reciprocal魔兽世界服务器维护
魔兽世界服务器维护 时间:2021-01-13 阅读:(
)
CURRICULUMINSPIRATIONS:www.
maa.
org/ciInnovativeOnlineCourses:www.
gdaymath.
comTantonTidbits:www.
jamestanton.
comWOW!
COOLMATH!
CURIOUSMATHEMATICSFORFUNANDJOYAPRIL2016PROMOTIONALCORNER:Haveyouanevent,aworkshop,awebsite,somematerialsyouwouldliketosharewiththeworldLetmeknow!
Iftheworkisaboutdeep,joyous,andrealmathematicaldoingI'llhappilymentionithere.
***Peopledomathvideos!
CheckoutMarcChamberlain'shttps://www.
youtube.
com/watchv=bCiQOwP4LrY.
WhydoesworkTHISMONTH'SPUZZLER:Itispossibletocolorthefirsteightcountingnumberseacheitherredorbluesothatweneverhavethreedistinctintegers,,andallthesamecolor.
CanthesametaskbecompletedwiththefirstninecountingnumbersWhatisthesmallestsothateverycoloringofthenumbers1,2,3,…,eitherredorblueissuretohaveamonochromatictripleHowdoestheanswerchangeifwepermitgeneric"triples"with(Nowweneedeachandtobedistinctcolorstoo.
)JamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comRAMSEYTHEORYHereisaclassicresult:Ifsixuniversitystudentsareselectedatrandom,thenthereissuretobeeitherthreestudentsamongthesixwhoaremutualfriendsorthreestudentswhoaremutualstrangers(orboth).
(Weareassumingherethatfriendshipisreciprocal:IfAlbertisfriendswithBilbert,thenBilbertisalsofriendswithAlbert.
Beingastrangerisreciprocaltoo.
)Here'sthereasoning:Chooseoneofthesixstudents,Cuthbert.
Therearefiveotherstudentseachofwhichheiseitherfriendswithorastrangerto.
SupposeCuthbertisfriendswithamajorityofthesefive,thatis,friendswithatleastthreeofthem.
(If,instead,heisastrangertoamajority,thenswitchthewordsfriendandstrangerinwhatfollows.
)Amongthesethreepeople,ifanytwoaremutualfriends,thenwehaveatripleoffriends:Cuthbertandthosetwo.
Ifnoneofthosethreearefriends,thenwehavefoundatripleofstrangers.
Theresultisnottrueforjustfivepeopleselectedatrandomasseenbythisgraphic.
Hereeachdotrepresentsastudentandarededgeindicatesmutualfriendsandablueedgemutualstrangers.
Nothreepeopleareconnectedbyedgesallofthesameonecolor.
Intermsofcoloreddiagrams,ourpartyresulttranslatesasfollows:Drawsixdotsonapageandthe15edgesbetweenallpossiblepairsofdots.
Itisimpossibletocolorthoseedgesredandblueandavoidamonochromatictriangle.
Togeneralizethisidealetdenotetheleastnumberofdotsoneneedstodrawonapagesothatifweconnectallpairsofdotswitheitherredorblueedges,thereissuretobeeitherasetofdotswithalltheedgesamongthemredorasetofdotswithalltheedgesamongthosedotsblue.
(Thisisassumingthatsuchaleastnumberexists!
Maybenomatterhowmanydotsonedrawsonecanalwaysavoidred"cliques"ofsizeandbluecliquesofsize)Theideaofstudyingthenecessarysizeofasystemtoensurecertainsub-substructuresexistswasfirstformallyexploredbyBritishmathematicianFrankRamsey(1903–1930).
ThisworkistodaycalledRamseyTheoryinhishonor.
Ourpartyresultreadsas.
(Drawsixdotsandcolortheedgesbetweenthenredandblue.
Eitheraredtriangleissuretoappearorablueone.
)Itisnothardtoseethat.
(Ifwedrawdotsonapageandcolortheedges,theneitheroneisredandwe'vefoundredcliqueofsizeoralledgesareblueandwehaveabluecliqueofsize.
Also,isnotorsmaller:coloringalltheedgesbetweendotsblueillustratesthis.
)JamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comComputingRamseynumbersisstillaveryactiveareaofresearch.
Onlythesefewvaluesarecurrentlyknown.
(Ofcourse,:justswitchcolors.
)Generalizing…Setastheleastnumberofdotsoneneedstodrawonthepagetoensurethat,incoloringtheedgesred,blueandgold,eitheracliqueofdotswithnothingbutrededgesbetweenthem,oracliqueofdotswithnothingbutblueedgesbetweenthem,oracliqueofdotswithnothingbutgoldedgesbetweenthemissuretoappear.
Itisknownthat.
(Draw17dotsonapageandcoloreachofthe153edgesbetweenthemeitherred,blue,orgold.
Thenamonochromatictriangleissuretoappear.
Also,itispossibletoavoidmonochromatictriangleswithonly16dotsonthepage.
)Andforfullgeneralitysetastheleastnumberofdotsoneneedstodrawonapagesothat,incoloringeachoftheedgesbetweenapairofdotsoneofcolors,thereissuretobeacliqueofdotswithalltheedgesbetweenthemthethcolor,forsome.
Ofcourse,weareassumingthatthisnumberexists-thatthereisaleastnumberofdotsthatassuresamonochromaticstructureappears.
Ramsey'sTheorem:Eachisindeedameaningfulfinitenumber.
Let'sillustratewhy.
ThevaluedoesnotappearonthelistofknownRamseynumbers.
Butwecanprovethatitisafinitenumber.
Wehave,fromthelist,and.
Drawdotsonthepageandcolortheedgesbetweenthemredandblue.
Weshallnowreasonthateitheracliqueofdotsexistswithalledgesbetweenthemredoracliqueofdotsexistswithalledgesbetweenthemblue.
Thiswillestablishthat.
Inourdiagramofdotswithedgescolored,chooseoneparticulardot.
CallitDilbert.
Dilberthassomerededgesemanatingfromitconnectingitto,say,otherdots.
TheremainingedgesemanatingfromDilbertareblue,connectingtootherdots,say.
Here.
Nowitcan'tbethatbothand.
Soeitherisatleastorisatleast.
Case:ConsiderthedotsthatconnecttoDilbertbyrededges.
Becausethereiseitheraredcliqueofamongthesedotsorthereisbluecliqueofamongthem.
Ifthereisaredcliqueof3,thenincludingDilbertintheclique(alledgestoDilbertarered)actuallymeanswehavearedcliqueof,oneofthetwostructureswearehopingtoseefor.
If,ontheotherhand,thereisabluecliqueof,thenwehaveabluecliqueof!
Eitherwaywehavefoundoneofthetwothingswearelookingfor.
JamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comCase:ConsiderthedotsthatconnecttoDilbertviablueedges.
Because,amongthesedotsthereiseitheraredcliqueof(oneofthepossibilitieswewerehopingfor)orabluecliqueof.
Inthelattercase,sincealltheedgestoDilberthereareblue,addingDilberttothecliqueoffiveactuallymakesabluecliqueof!
Again,wearesuretohaveatleastoneofthetwostructureswewerelookingfor.
Ingeneral,onecanprovejustthiswaytheinequality:.
ThenfromknowingthatRamseynumberswithsmallerindicesarefinitewecanreasonthateveryRamseynumberisfinite.
GeneralizedRamsey'sTheorem:Eachvalueisfinite.
Wehavejustshownthateachofthevaluesfortwocoloringsisafinitenumber.
Let'sshowhowwecanusethisfacttoestablishthateachofthenumbersforthreecoloringsmustalsobefinite.
Consider.
Wewanttoshowthatthereisanumbersothatifwedrawdotsonthepageandcolortheedgeseitherred,blue,orgold,thereissuretobeeitheraredcliqueofdots,orabluecliqueofdots,oragoldcliqueofdots.
Sometimeswhenwesquintoureyes,redandbluecanstarttoeachlookpurple.
Soadiagramwithedgespaintedwiththreecolors,red,blue,andgold,canlooklikeadiagramwithedgespaintedjusttwocolors,purpleandgold,undersquintyeyes.
Thisgivesawaytobringthree-coloringsbacktotwo-colorings.
Let.
(Soanydiagramofdotswithedgespaintedredandbluehaseitheraredcliqueofdotsorabluecliqueofdots.
)Let.
(Soanydiagramofdotswithedgespaintedpurpleorgoldhaseitherapurplecliqueofdotsoragoldcliqueofdots.
)Nowdrawdotsonthepageandcolortheedgesred,blue,andgold.
(Remember,wearelookingforeitheraredcliqueofdotsorabluecliqueofdotsoragoldcliqueofdots.
)Squintyoureyesandseeonlypurpleandgold.
Byourchoiceofwe'reeitherseeingapurplecliqueofdotsoragoldcliqueofdots.
Ifwe'reinthelattercase,thenwe'vefoundoneofthethreethingswewerehopingtosee.
Ifwe'reintheformercase,thenweareseeingapurplecliqueofdots,which,whenweunsquintoureyes,isasetofdotswithredandblueedgesbetweenthem.
Butourchoiceofwasspecial:itguaranteesthateitherwehavearedcliqueofdotsorabluecliqueofdots.
Soagain,weareseeingoneofthethreethingswewerehopingtosee.
Soisfiniteanumber:itisboundedbythenumberwith.
Ingeneral,onereasonsthiswaytoshowthatwith.
Nowknowingthatallthethree-colorRamseyvaluesarefinite,weJamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comcanusethistoarguethatallthefour-colorRamseynumbersarefinite,whichleadstoallthefive-colorRamseynumbersbeingfinite,andsoon.
CONNECTIONSTOTHEOPENINGPUZZLERHere'saboldclaim:Itisimpossibletocolorthecountingnumberseachoneoffiftypossiblecolorsandavoidamonochromatictriple,,.
(Thegenericcaseisallowed.
)(Thenumber50isimmaterialhere:anyfinitenumberofcolorswilldo!
)Here'swhy.
WejustprovedthattheRamseyvalue,withfiftycolors,isafinitevalue.
Letbeitsvalue.
Soifwedrawdotsonapageandcolortheedgesusingfiftydifferentcolors,thenwearesuretofindamonochromaticcliqueofthree.
Thatis,we'dfindamonochromatictriangle.
Supposewehavecoloredthecountingnumbers1,2,3,…eachoneoffiftycolors.
Drawadotaboveeachofthefirstcountingnumbersanddrawanedgebetweeneachpairdots.
Nowcoloreachedgeaccordingtothefollowingrule:Painttheedgeconnectingthenumbertothenumber(assumehere)withthecolorofnumber.
Amonochromatictriangleissuretoexist.
Fromthistrianglewehavethatthecolorofisthesamethecolorof,whichisthesameasthecolorof.
Butobserve:.
Wehavefoundthreenumbers,,andallthesamecolor.
Exercise:Coloreachpositiveintegeronecolorfromagivenfinitesetofcolors.
Musttherebeamonochromatictriple,,RESEARCHCORNER1.
Letbethesmallestvaluesothatifwecolortheeachofthenumberswithoneofcolorsthereissuretobeamonochromatic"triple".
(Wejustprovedthatexistsand,byeasyextension,thateachvalueexists.
)Wehaveand(ifyoudidthesecondpartoftheopeningexercise).
Canyoudetermineanyothervaluesof2.
Letbethesmallestvaluesothatifwecolortheeachofthenumberswithoneofcolorsthereissuretobeamonochromatictriple.
Wehaveand.
CanyouadjustthepreviousprooftoestablishthatthevaluesexistJamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
com3.
Explorecoloringthepositiveintegerswithafinitepaletteofcolorsandestablishingtheexistenceofamonochromaticquadruple,,,,with.
2016JamesTantontanton.
math@gmail.
com
zji怎么样?zji最近新上韩国BGP+CN2线路服务器,国内三网访问速度优秀,适用8折优惠码zji,优惠后韩国服务器最低每月440元起。zji主机支持安装Linux或者Windows操作系统,会员中心集成电源管理功能,8折优惠码为终身折扣,续费同价,全场适用。ZJI是原Wordpress圈知名主机商:维翔主机,成立于2011年,2018年9月启用新域名ZJI,提供中国香港、台湾、日本、美国独立服...
近日华纳云商家正式上线了美国服务器产品,这次美国机房上线的产品包括美国云服务器、美国独立服务器、美国高防御服务器以及美国高防云服务器等产品,新产品上线华纳云推出了史上优惠力度最高的特价优惠活动,美国云服务器低至3折,1核心1G内存5Mbps带宽低至24元/月,20G ddos高防御服务器低至688元/月,年付周期再送2个月、两年送4个月、三年送6个月,终身续费同价,有需要的朋友可以关注一下。华纳云...
IT狗为用户提供 在线ping、在线tcping、在线路由追踪、域名被墙检测、域名被污染检测 等实用工具。【工具地址】https://www.itdog.cn/【工具特色】1、目前同类网站中,在线ping 仅支持1次或少量次数的测试,无法客观的展现目标服务器一段时间的网络状况,IT狗Ping工具可持续的进行一段时间的ping测试,并生成更为直观的网络质量柱状图,让用户更容易掌握服务器在各地区、各线...
魔兽世界服务器维护为你推荐
广东虚拟主机大家推荐一下广东地区稳定的IDC已备案域名查询如何快速查询已备案域名并抢注香港虚拟空间香港空间,香港虚拟主机,香港虚拟空间推荐一家,公司要做一个网站,需要1G的,不限流量的,其它的空间不要免备案虚拟空间香港免备案虚拟主机空间怎么样100m虚拟主机100元虚拟主机1g虚拟主机网站空间1G是多少M,网站空间用1G虚拟主机够吗。价格多少,数据库和网站有什么关系淘宝虚拟主机淘宝买虚拟主机空间好吗?广西虚拟主机网站icp备案流程虚拟主机提供商虚拟主机必须与域名提供商在一家买吗?华众虚拟主机管理系统华众虚拟主机管理系统怎样才能使用支付宝的双功能支付接口或者担保交易的支付接口
买域名 最新代理服务器地址 科迈动态域名 美国主机网 68.168.16.150 英文简历模板word 华为云主机 怎么测试下载速度 股票老左 国内域名 免费个人主页 空间服务器 广东主机托管 重庆服务器 阿里云个人邮箱 windowsserver2008 空间排行榜 windowsserver2008r2 easypanel 卡巴下载 更多