematerialsyouwouldliketosharewiththeworldLetmeknow!
Iftheworkisaboutdeep,joyous,andrealmathematicaldoingI'llhappilymentionithere.
***Peopledomathvideos!
CheckoutMarcChamberlain'shttps://www.
youtube.
com/watchv=bCiQOwP4LrY.
WhydoesworkTHISMONTH'SPUZZLER:Itispossibletocolorthefirsteightcountingnumberseacheitherredorbluesothatweneverhavethreedistinctintegers,,andallthesamecolor.
CanthesametaskbecompletedwiththefirstninecountingnumbersWhatisthesmallestsothateverycoloringofthenumbers1,2,3,…,eitherredorblueissuretohaveamonochromatictripleHowdoestheanswerchangeifwepermitgeneric"triples"with(Nowweneedeachandtobedistinctcolorstoo.
)JamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comRAMSEYTHEORYHereisaclassicresult:Ifsixuniversitystudentsareselectedatrandom,thenthereissuretobeeitherthreestudentsamongthesixwhoaremutualfriendsorthreestudentswhoaremutualstrangers(orboth).
(Weareassumingherethatfriendshipisreciprocal:IfAlbertisfriendswithBilbert,thenBilbertisalsofriendswithAlbert.
Beingastrangerisreciprocaltoo.
)Here'sthereasoning:Chooseoneofthesixstudents,Cuthbert.
Therearefiveotherstudentseachofwhichheiseitherfriendswithorastrangerto.
SupposeCuthbertisfriendswithamajorityofthesefive,thatis,friendswithatleastthreeofthem.
(If,instead,heisastrangertoamajority,thenswitchthewordsfriendandstrangerinwhatfollows.
)Amongthesethreepeople,ifanytwoaremutualfriends,thenwehaveatripleoffriends:Cuthbertandthosetwo.
Ifnoneofthosethreearefriends,thenwehavefoundatripleofstrangers.
Theresultisnottrueforjustfivepeopleselectedatrandomasseenbythisgraphic.
Hereeachdotrepresentsastudentandarededgeindicatesmutualfriendsandablueedgemutualstrangers.
Nothreepeopleareconnectedbyedgesallofthesameonecolor.
Intermsofcoloreddiagrams,ourpartyresulttranslatesasfollows:Drawsixdotsonapageandthe15edgesbetweenallpossiblepairsofdots.
Itisimpossibletocolorthoseedgesredandblueandavoidamonochromatictriangle.
Togeneralizethisidealetdenotetheleastnumberofdotsoneneedstodrawonapagesothatifweconnectallpairsofdotswitheitherredorblueedges,thereissuretobeeitherasetofdotswithalltheedgesamongthemredorasetofdotswithalltheedgesamongthosedotsblue.
(Thisisassumingthatsuchaleastnumberexists!
Maybenomatterhowmanydotsonedrawsonecanalwaysavoidred"cliques"ofsizeandbluecliquesofsize)Theideaofstudyingthenecessarysizeofasystemtoensurecertainsub-substructuresexistswasfirstformallyexploredbyBritishmathematicianFrankRamsey(1903–1930).
ThisworkistodaycalledRamseyTheoryinhishonor.
Ourpartyresultreadsas.
(Drawsixdotsandcolortheedgesbetweenthenredandblue.
Eitheraredtriangleissuretoappearorablueone.
)Itisnothardtoseethat.
(Ifwedrawdotsonapageandcolortheedges,theneitheroneisredandwe'vefoundredcliqueofsizeoralledgesareblueandwehaveabluecliqueofsize.
Also,isnotorsmaller:coloringalltheedgesbetweendotsblueillustratesthis.
)JamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comComputingRamseynumbersisstillaveryactiveareaofresearch.
Onlythesefewvaluesarecurrentlyknown.
(Ofcourse,:justswitchcolors.
)Generalizing…Setastheleastnumberofdotsoneneedstodrawonthepagetoensurethat,incoloringtheedgesred,blueandgold,eitheracliqueofdotswithnothingbutrededgesbetweenthem,oracliqueofdotswithnothingbutblueedgesbetweenthem,oracliqueofdotswithnothingbutgoldedgesbetweenthemissuretoappear.
Itisknownthat.
(Draw17dotsonapageandcoloreachofthe153edgesbetweenthemeitherred,blue,orgold.
Thenamonochromatictriangleissuretoappear.
Also,itispossibletoavoidmonochromatictriangleswithonly16dotsonthepage.
)Andforfullgeneralitysetastheleastnumberofdotsoneneedstodrawonapagesothat,incoloringeachoftheedgesbetweenapairofdotsoneofcolors,thereissuretobeacliqueofdotswithalltheedgesbetweenthemthethcolor,forsome.
Ofcourse,weareassumingthatthisnumberexists-thatthereisaleastnumberofdotsthatassuresamonochromaticstructureappears.
Ramsey'sTheorem:Eachisindeedameaningfulfinitenumber.
Let'sillustratewhy.
ThevaluedoesnotappearonthelistofknownRamseynumbers.
Butwecanprovethatitisafinitenumber.
Wehave,fromthelist,and.
Drawdotsonthepageandcolortheedgesbetweenthemredandblue.
Weshallnowreasonthateitheracliqueofdotsexistswithalledgesbetweenthemredoracliqueofdotsexistswithalledgesbetweenthemblue.
Thiswillestablishthat.
Inourdiagramofdotswithedgescolored,chooseoneparticulardot.
CallitDilbert.
Dilberthassomerededgesemanatingfromitconnectingitto,say,otherdots.
TheremainingedgesemanatingfromDilbertareblue,connectingtootherdots,say.
Here.
Nowitcan'tbethatbothand.
Soeitherisatleastorisatleast.
Case:ConsiderthedotsthatconnecttoDilbertbyrededges.
Becausethereiseitheraredcliqueofamongthesedotsorthereisbluecliqueofamongthem.
Ifthereisaredcliqueof3,thenincludingDilbertintheclique(alledgestoDilbertarered)actuallymeanswehavearedcliqueof,oneofthetwostructureswearehopingtoseefor.
If,ontheotherhand,thereisabluecliqueof,thenwehaveabluecliqueof!
Eitherwaywehavefoundoneofthetwothingswearelookingfor.
JamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comCase:ConsiderthedotsthatconnecttoDilbertviablueedges.
Because,amongthesedotsthereiseitheraredcliqueof(oneofthepossibilitieswewerehopingfor)orabluecliqueof.
Inthelattercase,sincealltheedgestoDilberthereareblue,addingDilberttothecliqueoffiveactuallymakesabluecliqueof!
Again,wearesuretohaveatleastoneofthetwostructureswewerelookingfor.
Ingeneral,onecanprovejustthiswaytheinequality:.
ThenfromknowingthatRamseynumberswithsmallerindicesarefinitewecanreasonthateveryRamseynumberisfinite.
GeneralizedRamsey'sTheorem:Eachvalueisfinite.
Wehavejustshownthateachofthevaluesfortwocoloringsisafinitenumber.
Let'sshowhowwecanusethisfacttoestablishthateachofthenumbersforthreecoloringsmustalsobefinite.
Consider.
Wewanttoshowthatthereisanumbersothatifwedrawdotsonthepageandcolortheedgeseitherred,blue,orgold,thereissuretobeeitheraredcliqueofdots,orabluecliqueofdots,oragoldcliqueofdots.
Sometimeswhenwesquintoureyes,redandbluecanstarttoeachlookpurple.
Soadiagramwithedgespaintedwiththreecolors,red,blue,andgold,canlooklikeadiagramwithedgespaintedjusttwocolors,purpleandgold,undersquintyeyes.
Thisgivesawaytobringthree-coloringsbacktotwo-colorings.
Let.
(Soanydiagramofdotswithedgespaintedredandbluehaseitheraredcliqueofdotsorabluecliqueofdots.
)Let.
(Soanydiagramofdotswithedgespaintedpurpleorgoldhaseitherapurplecliqueofdotsoragoldcliqueofdots.
)Nowdrawdotsonthepageandcolortheedgesred,blue,andgold.
(Remember,wearelookingforeitheraredcliqueofdotsorabluecliqueofdotsoragoldcliqueofdots.
)Squintyoureyesandseeonlypurpleandgold.
Byourchoiceofwe'reeitherseeingapurplecliqueofdotsoragoldcliqueofdots.
Ifwe'reinthelattercase,thenwe'vefoundoneofthethreethingswewerehopingtosee.
Ifwe'reintheformercase,thenweareseeingapurplecliqueofdots,which,whenweunsquintoureyes,isasetofdotswithredandblueedgesbetweenthem.
Butourchoiceofwasspecial:itguaranteesthateitherwehavearedcliqueofdotsorabluecliqueofdots.
Soagain,weareseeingoneofthethreethingswewerehopingtosee.
Soisfiniteanumber:itisboundedbythenumberwith.
Ingeneral,onereasonsthiswaytoshowthatwith.
Nowknowingthatallthethree-colorRamseyvaluesarefinite,weJamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comcanusethistoarguethatallthefour-colorRamseynumbersarefinite,whichleadstoallthefive-colorRamseynumbersbeingfinite,andsoon.
CONNECTIONSTOTHEOPENINGPUZZLERHere'saboldclaim:Itisimpossibletocolorthecountingnumberseachoneoffiftypossiblecolorsandavoidamonochromatictriple,,.
(Thegenericcaseisallowed.
)(Thenumber50isimmaterialhere:anyfinitenumberofcolorswilldo!
)Here'swhy.
WejustprovedthattheRamseyvalue,withfiftycolors,isafinitevalue.
Letbeitsvalue.
Soifwedrawdotsonapageandcolortheedgesusingfiftydifferentcolors,thenwearesuretofindamonochromaticcliqueofthree.
Thatis,we'dfindamonochromatictriangle.
Supposewehavecoloredthecountingnumbers1,2,3,…eachoneoffiftycolors.
Drawadotaboveeachofthefirstcountingnumbersanddrawanedgebetweeneachpairdots.
Nowcoloreachedgeaccordingtothefollowingrule:Painttheedgeconnectingthenumbertothenumber(assumehere)withthecolorofnumber.
Amonochromatictriangleissuretoexist.
Fromthistrianglewehavethatthecolorofisthesamethecolorof,whichisthesameasthecolorof.
Butobserve:.
Wehavefoundthreenumbers,,andallthesamecolor.
Exercise:Coloreachpositiveintegeronecolorfromagivenfinitesetofcolors.
Musttherebeamonochromatictriple,,RESEARCHCORNER1.
Letbethesmallestvaluesothatifwecolortheeachofthenumberswithoneofcolorsthereissuretobeamonochromatic"triple".
(Wejustprovedthatexistsand,byeasyextension,thateachvalueexists.
)Wehaveand(ifyoudidthesecondpartoftheopeningexercise).
Canyoudetermineanyothervaluesof2.
Letbethesmallestvaluesothatifwecolortheeachofthenumberswithoneofcolorsthereissuretobeamonochromatictriple.
Wehaveand.
CanyouadjustthepreviousprooftoestablishthatthevaluesexistJamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
com3.
Explorecoloringthepositiveintegerswithafinitepaletteofcolorsandestablishingtheexistenceofamonochromaticquadruple,,,,with.
2016JamesTantontanton.
math@gmail.
com
六一云互联六一云互联为西安六一网络科技有限公司的旗下产品。是一个正规持有IDC/ISP/CDN的国内公司,成立于2018年,主要销售海外高防高速大带宽云服务器/CDN,并以高质量.稳定性.售后相应快.支持退款等特点受很多用户的支持!近期公司也推出了很多给力的抽奖和折扣活动如:新用户免费抽奖,最大可获得500元,湖北新购六折续费八折折上折,全场八折等等最新活动:1.湖北100G高防:新购六折续费八折...
4324云是成立于2012年的老牌商家,主要经营国内服务器资源,是目前国内实力很强的商家,从价格上就可以看出来商家实力,这次商家给大家带来了全网最便宜的物理服务器。只能说用叹为观止形容。官网地址 点击进入由于是活动套餐 本款产品需要联系QQ客服 购买 QQ 800083597 QQ 2772347271CPU内存硬盘带宽IP防御价格e5 2630 12核16GBSSD 500GB30M1个IP...
RackNerd 商家我们应该是比较熟悉的商家,速度一般,但是人家便宜且可选机房也是比较多的,较多集中在美国机房。包括前面的新年元旦促销的时候有提供年付10美元左右的方案,实际上RackNerd商家的营销策略也是如此,每逢节日都有活动,配置简单变化,价格基本差不多,所以我们网友看到没有必要囤货,有需要就选择。RackNerd 商家这次2022农历新年也是有几款年付套餐。低至RackNerd VPS...
魔兽世界服务器维护为你推荐
com域名空间域名和空间是什么意思网站服务器租用个人网站服务器租用一年多少钱ip代理地址ip代理是什么?虚拟主机申请域名申请以及虚拟主机韩国虚拟主机大家用的虚拟主机是国内的还是香港的还是韩国的还是美国的apache虚拟主机如何用Apache配置安全虚拟主机 - PHP进阶讨论apache虚拟主机linux操作系统Apache配置虚拟主机虚拟主机mysql虚拟主机支持mysql数据库,还需要额外购买mysql吗?淘宝虚拟主机我想在淘宝买虚拟主机不知道哪家好?想找长期合作稳定的淘宝虚拟主机淘宝买万网虚拟主机怎么变别真假
域名注册信息查询 东莞服务器租用 东莞电信局 256m内存 博客主机 美国主机代购 godaddy续费优惠码 太原联通测速平台 毫秒英文 泉州电信 台湾谷歌 什么是web服务器 中国linux 百度云空间 网站加速 97rb hostease 北京主机托管 服务器防御 nnt 更多