server隐士ddos
隐士ddos 时间:2021-01-13 阅读:(
)
DetectingDDoSattackbasedonPSOClusteringalgorithmXiaohongHao1,a,BoyuMeng1,b,KaichengGu1,c1SchoolofComputer&Communication,LanZhouUniversityofTechnology,Lanzhou730050a;316475958@qq.
combboyu8816@163.
com;cgkc1314@qq.
comKeyword:application-tierDistributedDenialofService;browsebehavior;particleclusteringalgorithm;anomalydetection.
Abstract.
First,thisarticleanalyzestheApplicationlayerDistributedDenialofService(DDoS)'sattackprincipleandcharacteristic.
Accordingtothedifferencebetweennormalusers'browsingpatternsandabnormalones,usersessionsareextractedfromtheweblogsofnormalusersandsimilaritiesbetweendifferentsessionsarecalculated.
BecausetraditionalK-meanClusteringalgorithmiseasytofailintolocaloptimal,theParticleSwarmOptimizationK-meanClusteringalgorithmisusedtogenerateadetectingmodel.
ThismodelcanbeenusedtodetectwhethertheundeterminedsessionsareDDoSattacksornot.
Theexperimentshowthatthismethodcandetectattackseffectivelyandhaveagoodperformanceinadaptability.
IntroductionDistributeddenialofserviceattacksisoneofthemajorthreatstothesecurityoftheInternet,whichintheabsenceofanywarningconsumeresourcesofthetarget,itcanbemadeatthenetworklayerorapplicationlayer[1].
ApplicationlayerDDoShavetwoattackmethods[2]:bandwidthdepletionmodeandthehostresourcedepletionmode.
Atpresent,methodstosolvethesesimilarproblemincluding:Intrusiondetectiontechnologybasedondatapacket[3]Detectionmethodbasedonflowlimitation[4],Detectionmethodbasedonfrequencyofaccess[5],DetectionmethodbasedonHiddensemi-Markovmodel[6],Detectionmethodbasedontheanalysisofuserbehaviordatamining[7].
Theliterature[8]proposesanewDosdetectionbasedondatamining,whichcombinedApriorialgorithmandk-meanclusteringalgorithm.
ItusingnetworkdatatodetectDDoS,soitcannotcopewiththeapplicationlayerDDos.
Thek-meanalgorithmhaveitselfflawed,itoverlyneedtoselectthefitclustercentersandforsomeinitialvalue,itmayconvergetosub-optimalsolution.
ApplicationlayerDDoSdetectionbasedonPSOclusteringalgorithmPrincipleandmodelofdetection:ThispaperestablishdetectionmodelwhichisusingtoidentifytheapplicationlayerDDoSformanalysisuserbehavior.
SystemdesignasshowninFigure1.
Figure1.
systemmoduledesignDescriptionofuserbrowsingbehaviorTheWeblogrecordsinformationabouteachuseraccesstotheserver,itincludingtheuser'sIPaddress,client,customeridentification,timeofWebserverreceivestherequest,customerrequests,requeststatuscode,transmittedbytessuchassomeaccessdata.
ExtractWeblog,preprocesstheinformationandtranslatetheresultsintoSession:1122{,,u,,u,,,u}kkiiSipttt(1)CalculatethedistancebetweensessionsInordertomoreaccuratelydescribetheuserbrowsingbehavior,betterreflectsthenormallegitimateusersandanomalyattacksusersbrowseaccesstothedifferenceinbehavior,soanalysisthesimilaritiesanddifferencesincontent,time,page-viewsandsequence.
Thispaperrefertothemethodwhichusethreevectorsandamatrixtodetaileddescripttheuser'ssessionfeatures.
Thencalculatethesimilaritybetweensession,themoresimilaritythedistancemoresmall.
Sotheabstractdistancecanbedefinedas1d=.
Definition1(contentvector):12(w,w,,w)knW,lengthofthevectorisn.
Itindicatestheservercontainspagenumber.
Theformulaisasfollows:[1,n](W,W)(W,W)iipqipqn()()(2)Definition2(timevector):12(t,t,,t)knT1,lengthofthevectorisn.
Itofuserbrowsingpagei.
Thesimilarityformulaoftwohitvectorsisasfollows:(T,T)1d(T,T)pqpq(3)Definition3(hitvector):12(hit,hit,,hit)knHit,lengthofthevectorisn.
Itindicatestimesnumberofauserbrowsapage,itreflectstheuser'sinterestdegreeeachpages.
(Hit,Hit)1d(Hit,Hit)pqpq(4)Definition4(sequencematrix):kHisannmatrix,itrecordsthenumberoftimesofjumpingbetweenthevariouspagesinthesession.
Thesimilarityformulaoftwotimevectorsisasfollows:(i,j)(i,j)(1,n)(1,n)2(H,H)(H,H)pqijpqn(5)Consideringthesimilaritybetweenthreevectorandamatrix,theoverallsimilarity(S,S)pq,isasfollows:(W,W)(T,T)(Hit,Hit)(H,H)(S,S)4pqpqpqpqpq(6)Numericallygreater,thesessionaremoresimilar,thedistancebetweentheresessionsissmaller.
Sothedistanceisasfollows:Theformulaisasfollow1d(S,S)(S,S)pqpq(7)DetectionofattacksTheSessionsisdefinedas,{Si1,2,N}iS,,SiisaN-dimensionalpatternvector.
Thesolutionistodivide12M1,letthetotaldispersionoftheallclusterstobeminimum.
Thetotaldistanceofallsamplestothecorrespondingcluster'scentersisminimum.
Theformulaisasfollow:()1(S,)jijMijXJdS(8)()Sjisthecluster'scenterj,()(S,S)jidisthedistancebetweenthesampleandthecluster'scenterj.
PSOClusteringalgorithmThispaperconsiderthecluster'scenterasaparticle'scorrespondedsolution,theparticle'slocationiscombinedwithcluster'scenter.
TherearetwoformsofapplicationlayerDDoSattacksandnormaluser,sothenumberofclustersisM=3.
Algorithmflowchartisasfollows:idPgdPgdPFigure2.
FlowchartPSOclusteringalgorithmExperimentalresultsandanalysisThispaperusethedatafromCentralSouthUniversity'svisualresearchgroup.
TForthelargeamountsofthedata,thepaperrandomlycollect100sampleand20attacksampledatafromtheWeblogofuseraaccesslogs.
ProgramdevelopmentplatformisMATLAB2014a.
TheclusteranalysisresultsinFigure3.
DatSkItcanbattacksnumaccesstoleanalysis,thConclusioThispapapplicationalgorithmexceptionbehavior,dbetweeneaSimulationperformancReference[1]Fenapplication[2]Chulayer[D].
C[3]Douate-of-art[J[4]Sunacks[J].
AC[5]Mu].
Journalo[6]YiGuangdongtaSessiok120beseenthatmberslightegitimateusheaccuracynperanalysisnlayerDDanddescribaccessbehadescribetheachsession,nexperimenceinadaptaesnYan,Jiajian,2008,25uanXu.
ResChongqingugligerisC,J],ComputenChang-huCTEElectrouthuprasannofSoftwareXie.
Researg:SunYatFigure3.
onActualtmodeldetlymorethaser'sbehaviywillbeincstheprincipDoSattacksbeuser'sbeavior,accoreuser'sbrothendetectntsshowthability.
aWang,Jinfe(4):966searchandiUniversity,,MitrokotsaerNetwork,a,LiuBin.
onicaSINCnaM,Manim.
2007,4(18rchonkey-senUniveClusteringTablattackSess20tectionrateannumberoior.
IfincreareasedaccoplesandchadetectionmehaviorofbrdingtotheowsingbehattheattackshatthismeengZhao.
D-969.
mplementat,2012.
aA.
DDoS,2004,(44):SurveyonNCA.
2009,7(maranG.
Di8):967-977technologyersity,2008resultsofEle1ClusteriionDeteisabout86ofactualatasetheamouordingly.
aracteristicsmethodwhbrowsingWedifferenceaviorbydasbehaviorbethodcandDDoSattackationofDDoattacksand643-666.
NewSolutio(37):1562-1istributedByofHTTP8Euclideanspingresultsectingattack236%fromthtacksistheuntofthedofapplicatihichisbaseWebpages.
oflegitimaataminingtbyusingPardetectattackdetectionoSattackdeddefencesmonAgainst1570.
BasedonWeattackdetecpaceprojectkSessionheTable1.
emodelcanata,aftercoionlayerDDedonPartiConsiderthateandabnotechnique,cticleSwarmckseffectivnsummary[etectionalgmachanismsDistributedebUser'sBctiononapptionAccuracy86%ThereasonnnotreflectorrespondingDoSattacksicleSwarmheattacksanormaluser'calculatethmClusteringvelyandha[J].
Studyongorithmson:ClassificadDenialofSBrowsingBeplication-rate%nofdetectstallnormalgclusterings,provideaClusteringasanuser's'sbrowsingesimilaritygalgorithm.
aveagoodncomputerapplicationationandstServiceAttehaviours[Jlayer[D].
slgagsgy.
drn.
[7]FengyuWang,ShoufengCao,JunXiao.
ADDoSdetectionmethodofcommunityoutreachbasedonWebapplicationlayer[J].
Journalofsoftware,2013,24(6):1263-1273.
[8]NengGao,DengguoFeng,.
ADOSattackdetectionbasedondataminingtechnology[J].
ChineseJournalofComputers,2006,29(6):944-950
专心做抗投诉服务器的VirtVPS上线瑞士机房,看中的就是瑞士对隐私的保护,有需要欧洲抗投诉VPS的朋友不要错过了。VirtVPS这次上新的瑞士服务器采用E-2276G处理器,Windows/Linux操作系统可选。VirtVPS成立于2018年,主营荷兰、芬兰、德国、英国机房的离岸虚拟主机托管、VPS、独立服务器、游戏服务器和外汇服务器业务。VirtVPS 提供世界上最全面的安全、完全受保护和私...
主机参考最新消息:JustHost怎么样?JustHost服务器好不好?JustHost好不好?JustHost是一家成立于2006年的俄罗斯服务器提供商,支持支付宝付款,服务器价格便宜,200Mbps大带宽不限流量,支持免费更换5次IP,支持控制面板自由切换机房,目前JustHost有俄罗斯5个机房可以自由切换选择,最重要的还是价格真的特别便宜,最低只需要87卢布/月,约8.5元/月起!just...
DediPath 商家成立时间也不过三五年,商家提供的云服务器产品有包括KVM和OPENVZ架构的VPS主机。翻看前面的文章有几次提到这个商家其中机房还是比较多的。其实对于OPENVZ架构的VPS主机以前我们是遇到比较多,只不过这几年很多商家都陆续的全部用KVM和XEN架构替代。这次DediPath商家有基于OPENVZ架构提供低价的VPS主机。这次四折的促销活动不包括512MB内存方案。第一、D...
隐士ddos为你推荐
海外虚拟主机空间国外虚拟主机和国内空间的差别?美国主机租用租用美国服务器有什么优势?域名代理怎样通过卖域名赚钱?广东虚拟主机大家推荐一下广东地区稳定的IDCvps虚拟主机VPS主机、虚拟主机和云主机 它们之间有什么区别?它们哪一个比较好?域名备案查询如何查看网站备案已经成功中文域名注册查询域名还分中文和英文的吗,在哪里可以查到中文域名到期了?美国服务器托管美国服务器托管好还是租用好空间域名空间域名什么意思域名申请申请域名需要哪些流程具体点 谢谢
美国虚拟主机 asp虚拟主机 东莞服务器租用 万网域名证书查询 狗爹 免费主机 英文简历模板word 12306抢票攻略 gtt 服务器硬件防火墙 怎么建立邮箱 免费mysql数据库 架设邮件服务器 服务器维护 net空间 服务器防火墙 wordpress中文主题 华为k3 广东主机托管 数据湾 更多