server隐士ddos
隐士ddos 时间:2021-01-13 阅读:(
)
DetectingDDoSattackbasedonPSOClusteringalgorithmXiaohongHao1,a,BoyuMeng1,b,KaichengGu1,c1SchoolofComputer&Communication,LanZhouUniversityofTechnology,Lanzhou730050a;316475958@qq.
combboyu8816@163.
com;cgkc1314@qq.
comKeyword:application-tierDistributedDenialofService;browsebehavior;particleclusteringalgorithm;anomalydetection.
Abstract.
First,thisarticleanalyzestheApplicationlayerDistributedDenialofService(DDoS)'sattackprincipleandcharacteristic.
Accordingtothedifferencebetweennormalusers'browsingpatternsandabnormalones,usersessionsareextractedfromtheweblogsofnormalusersandsimilaritiesbetweendifferentsessionsarecalculated.
BecausetraditionalK-meanClusteringalgorithmiseasytofailintolocaloptimal,theParticleSwarmOptimizationK-meanClusteringalgorithmisusedtogenerateadetectingmodel.
ThismodelcanbeenusedtodetectwhethertheundeterminedsessionsareDDoSattacksornot.
Theexperimentshowthatthismethodcandetectattackseffectivelyandhaveagoodperformanceinadaptability.
IntroductionDistributeddenialofserviceattacksisoneofthemajorthreatstothesecurityoftheInternet,whichintheabsenceofanywarningconsumeresourcesofthetarget,itcanbemadeatthenetworklayerorapplicationlayer[1].
ApplicationlayerDDoShavetwoattackmethods[2]:bandwidthdepletionmodeandthehostresourcedepletionmode.
Atpresent,methodstosolvethesesimilarproblemincluding:Intrusiondetectiontechnologybasedondatapacket[3]Detectionmethodbasedonflowlimitation[4],Detectionmethodbasedonfrequencyofaccess[5],DetectionmethodbasedonHiddensemi-Markovmodel[6],Detectionmethodbasedontheanalysisofuserbehaviordatamining[7].
Theliterature[8]proposesanewDosdetectionbasedondatamining,whichcombinedApriorialgorithmandk-meanclusteringalgorithm.
ItusingnetworkdatatodetectDDoS,soitcannotcopewiththeapplicationlayerDDos.
Thek-meanalgorithmhaveitselfflawed,itoverlyneedtoselectthefitclustercentersandforsomeinitialvalue,itmayconvergetosub-optimalsolution.
ApplicationlayerDDoSdetectionbasedonPSOclusteringalgorithmPrincipleandmodelofdetection:ThispaperestablishdetectionmodelwhichisusingtoidentifytheapplicationlayerDDoSformanalysisuserbehavior.
SystemdesignasshowninFigure1.
Figure1.
systemmoduledesignDescriptionofuserbrowsingbehaviorTheWeblogrecordsinformationabouteachuseraccesstotheserver,itincludingtheuser'sIPaddress,client,customeridentification,timeofWebserverreceivestherequest,customerrequests,requeststatuscode,transmittedbytessuchassomeaccessdata.
ExtractWeblog,preprocesstheinformationandtranslatetheresultsintoSession:1122{,,u,,u,,,u}kkiiSipttt(1)CalculatethedistancebetweensessionsInordertomoreaccuratelydescribetheuserbrowsingbehavior,betterreflectsthenormallegitimateusersandanomalyattacksusersbrowseaccesstothedifferenceinbehavior,soanalysisthesimilaritiesanddifferencesincontent,time,page-viewsandsequence.
Thispaperrefertothemethodwhichusethreevectorsandamatrixtodetaileddescripttheuser'ssessionfeatures.
Thencalculatethesimilaritybetweensession,themoresimilaritythedistancemoresmall.
Sotheabstractdistancecanbedefinedas1d=.
Definition1(contentvector):12(w,w,,w)knW,lengthofthevectorisn.
Itindicatestheservercontainspagenumber.
Theformulaisasfollows:[1,n](W,W)(W,W)iipqipqn()()(2)Definition2(timevector):12(t,t,,t)knT1,lengthofthevectorisn.
Itofuserbrowsingpagei.
Thesimilarityformulaoftwohitvectorsisasfollows:(T,T)1d(T,T)pqpq(3)Definition3(hitvector):12(hit,hit,,hit)knHit,lengthofthevectorisn.
Itindicatestimesnumberofauserbrowsapage,itreflectstheuser'sinterestdegreeeachpages.
(Hit,Hit)1d(Hit,Hit)pqpq(4)Definition4(sequencematrix):kHisannmatrix,itrecordsthenumberoftimesofjumpingbetweenthevariouspagesinthesession.
Thesimilarityformulaoftwotimevectorsisasfollows:(i,j)(i,j)(1,n)(1,n)2(H,H)(H,H)pqijpqn(5)Consideringthesimilaritybetweenthreevectorandamatrix,theoverallsimilarity(S,S)pq,isasfollows:(W,W)(T,T)(Hit,Hit)(H,H)(S,S)4pqpqpqpqpq(6)Numericallygreater,thesessionaremoresimilar,thedistancebetweentheresessionsissmaller.
Sothedistanceisasfollows:Theformulaisasfollow1d(S,S)(S,S)pqpq(7)DetectionofattacksTheSessionsisdefinedas,{Si1,2,N}iS,,SiisaN-dimensionalpatternvector.
Thesolutionistodivide12M1,letthetotaldispersionoftheallclusterstobeminimum.
Thetotaldistanceofallsamplestothecorrespondingcluster'scentersisminimum.
Theformulaisasfollow:()1(S,)jijMijXJdS(8)()Sjisthecluster'scenterj,()(S,S)jidisthedistancebetweenthesampleandthecluster'scenterj.
PSOClusteringalgorithmThispaperconsiderthecluster'scenterasaparticle'scorrespondedsolution,theparticle'slocationiscombinedwithcluster'scenter.
TherearetwoformsofapplicationlayerDDoSattacksandnormaluser,sothenumberofclustersisM=3.
Algorithmflowchartisasfollows:idPgdPgdPFigure2.
FlowchartPSOclusteringalgorithmExperimentalresultsandanalysisThispaperusethedatafromCentralSouthUniversity'svisualresearchgroup.
TForthelargeamountsofthedata,thepaperrandomlycollect100sampleand20attacksampledatafromtheWeblogofuseraaccesslogs.
ProgramdevelopmentplatformisMATLAB2014a.
TheclusteranalysisresultsinFigure3.
DatSkItcanbattacksnumaccesstoleanalysis,thConclusioThispapapplicationalgorithmexceptionbehavior,dbetweeneaSimulationperformancReference[1]Fenapplication[2]Chulayer[D].
C[3]Douate-of-art[J[4]Sunacks[J].
AC[5]Mu].
Journalo[6]YiGuangdongtaSessiok120beseenthatmberslightegitimateusheaccuracynperanalysisnlayerDDanddescribaccessbehadescribetheachsession,nexperimenceinadaptaesnYan,Jiajian,2008,25uanXu.
ResChongqingugligerisC,J],ComputenChang-huCTEElectrouthuprasannofSoftwareXie.
Researg:SunYatFigure3.
onActualtmodeldetlymorethaser'sbehaviywillbeincstheprincipDoSattacksbeuser'sbeavior,accoreuser'sbrothendetectntsshowthability.
aWang,Jinfe(4):966searchandiUniversity,,MitrokotsaerNetwork,a,LiuBin.
onicaSINCnaM,Manim.
2007,4(18rchonkey-senUniveClusteringTablattackSess20tectionrateannumberoior.
IfincreareasedaccoplesandchadetectionmehaviorofbrdingtotheowsingbehattheattackshatthismeengZhao.
D-969.
mplementat,2012.
aA.
DDoS,2004,(44):SurveyonNCA.
2009,7(maranG.
Di8):967-977technologyersity,2008resultsofEle1ClusteriionDeteisabout86ofactualatasetheamouordingly.
aracteristicsmethodwhbrowsingWedifferenceaviorbydasbehaviorbethodcandDDoSattackationofDDoattacksand643-666.
NewSolutio(37):1562-1istributedByofHTTP8Euclideanspingresultsectingattack236%fromthtacksistheuntofthedofapplicatihichisbaseWebpages.
oflegitimaataminingtbyusingPardetectattackdetectionoSattackdeddefencesmonAgainst1570.
BasedonWeattackdetecpaceprojectkSessionheTable1.
emodelcanata,aftercoionlayerDDedonPartiConsiderthateandabnotechnique,cticleSwarmckseffectivnsummary[etectionalgmachanismsDistributedebUser'sBctiononapptionAccuracy86%ThereasonnnotreflectorrespondingDoSattacksicleSwarmheattacksanormaluser'calculatethmClusteringvelyandha[J].
Studyongorithmson:ClassificadDenialofSBrowsingBeplication-rate%nofdetectstallnormalgclusterings,provideaClusteringasanuser's'sbrowsingesimilaritygalgorithm.
aveagoodncomputerapplicationationandstServiceAttehaviours[Jlayer[D].
slgagsgy.
drn.
[7]FengyuWang,ShoufengCao,JunXiao.
ADDoSdetectionmethodofcommunityoutreachbasedonWebapplicationlayer[J].
Journalofsoftware,2013,24(6):1263-1273.
[8]NengGao,DengguoFeng,.
ADOSattackdetectionbasedondataminingtechnology[J].
ChineseJournalofComputers,2006,29(6):944-950
ucloud6.18推出全球大促活动,针对新老用户(个人/企业)提供云服务器促销产品,其中最低配快杰云服务器月付5元起,中国香港快杰型云服务器月付13元起,最高可购3年,有AMD/Intel系列。当然这都是针对新用户的优惠。注意,UCloud全球有31个数据中心,29条专线,覆盖五大洲,基本上你想要的都能找到。注意:以上ucloud 618优惠都是新用户专享,老用户就随便看看!点击进入:uclou...
香港服务器租用多少钱一个月?香港服务器受到很多朋友的青睐,其中免备案成为其特色之一。很多用户想了解香港云服务器价格多少钱,也有同行询问香港服务器的租赁价格,一些实际用户想要了解香港服务器的市场。虽然价格是关注的焦点,但价格并不是香港服务器的全部选择。今天小编介绍了一些影响香港服务器租赁价格的因素,以及在香港租一个月的服务器要花多少钱。影响香港服务器租赁价格的因素:1.香港机房选择香港机房相当于选择...
7月份已经过去了一半,炎热的夏季已经来临了,主机圈也开始了大量的夏季促销攻势,近期收到一些商家投稿信息,提供欧美或者亚洲地区主机产品,价格优惠,这里做一个汇总,方便大家参考,排名不分先后,以邮件顺序,少部分因为促销具有一定的时效性,价格已经恢复故暂未列出。HostMem部落曾经分享过一次Hostmem的信息,这是一家提供动态云和经典云的国人VPS商家,其中动态云硬件按小时计费,流量按需使用;而经典...
隐士ddos为你推荐
国际域名注册如何在国外域名注册商注册国际域名哩国际域名请问国际顶级域名有什么?美国虚拟空间请问租用美国虚拟空间,需不需要遵守美国的法律?域名代理域名在万网买好还是在它的代理商那里买韩国虚拟主机香港和韩国的虚拟主机哪个比较好?郑州虚拟主机虚拟主机哪个好点,用过的推荐下天津虚拟主机天津APP开发的比较专业的公司有哪些?北京虚拟主机北京服务好的虚拟主机代理商介绍几个?windows虚拟主机在windows上怎么安装虚拟机jsp虚拟主机java虚拟主机空间怎么选择,国内jsp虚拟主机比较稳定,现在java项目做好后需要推荐一下吧
电信测速器 GGC 踢楼 cve-2014-6271 美国主机网 鲨鱼机 国内永久免费云服务器 512av 20g硬盘 tightvnc 卡巴斯基试用版 php空间购买 www789 服务器维护 百度云空间 lamp怎么读 云销售系统 网站防护 九零网络 phpinfo 更多