reciprocal魔兽世界服务器维护
魔兽世界服务器维护 时间:2021-01-13 阅读:(
)
CURRICULUMINSPIRATIONS:www.
maa.
org/ciInnovativeOnlineCourses:www.
gdaymath.
comTantonTidbits:www.
jamestanton.
comWOW!
COOLMATH!
CURIOUSMATHEMATICSFORFUNANDJOYAPRIL2016PROMOTIONALCORNER:Haveyouanevent,aworkshop,awebsite,somematerialsyouwouldliketosharewiththeworldLetmeknow!
Iftheworkisaboutdeep,joyous,andrealmathematicaldoingI'llhappilymentionithere.
***Peopledomathvideos!
CheckoutMarcChamberlain'shttps://www.
youtube.
com/watchv=bCiQOwP4LrY.
WhydoesworkTHISMONTH'SPUZZLER:Itispossibletocolorthefirsteightcountingnumberseacheitherredorbluesothatweneverhavethreedistinctintegers,,andallthesamecolor.
CanthesametaskbecompletedwiththefirstninecountingnumbersWhatisthesmallestsothateverycoloringofthenumbers1,2,3,…,eitherredorblueissuretohaveamonochromatictripleHowdoestheanswerchangeifwepermitgeneric"triples"with(Nowweneedeachandtobedistinctcolorstoo.
)JamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comRAMSEYTHEORYHereisaclassicresult:Ifsixuniversitystudentsareselectedatrandom,thenthereissuretobeeitherthreestudentsamongthesixwhoaremutualfriendsorthreestudentswhoaremutualstrangers(orboth).
(Weareassumingherethatfriendshipisreciprocal:IfAlbertisfriendswithBilbert,thenBilbertisalsofriendswithAlbert.
Beingastrangerisreciprocaltoo.
)Here'sthereasoning:Chooseoneofthesixstudents,Cuthbert.
Therearefiveotherstudentseachofwhichheiseitherfriendswithorastrangerto.
SupposeCuthbertisfriendswithamajorityofthesefive,thatis,friendswithatleastthreeofthem.
(If,instead,heisastrangertoamajority,thenswitchthewordsfriendandstrangerinwhatfollows.
)Amongthesethreepeople,ifanytwoaremutualfriends,thenwehaveatripleoffriends:Cuthbertandthosetwo.
Ifnoneofthosethreearefriends,thenwehavefoundatripleofstrangers.
Theresultisnottrueforjustfivepeopleselectedatrandomasseenbythisgraphic.
Hereeachdotrepresentsastudentandarededgeindicatesmutualfriendsandablueedgemutualstrangers.
Nothreepeopleareconnectedbyedgesallofthesameonecolor.
Intermsofcoloreddiagrams,ourpartyresulttranslatesasfollows:Drawsixdotsonapageandthe15edgesbetweenallpossiblepairsofdots.
Itisimpossibletocolorthoseedgesredandblueandavoidamonochromatictriangle.
Togeneralizethisidealetdenotetheleastnumberofdotsoneneedstodrawonapagesothatifweconnectallpairsofdotswitheitherredorblueedges,thereissuretobeeitherasetofdotswithalltheedgesamongthemredorasetofdotswithalltheedgesamongthosedotsblue.
(Thisisassumingthatsuchaleastnumberexists!
Maybenomatterhowmanydotsonedrawsonecanalwaysavoidred"cliques"ofsizeandbluecliquesofsize)Theideaofstudyingthenecessarysizeofasystemtoensurecertainsub-substructuresexistswasfirstformallyexploredbyBritishmathematicianFrankRamsey(1903–1930).
ThisworkistodaycalledRamseyTheoryinhishonor.
Ourpartyresultreadsas.
(Drawsixdotsandcolortheedgesbetweenthenredandblue.
Eitheraredtriangleissuretoappearorablueone.
)Itisnothardtoseethat.
(Ifwedrawdotsonapageandcolortheedges,theneitheroneisredandwe'vefoundredcliqueofsizeoralledgesareblueandwehaveabluecliqueofsize.
Also,isnotorsmaller:coloringalltheedgesbetweendotsblueillustratesthis.
)JamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comComputingRamseynumbersisstillaveryactiveareaofresearch.
Onlythesefewvaluesarecurrentlyknown.
(Ofcourse,:justswitchcolors.
)Generalizing…Setastheleastnumberofdotsoneneedstodrawonthepagetoensurethat,incoloringtheedgesred,blueandgold,eitheracliqueofdotswithnothingbutrededgesbetweenthem,oracliqueofdotswithnothingbutblueedgesbetweenthem,oracliqueofdotswithnothingbutgoldedgesbetweenthemissuretoappear.
Itisknownthat.
(Draw17dotsonapageandcoloreachofthe153edgesbetweenthemeitherred,blue,orgold.
Thenamonochromatictriangleissuretoappear.
Also,itispossibletoavoidmonochromatictriangleswithonly16dotsonthepage.
)Andforfullgeneralitysetastheleastnumberofdotsoneneedstodrawonapagesothat,incoloringeachoftheedgesbetweenapairofdotsoneofcolors,thereissuretobeacliqueofdotswithalltheedgesbetweenthemthethcolor,forsome.
Ofcourse,weareassumingthatthisnumberexists-thatthereisaleastnumberofdotsthatassuresamonochromaticstructureappears.
Ramsey'sTheorem:Eachisindeedameaningfulfinitenumber.
Let'sillustratewhy.
ThevaluedoesnotappearonthelistofknownRamseynumbers.
Butwecanprovethatitisafinitenumber.
Wehave,fromthelist,and.
Drawdotsonthepageandcolortheedgesbetweenthemredandblue.
Weshallnowreasonthateitheracliqueofdotsexistswithalledgesbetweenthemredoracliqueofdotsexistswithalledgesbetweenthemblue.
Thiswillestablishthat.
Inourdiagramofdotswithedgescolored,chooseoneparticulardot.
CallitDilbert.
Dilberthassomerededgesemanatingfromitconnectingitto,say,otherdots.
TheremainingedgesemanatingfromDilbertareblue,connectingtootherdots,say.
Here.
Nowitcan'tbethatbothand.
Soeitherisatleastorisatleast.
Case:ConsiderthedotsthatconnecttoDilbertbyrededges.
Becausethereiseitheraredcliqueofamongthesedotsorthereisbluecliqueofamongthem.
Ifthereisaredcliqueof3,thenincludingDilbertintheclique(alledgestoDilbertarered)actuallymeanswehavearedcliqueof,oneofthetwostructureswearehopingtoseefor.
If,ontheotherhand,thereisabluecliqueof,thenwehaveabluecliqueof!
Eitherwaywehavefoundoneofthetwothingswearelookingfor.
JamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comCase:ConsiderthedotsthatconnecttoDilbertviablueedges.
Because,amongthesedotsthereiseitheraredcliqueof(oneofthepossibilitieswewerehopingfor)orabluecliqueof.
Inthelattercase,sincealltheedgestoDilberthereareblue,addingDilberttothecliqueoffiveactuallymakesabluecliqueof!
Again,wearesuretohaveatleastoneofthetwostructureswewerelookingfor.
Ingeneral,onecanprovejustthiswaytheinequality:.
ThenfromknowingthatRamseynumberswithsmallerindicesarefinitewecanreasonthateveryRamseynumberisfinite.
GeneralizedRamsey'sTheorem:Eachvalueisfinite.
Wehavejustshownthateachofthevaluesfortwocoloringsisafinitenumber.
Let'sshowhowwecanusethisfacttoestablishthateachofthenumbersforthreecoloringsmustalsobefinite.
Consider.
Wewanttoshowthatthereisanumbersothatifwedrawdotsonthepageandcolortheedgeseitherred,blue,orgold,thereissuretobeeitheraredcliqueofdots,orabluecliqueofdots,oragoldcliqueofdots.
Sometimeswhenwesquintoureyes,redandbluecanstarttoeachlookpurple.
Soadiagramwithedgespaintedwiththreecolors,red,blue,andgold,canlooklikeadiagramwithedgespaintedjusttwocolors,purpleandgold,undersquintyeyes.
Thisgivesawaytobringthree-coloringsbacktotwo-colorings.
Let.
(Soanydiagramofdotswithedgespaintedredandbluehaseitheraredcliqueofdotsorabluecliqueofdots.
)Let.
(Soanydiagramofdotswithedgespaintedpurpleorgoldhaseitherapurplecliqueofdotsoragoldcliqueofdots.
)Nowdrawdotsonthepageandcolortheedgesred,blue,andgold.
(Remember,wearelookingforeitheraredcliqueofdotsorabluecliqueofdotsoragoldcliqueofdots.
)Squintyoureyesandseeonlypurpleandgold.
Byourchoiceofwe'reeitherseeingapurplecliqueofdotsoragoldcliqueofdots.
Ifwe'reinthelattercase,thenwe'vefoundoneofthethreethingswewerehopingtosee.
Ifwe'reintheformercase,thenweareseeingapurplecliqueofdots,which,whenweunsquintoureyes,isasetofdotswithredandblueedgesbetweenthem.
Butourchoiceofwasspecial:itguaranteesthateitherwehavearedcliqueofdotsorabluecliqueofdots.
Soagain,weareseeingoneofthethreethingswewerehopingtosee.
Soisfiniteanumber:itisboundedbythenumberwith.
Ingeneral,onereasonsthiswaytoshowthatwith.
Nowknowingthatallthethree-colorRamseyvaluesarefinite,weJamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
comcanusethistoarguethatallthefour-colorRamseynumbersarefinite,whichleadstoallthefive-colorRamseynumbersbeingfinite,andsoon.
CONNECTIONSTOTHEOPENINGPUZZLERHere'saboldclaim:Itisimpossibletocolorthecountingnumberseachoneoffiftypossiblecolorsandavoidamonochromatictriple,,.
(Thegenericcaseisallowed.
)(Thenumber50isimmaterialhere:anyfinitenumberofcolorswilldo!
)Here'swhy.
WejustprovedthattheRamseyvalue,withfiftycolors,isafinitevalue.
Letbeitsvalue.
Soifwedrawdotsonapageandcolortheedgesusingfiftydifferentcolors,thenwearesuretofindamonochromaticcliqueofthree.
Thatis,we'dfindamonochromatictriangle.
Supposewehavecoloredthecountingnumbers1,2,3,…eachoneoffiftycolors.
Drawadotaboveeachofthefirstcountingnumbersanddrawanedgebetweeneachpairdots.
Nowcoloreachedgeaccordingtothefollowingrule:Painttheedgeconnectingthenumbertothenumber(assumehere)withthecolorofnumber.
Amonochromatictriangleissuretoexist.
Fromthistrianglewehavethatthecolorofisthesamethecolorof,whichisthesameasthecolorof.
Butobserve:.
Wehavefoundthreenumbers,,andallthesamecolor.
Exercise:Coloreachpositiveintegeronecolorfromagivenfinitesetofcolors.
Musttherebeamonochromatictriple,,RESEARCHCORNER1.
Letbethesmallestvaluesothatifwecolortheeachofthenumberswithoneofcolorsthereissuretobeamonochromatic"triple".
(Wejustprovedthatexistsand,byeasyextension,thateachvalueexists.
)Wehaveand(ifyoudidthesecondpartoftheopeningexercise).
Canyoudetermineanyothervaluesof2.
Letbethesmallestvaluesothatifwecolortheeachofthenumberswithoneofcolorsthereissuretobeamonochromatictriple.
Wehaveand.
CanyouadjustthepreviousprooftoestablishthatthevaluesexistJamesTanton2016www.
jamestanton.
comandwww.
gdaymath.
com3.
Explorecoloringthepositiveintegerswithafinitepaletteofcolorsandestablishingtheexistenceofamonochromaticquadruple,,,,with.
2016JamesTantontanton.
math@gmail.
com
10gbiz发布了9月优惠方案,针对VPS、独立服务器、站群服务器、高防服务器等均提供了一系列优惠方面,其中香港/洛杉矶CN2 GIA线路VPS主机4折优惠继续,优惠后最低每月仅2.36美元起;日本/香港独立服务器提供特价款首月1.5折27.43美元起;站群/G口服务器首月半价,高防服务器永久8.5折等。这是一家成立于2020年的主机商,提供包括独立服务器租用和VPS主机等产品,数据中心包括美国洛...
Hostodo是一家成立于2014年的国外VPS主机商,现在主要提供基于KVM架构的VPS主机,美国三个地区机房:拉斯维加斯、迈阿密和斯波坎,采用NVMe或者SSD磁盘,支持支付宝、PayPal、加密货币等付款方式。商家最近对于上架不久的斯波坎机房SSD硬盘VPS主机提供66折优惠码,适用于1GB或者以上内存套餐年付,最低每年12美元起。下面列出几款套餐配置信息。CPU:1core内存:256MB...
PQ.hosting怎么样?PQ.hosting是一家俄罗斯商家,正规公司,主要提供KVM VPS和独立服务器,VPS数据中心有香港HE、俄罗斯莫斯科DataPro、乌克兰VOLIA、拉脱维亚、荷兰Serverius、摩尔多瓦Alexhost、德国等。部分配置有变化,同时开通Paypal付款。香港、乌克兰、德国、斯洛伐克、捷克等为NVMe硬盘。香港为HE线路,三网绕美(不太建议香港)。免费支持wi...
魔兽世界服务器维护为你推荐
cm域名注册.Cm是什么域名 网址尾部是.CM的是哪里的网址?哪可以注册?虚拟主机购买虚拟主机哪里购买的好?域名服务商如何更换域名服务商ip代理地址使用IP代理会有什么坏处吗?虚拟主机软件问虚拟主机用什么版本的软件比较好北京虚拟主机租用租用虚拟主机在哪里租用比较好顶级域名什么是顶级域名域名反查禁止 ip反查域名主机域名主机的IP地址和主机的域名的关系是怎样的深圳域名注册怎样建立网站啊
php虚拟空间 查询域名 美国linux主机 3322动态域名 腾讯云盘 贵州电信宽带测速 商家促销 linode支付宝 监控服务器 服务器论坛 wordpress中文主题 国外代理服务器 japanese50m咸熟 websitepanel hosts文件 建站行业 神棍节 泥瓦工 ddos攻击软件 八度空间论坛 更多