埃森哲技术研究院

香港云主机  时间:2021-01-13  阅读:()

利用边缘计算挖掘物联网数据分析潜力2|寻找边缘计算的优势:利用边缘计算挖掘物联网数据分析潜力存储收集分析随着物联网的部署日趋复杂以及业务日趋数据化,如何更好地结合网络扩展和管理业务,面临着愈发严峻的挑战.
目前的物联网解决方案都是通过平台收集来自网络边缘设备的传感数据,然后集中进行存储和分析.
以云中心为例,其所构建的平台解决方案需要可靠、低延迟、高带宽的网络连接但显然,不适用于网络状况不佳,连接受限且收费高昂的地处偏远的企业,或是有海量的数据分析需求.
而边缘分析之所以可以成为未来的发展方向,是因为它能够基于兼备灵活性和知识性的框架,牢牢把握住了业务发展逻辑的核心高保真的数据以及更加可靠实时的决策制定.
简单的存储和传统传感器的数据处理已经被先进的数字业务所超越.
物联网边缘设备上的高保真数据无需再往返于各个云计算平台,而是依靠先进的机器学习和人工智能分析技术,直接对边缘性数据进行计算和分析以备决策支持即就地对数据进行分析.
边缘分析发展也给平台的角色扩展带来了前所未有的挑战.
对于边缘分析来说,基于中央云平台的开发和管理十分重要,其用于分析的应用程序和相关设备模型仍是基础,但当实施边缘部署时,则需要针对某些特定的实例和场景进行定制.
企业也需要各领域的专家来协调云和边缘,包括分析应用程序、传感设备和现场工程.
同时结合人工智能的传统分析,能够深入理解所在领域,并适应动态型工作.
总体来说,在这些领域以集中管理的方式协同工作,通过流动性部署、运营及监控从云到边缘的全盘监管,对于任何物联网解决方案都是至关重要的.
3我们需要通过运行各类型的机器模型来区分边缘分析和边缘计算,而这些具备学习、预测和规范能力的模型必须拥有强大的计算环境支持,配备特定的中央处理器、内存和存储设备.
目前并不是所有的边缘设备都能够对这些机器模型进行培训、运行和再培训.
例如,传统的移动电话可以处理预先设定的逻辑条件,但不适合再培训式的深度学习模型.
再者,比如专门用来收集数据及其边缘作业流程的历史记录设备仪器,则很难胜任常规分析和机器学习的部署.
适合边缘分析的环境反而出现在雾层,以打通与传统设备在最边缘端设备的连接.
图一显示了物联网部署拓补结构中不同层级,其中的雾层为边缘分析提供了合适的环境.
在雾层中,边缘网关通常作为现场各种物联网设备及工业设备(包括传统和被动传感器)的主要连接点.
边缘网关占地面积小,又可在物理环境中更紧密地部署到物联网的相关设备上,从而为边缘分析提供了相应的功能性支持,比如基本计算、存储和网络.
此外,雾层可以是由一个或多个设备组成的小型服务器以作为云的扩展.
在雾层中可用的计算、存储和网络功能比网关级别高一个数量级.
这样的配置弥补了一个差距,即边缘网关上实际提供的有限计算资源和云端中看似可无限扩展的计算资源之间的差距.
因此雾层适用于需要收集、存储和处理来自大量物联网设备,而非网关的数据分析模式.
从云层到雾层231边缘分析的运营化管理硬件专家软件专家现场工程师边缘分析平台具备的关键性功能,就是从云层到雾层,对模型和应用生命周期管理给与全面性的支持.
对于那些需要延伸到边缘的模型,云平台从建立、培训、管理直到部署各方面都制定了既定策略.
当平台能够无缝式地具备该项功能时,针对边缘环境中的动态因素,通过对边缘和部分云平台进行协调,可提供了模型生命周期管理的自主性操作.
在这种设置下,即使没有能够互联,集中性的管理和运作模式也会延续下去.
目前,边缘分析平台需要能够针对雾层边缘设备相关性模型的部署进行管理,并随着边缘设备功能的改善,将其推送到设备上.
该平台在管理包括云层,雾层和边缘层在内的所有架构层的同时,可根据相应数据和需求进行分析部署的优化.
具体来说,边缘分析平台可以在业务运营中:1)运用全球边缘设备的海量数据进行集中开发、培训和管理云层中的分析模型;2)在雾层中利用未经过滤的(高保真)原始数据进行部署和执行,实现低延时的响应时间;3)通过与云平台的无缝协调,依照本地情况,采用适当的业务模式,并在特定的应用中,根据集中设定目标的需要,建立数据缓冲.
籍此,使企业具备相关领域的洞察能力,从而取得立竿见影的效果.
云CloudLayerCentralizedenterprisedatacenterswithscalableandreliableITresourcesandprocesses.
Cloudisidealforgoverning,storing,andprocessingdatarequiringglobalawarenessacrossapopulationofdevicesandscenarios.
EdgeServerLayer(optional)Aserverorcollectionofserversextendcloud-likecapabilitiestoasingleindustrialsite(egship,factory,oilsite)forservicingacollectionofedgegateways.
Characterizedbyreliablenetworkdownstream,andlimitednetworkupstream.
Thislayerextendsthecapabilityofthetraditionalhardwaredatahistorian.
EdgeGatewayLayerGatewaysprovidecompute,storageandnetworkconnectivityforindustrialassetsandsensorsthatarephysicallyorwirelesslyconnected.
Oftengatewayshavelimitedcomputeandnetworkresources,buthaveaccesstohighestresolutionofdata.
Thislayerextendstheremoteterminalunits(RTUs)orprogrammablelogiccontrollers(PLCs).
EmbeddedLayerAsset-levelhardwarewithdomain-specificsensorsandpurpose-builtembeddeddevicesandcontrollersthatmeasureandcontrolindustrialeqiptment(egtriggeremergencyshutdowns).
边缘服务器边缘网关边缘网关边缘网关嵌入式嵌入式嵌入式嵌入式嵌入式嵌入式图一:物联网解决方案的架构层边缘分析的目标环境云层集中的企业数据中心具有可靠的IT资源和流程,并具备扩展性.
云技术对于管理,存储和处理全球性设备和场景群体的数据非常理想.
边缘服务器层(可选)一台服务器或者一组服务器将云计算能力扩展到某个工业节点(例如船舶,工厂或石油站点),便于为多组边缘网关提供服务.
边缘服务器层的特点在于,其既依赖下游网络的可靠性,但又受到上游网络的限制,同时该层针对传统硬件在记录历史数据方面的功能,进行了扩展.
边缘网关层边缘网关由各种物理的,具备无线连接功能的工业设备和传感器构成,提供计算,存储和网络连接功能,往往具备有限的计算和网络资源,但可以进行最高精度的数据访问.
边缘网关层扩展了远程终端单元(RTU)或可编程逻辑控制器(PLC).
嵌入层具备特定领域传感器以及用于测量和控制工业设备(例如触发紧急关闭)的专用嵌入式设备和控制器.
213运用全球边缘设备的海量数据进行集中开发、培训和管理云层中的分析模型在雾层中利用未经过滤的(高保真)原始数据进行部署和执行,实现低延时的响应时间通过与云平台的无缝协调,依照本地情况,采用适当的业务模式,并在特定的应用中,根据集中设定目标的需要,建立数据缓冲4|寻找边缘计算的优势:利用边缘计算挖掘物联网数据分析潜力设想一下,一个新型传感器的使用需要特别的解决方案:设备专家进行安装,应用专家依据数据科学家建立的模型开发分析应用程序,该程序通过新型传感器生成了相关数据.
三位专家之间明晰的协调配合有助于全面性解决方案的实施:共享有关传感器功能、应用程序和模型的相关知识.
随后,与现场工程师合作,在多个站点上配置和部署边缘性实例新的物理传感器.
但如此紧密的相互依赖性却背离了分散性关系的原则,也限制了解决方案在大型企业运营环境中的可扩展性和可维护性.
在精简操作流程方面既没有可重复使用性,也缺乏灵活性.
同时还造成了组织管理和业务监督的缺位.
垂直整合的解决方案虽然可以直击痛点,但需要对物联网堆栈中的各个方面进行有效控制从边缘性计算机硬件到云层组件的集中编排.
这种解决方案会令企业束缚于供应商模式的生态系统中,限制了其使用现有技术,或是部署最佳解决方案的能力.
获得灵活性:避免垂直集成的缺陷5我们看到,尽管工业物联网企业(包括制造业,运输和石油天然气业务)数十年来始终奔波在数字化和工业资产网络化的进程中,他们对于工业物联网技术和相关工具往往有着成熟的理解.
但是,由于受到监管的约束,他们中的许多企业无法进一步实现创新.
日积月累,这些企业反而形成了各种技术"债务"积压:比如缺乏专有的解决方案和异构方法,过时的硬件条件,以及多个业务部门边缘性数据收集和分析能力的不足.
运营环境特有的"棕色地带"属性决定了所有边缘分析框架都应具有充分的灵活性:它需要能够支持现有的运营模式,并助力企业无缝迈向现代化生态系统,和新技术的运用之路.
跨部门的多元化需求意味着企业必须能够针对各项条件给与足够的支持,包括边缘性计算硬件、操作系统、数据处理、存储以及分析运行时间和语言等方面.
因此任何解决方案都必须具备可调性,并能平衡边缘资源限制的变化性,从而最好地满足业务发展的整体需求.
通常对高价值数据进行过滤和下采样,以降低传输速率.
6|寻找边缘计算的优势:利用边缘计算挖掘物联网数据分析潜力借助埃森哲技术研究院创建的边缘性分析框架,无需企业对现有的信息和运营技术环境进行彻头彻尾的改变,或者引入垂直集成解决方案,即可应对所面临的挑战.
我们针对存在异构型环境的企业,提供了各种有关应用、模型和硬件设施建设等方面的方案.
同时,我们可助力企业逐步掌握如何更好地利用技术迭代(见图二).
我们的方案专注于如何应对异构型生态系统所带来的挑战.
最大限度地降低复杂性:边缘分析框架7图二:说明性用例零售仓库中机器人自动化基于云的企业数据中心在宽雾层内预先部署计算服务器资产特定的边缘网关石油和天然气业务智能交通订购到特定仓库的路线履行密切相关的项目预测模型的维护更新最佳路由模型全面跟踪资产利用率,并优化资源分配结合天气和交通条件,管理车队及追踪车辆远程信息根据全球数据,更新异常检测和预测模型维护预期流量和负载计算所有车辆的位置车辆接收到时间目标更新视频分析/路由模型实时位置和所有机器人的状态在机器人队列中执行部署的项目通过监测地面和井下设备的情形,感知站点范围的情景意识利用特定地点的历史数据来确定最佳钻井参数,从而提高井眼质量如何达到时间目标的流程/模型为本地环境传入实时流量和加载数据智能路由到指定的位置避免障碍运行预测模型维护,并通知网关潜在问题优化流体压力和化学混合物成分,以提高石油开采率分析实时沉积物以确定钻孔成分预测和异常检测模型可减少设备故障,并延长钻头使用寿命通过视频分析来检测交通站点人群密度车辆操作员通过视觉指示器帮助减速或加速以达到当前目标分层架构:分布各层的分析嵌入式,雾层和云层的分层架构导致了不同的标准和要求.
架构层的每一层都提供了越来越多的计算,存储和网络容量,适合于执行各种复杂又具有延迟性要求的分析.
边缘框架必须为业务部门提供足够的灵活性,以松散耦合的方式跨越各层部署分析,按需实现硬件、模型及应用程序软件组件间的互换.
我们的解决方案允许每个组件在可替换的位置进行解耦.
基于其自身所定义的目标和部署要求,微服务结构可以独立管理每个软件组件.
各层之间的异步消息传递(包括与传感器的连接)使这些组件能够使用开放式数字库,彼此进行通信.
除了利用整个行业的标准和做法外,使用开放性数字库,使得架构能够具备良好的扩展性,从而支持各种类型的业务发展或特定行业的定制协议.
这种架构分层体系的设计支持雾层处理器层面的分析,可处理全站点中的设备群数据,或者在底部层级的网关,进行较小规模的传感器数据分析(请参阅图二).
抽象层:为多个设备和所有者提供通用性框架企业的边缘计算设备和传感器往往五花八门,许多更是分属不同的业务单位管理,各自为政.
每种类型的设备或传感器都有其独特的硬件功能、协议、数据格式和接口,因而增加了整体操作的复杂性.
为了确保互用性,并鼓励重复使用,边缘框架必须提供标准化方法对相关设备及应用进行管理.
我们的框架利用容器化技术(如Docker)以及异步事件驱动hub(见图三),为边缘设备的潜在复杂性提供了抽象层.
为了确保互用性,并鼓励重复使用,边缘框架必须提供标准化方法对相关设备及应用进行管理.

8|寻找边缘计算的优势:利用边缘计算挖掘物联网数据分析潜力应用服务提供与平台接口的应用程序接口(API).
处理应用程序中输入数据流的控制信息和摘录.
通信管理将被处理过的北向数据发送到边缘服务器和云层.
处理南行路由数据和控制消息.
分析和处理协调容器边缘应用程序的供应,部署、监控以及用户自定义的分析工作流程.
数据存储存储原始传感器读数和来自边缘应用程序的处理数据,存储核心平台组件的配置信息.
数据采集与嵌入层接口以获取和摄取传感器数据.
安全加密静态和实时数据,利用证书和容器隔离来执行访问控制的策略.
容器化技术为开发人员构建、打包边缘应用程序及分析模型提供了标准化的部署环境.
它有助于针对各种边缘性计算硬件,部署边缘性应用和模型,其所具备的可移植性使得开发人员无需过多地考虑各种设备特定的功能、设置和配置.
相类似的,由协议转换程序库支持的异步事件驱动hub,对于传感器接口、协议和数据格式的各种变化,进行了抽象性的描述.
它是边缘应用程序与传感器、其他边缘应用程序或云内组件进行通信的唯一接口.
基于云技术的知识图谱(见图四)和智能编排服务器有助于我们更好地理解雾层抽象层概念.

从知识图谱中可以获取各种边缘设备硬件功能,传感器数据格式及相关协议的元数据,而图形结构则可以将相关功能与应用程序和模型的需求灵活地联系起来.
当新设备或传感器首次启用时,这些详细信息将通过API添加到知识图谱中.
通过查询知识图谱,确定具体的设备配置,并在每个设备上编排部署容器化监视组件,实现编排层的自动化运行.

Hosteons - 限时洛杉矶/达拉斯/纽约 免费升级至10G带宽 低至年$21

Hosteons,一家海外主机商成立于2018年,在之前还没有介绍和接触这个主机商,今天是有在LEB上看到有官方发送的活动主要是针对LEB的用户提供的洛杉矶、达拉斯和纽约三个机房的方案,最低年付21美元,其特点主要在于可以从1G带宽升级至10G,而且是免费的,是不是很吸引人?本来这次活动是仅仅在LEB留言提交账单ID才可以,这个感觉有点麻烦。不过看到老龚同学有拿到识别优惠码,于是就一并来分享给有需...

弘速云(28元/月)香港葵湾2核2G10M云服务器

弘速云怎么样?弘速云是创建于2021年的品牌,运营该品牌的公司HOSU LIMITED(中文名称弘速科技有限公司)公司成立于2021年国内公司注册于2019年。HOSU LIMITED主要从事出售香港vps、美国VPS、香港独立服务器、香港站群服务器等,目前在售VPS线路有CN2+BGP、CN2 GIA,该公司旗下产品均采用KVM虚拟化架构。可联系商家代安装iso系统,目前推出全场vps新开7折,...

6元虚拟主机是否值得购买

6元虚拟主机是否值得购买?近期各商家都纷纷推出了优质便宜的虚拟主机产品,其中不少6元的虚拟主机,这种主机是否值得购买,下面我们一起来看看。1、百度云6元体验三个月(活动时间有限抓紧体验)体验地址:https://cloud.baidu.com/campaign/experience/index.html?from=bchPromotion20182、Ucloud 10元云主机体验地址:https:...

香港云主机为你推荐
域名价格什么样的域名比较值钱?php虚拟空间怎样修改php虚拟空间单个文件上传大小限制国内最好的虚拟主机国内虚拟主机哪家的好?下载虚拟主机虚拟机怎么使用和下载云南虚拟主机用哪家虚拟主机?(美橙互联还是西部数码)美国虚拟主机购买美国虚拟主机如何购买新加坡虚拟主机如何购买godaddy的新加坡主机?青岛虚拟主机阿里云主机青岛好还是杭州好虚拟主机提供商找个比较好的虚拟主机提供商华众虚拟主机管理系统华众虚拟主机管理系统怎么样?
大连虚拟主机 cn域名价格 openv 全球付 mediafire下载 php主机 php探针 debian源 北京主机 七夕促销 100m空间 me空间社区 699美元 支付宝扫码领红包 国外视频网站有哪些 根服务器 路由跟踪 浙江服务器 杭州电信 阿里云个人邮箱 更多