server隐士ddos
隐士ddos 时间:2021-01-13 阅读:(
)
DetectingDDoSattackbasedonPSOClusteringalgorithmXiaohongHao1,a,BoyuMeng1,b,KaichengGu1,c1SchoolofComputer&Communication,LanZhouUniversityofTechnology,Lanzhou730050a;316475958@qq.
combboyu8816@163.
com;cgkc1314@qq.
comKeyword:application-tierDistributedDenialofService;browsebehavior;particleclusteringalgorithm;anomalydetection.
Abstract.
First,thisarticleanalyzestheApplicationlayerDistributedDenialofService(DDoS)'sattackprincipleandcharacteristic.
Accordingtothedifferencebetweennormalusers'browsingpatternsandabnormalones,usersessionsareextractedfromtheweblogsofnormalusersandsimilaritiesbetweendifferentsessionsarecalculated.
BecausetraditionalK-meanClusteringalgorithmiseasytofailintolocaloptimal,theParticleSwarmOptimizationK-meanClusteringalgorithmisusedtogenerateadetectingmodel.
ThismodelcanbeenusedtodetectwhethertheundeterminedsessionsareDDoSattacksornot.
Theexperimentshowthatthismethodcandetectattackseffectivelyandhaveagoodperformanceinadaptability.
IntroductionDistributeddenialofserviceattacksisoneofthemajorthreatstothesecurityoftheInternet,whichintheabsenceofanywarningconsumeresourcesofthetarget,itcanbemadeatthenetworklayerorapplicationlayer[1].
ApplicationlayerDDoShavetwoattackmethods[2]:bandwidthdepletionmodeandthehostresourcedepletionmode.
Atpresent,methodstosolvethesesimilarproblemincluding:Intrusiondetectiontechnologybasedondatapacket[3]Detectionmethodbasedonflowlimitation[4],Detectionmethodbasedonfrequencyofaccess[5],DetectionmethodbasedonHiddensemi-Markovmodel[6],Detectionmethodbasedontheanalysisofuserbehaviordatamining[7].
Theliterature[8]proposesanewDosdetectionbasedondatamining,whichcombinedApriorialgorithmandk-meanclusteringalgorithm.
ItusingnetworkdatatodetectDDoS,soitcannotcopewiththeapplicationlayerDDos.
Thek-meanalgorithmhaveitselfflawed,itoverlyneedtoselectthefitclustercentersandforsomeinitialvalue,itmayconvergetosub-optimalsolution.
ApplicationlayerDDoSdetectionbasedonPSOclusteringalgorithmPrincipleandmodelofdetection:ThispaperestablishdetectionmodelwhichisusingtoidentifytheapplicationlayerDDoSformanalysisuserbehavior.
SystemdesignasshowninFigure1.
Figure1.
systemmoduledesignDescriptionofuserbrowsingbehaviorTheWeblogrecordsinformationabouteachuseraccesstotheserver,itincludingtheuser'sIPaddress,client,customeridentification,timeofWebserverreceivestherequest,customerrequests,requeststatuscode,transmittedbytessuchassomeaccessdata.
ExtractWeblog,preprocesstheinformationandtranslatetheresultsintoSession:1122{,,u,,u,,,u}kkiiSipttt(1)CalculatethedistancebetweensessionsInordertomoreaccuratelydescribetheuserbrowsingbehavior,betterreflectsthenormallegitimateusersandanomalyattacksusersbrowseaccesstothedifferenceinbehavior,soanalysisthesimilaritiesanddifferencesincontent,time,page-viewsandsequence.
Thispaperrefertothemethodwhichusethreevectorsandamatrixtodetaileddescripttheuser'ssessionfeatures.
Thencalculatethesimilaritybetweensession,themoresimilaritythedistancemoresmall.
Sotheabstractdistancecanbedefinedas1d=.
Definition1(contentvector):12(w,w,,w)knW,lengthofthevectorisn.
Itindicatestheservercontainspagenumber.
Theformulaisasfollows:[1,n](W,W)(W,W)iipqipqn()()(2)Definition2(timevector):12(t,t,,t)knT1,lengthofthevectorisn.
Itofuserbrowsingpagei.
Thesimilarityformulaoftwohitvectorsisasfollows:(T,T)1d(T,T)pqpq(3)Definition3(hitvector):12(hit,hit,,hit)knHit,lengthofthevectorisn.
Itindicatestimesnumberofauserbrowsapage,itreflectstheuser'sinterestdegreeeachpages.
(Hit,Hit)1d(Hit,Hit)pqpq(4)Definition4(sequencematrix):kHisannmatrix,itrecordsthenumberoftimesofjumpingbetweenthevariouspagesinthesession.
Thesimilarityformulaoftwotimevectorsisasfollows:(i,j)(i,j)(1,n)(1,n)2(H,H)(H,H)pqijpqn(5)Consideringthesimilaritybetweenthreevectorandamatrix,theoverallsimilarity(S,S)pq,isasfollows:(W,W)(T,T)(Hit,Hit)(H,H)(S,S)4pqpqpqpqpq(6)Numericallygreater,thesessionaremoresimilar,thedistancebetweentheresessionsissmaller.
Sothedistanceisasfollows:Theformulaisasfollow1d(S,S)(S,S)pqpq(7)DetectionofattacksTheSessionsisdefinedas,{Si1,2,N}iS,,SiisaN-dimensionalpatternvector.
Thesolutionistodivide12M1,letthetotaldispersionoftheallclusterstobeminimum.
Thetotaldistanceofallsamplestothecorrespondingcluster'scentersisminimum.
Theformulaisasfollow:()1(S,)jijMijXJdS(8)()Sjisthecluster'scenterj,()(S,S)jidisthedistancebetweenthesampleandthecluster'scenterj.
PSOClusteringalgorithmThispaperconsiderthecluster'scenterasaparticle'scorrespondedsolution,theparticle'slocationiscombinedwithcluster'scenter.
TherearetwoformsofapplicationlayerDDoSattacksandnormaluser,sothenumberofclustersisM=3.
Algorithmflowchartisasfollows:idPgdPgdPFigure2.
FlowchartPSOclusteringalgorithmExperimentalresultsandanalysisThispaperusethedatafromCentralSouthUniversity'svisualresearchgroup.
TForthelargeamountsofthedata,thepaperrandomlycollect100sampleand20attacksampledatafromtheWeblogofuseraaccesslogs.
ProgramdevelopmentplatformisMATLAB2014a.
TheclusteranalysisresultsinFigure3.
DatSkItcanbattacksnumaccesstoleanalysis,thConclusioThispapapplicationalgorithmexceptionbehavior,dbetweeneaSimulationperformancReference[1]Fenapplication[2]Chulayer[D].
C[3]Douate-of-art[J[4]Sunacks[J].
AC[5]Mu].
Journalo[6]YiGuangdongtaSessiok120beseenthatmberslightegitimateusheaccuracynperanalysisnlayerDDanddescribaccessbehadescribetheachsession,nexperimenceinadaptaesnYan,Jiajian,2008,25uanXu.
ResChongqingugligerisC,J],ComputenChang-huCTEElectrouthuprasannofSoftwareXie.
Researg:SunYatFigure3.
onActualtmodeldetlymorethaser'sbehaviywillbeincstheprincipDoSattacksbeuser'sbeavior,accoreuser'sbrothendetectntsshowthability.
aWang,Jinfe(4):966searchandiUniversity,,MitrokotsaerNetwork,a,LiuBin.
onicaSINCnaM,Manim.
2007,4(18rchonkey-senUniveClusteringTablattackSess20tectionrateannumberoior.
IfincreareasedaccoplesandchadetectionmehaviorofbrdingtotheowsingbehattheattackshatthismeengZhao.
D-969.
mplementat,2012.
aA.
DDoS,2004,(44):SurveyonNCA.
2009,7(maranG.
Di8):967-977technologyersity,2008resultsofEle1ClusteriionDeteisabout86ofactualatasetheamouordingly.
aracteristicsmethodwhbrowsingWedifferenceaviorbydasbehaviorbethodcandDDoSattackationofDDoattacksand643-666.
NewSolutio(37):1562-1istributedByofHTTP8Euclideanspingresultsectingattack236%fromthtacksistheuntofthedofapplicatihichisbaseWebpages.
oflegitimaataminingtbyusingPardetectattackdetectionoSattackdeddefencesmonAgainst1570.
BasedonWeattackdetecpaceprojectkSessionheTable1.
emodelcanata,aftercoionlayerDDedonPartiConsiderthateandabnotechnique,cticleSwarmckseffectivnsummary[etectionalgmachanismsDistributedebUser'sBctiononapptionAccuracy86%ThereasonnnotreflectorrespondingDoSattacksicleSwarmheattacksanormaluser'calculatethmClusteringvelyandha[J].
Studyongorithmson:ClassificadDenialofSBrowsingBeplication-rate%nofdetectstallnormalgclusterings,provideaClusteringasanuser's'sbrowsingesimilaritygalgorithm.
aveagoodncomputerapplicationationandstServiceAttehaviours[Jlayer[D].
slgagsgy.
drn.
[7]FengyuWang,ShoufengCao,JunXiao.
ADDoSdetectionmethodofcommunityoutreachbasedonWebapplicationlayer[J].
Journalofsoftware,2013,24(6):1263-1273.
[8]NengGao,DengguoFeng,.
ADOSattackdetectionbasedondataminingtechnology[J].
ChineseJournalofComputers,2006,29(6):944-950
RAKSmart 商家最近动作还是比较大的,比如他们也在增加云服务器产品,目前已经包含美国圣何塞和洛杉矶机房,以及这个月有新增的中国香港机房,根据大趋势云服务器算是比较技术流的趋势。传统的VPS主机架构方案在技术层面上稍微落后一些,当然也是可以用的。不清楚是商家出于对于传统VPS主机清理库存,还是多渠道的产品化营销,看到RAKSmart VPS主机提供美国、香港和日本机房的半价促销,当然也包括其他...
CloudCone是一家成立于2017年的国外VPS主机商,提供独立服务器租用和VPS主机,其中VPS基于KVM架构,多个不同系列,譬如常规VPS、大硬盘VPS等等,数据中心在洛杉矶MC机房。商家2021年Flash Sale活动继续,最低每月1.99美元,支持7天退款到账户,支持使用PayPal或者支付宝付款,先充值后下单的方式。下面列出几款VPS主机配置信息。CPU:1core内存:768MB...
WordPress专业外贸企业网站搭建模版,特色专业外贸企业风格 + 自适应网站开发设计 通用流行的外贸企业网站模块 + 更好的SEO搜索优化和收录 自定义多模块的产品展示功能 + 高效实用的后台自定义模块设置!采用标准的HTML5+CSS3语言开发,兼容当下的各种主流浏览器: IE 6+(以及类似360、遨游等基于IE内核的)、Firefox、Google Chrome、Safari、Opera...
隐士ddos为你推荐
vps虚拟主机虚拟主机和VPS的主要区别有哪些?主要是哪些参数不一样?vps汽车的VPS是什么,和GPS有什么区别com域名空间我想注册个.com域名和买一个100M空间。ip代理地址使用IP代理会有什么坏处吗?国内ip代理求一些国内《ip代理》地址大全美国服务器托管美国服务器托管好还是租用好域名备案什么是域名备案?成都虚拟空间成都市规划信息技术中心如何?免费网站空间免费网站空间哪个好虚拟主机控制面板我想问下虚拟主机的控制面板有哪些还不错的品牌呢?价格不能太高最好是性价比比较高一点就行了
cn域名备案 什么是域名解析 电信测速器 site5 网站实时监控 web服务器架设软件 国内php空间 网站挂马检测工具 网通ip 蜗牛魔方 台湾谷歌地址 柚子舍官网 gspeed 新家坡 速度云 免费吧 1g内存 什么是服务器托管 cn3 上海联通宽带测速 更多