recognisingyahoo.cn

yahoo.cn  时间:2021-05-21  阅读:()
ANEWFRAMEWORKOFMOVINGTARGETDETECTIONANDTRACKINGFORUAVVIDEOAPPLICATIONWenshuaiYua,*,XuchuYub,PengqiangZhang,JunZhouaInstituteofSurveyingandMapping,450052,Zhengzhou,Henan,China-ws_yu@yahoo.
cnbInstituteofSurveyingandMapping,450052,Zhengzhou,Henan,China-xc_yu@yahoo.
comWGS,WGIII/5KEYWORDS:ImageProcessing,ComputerVision,MotionCompensation,MotionDetection,ObjectTracking,ProcessModeling,UAVVideoABSTRACT:Unmannedaerialvehicleisanewplatformforremotesensing,andtheprimarysensorofitisvideocamera.
Video,alsocouldbecalleddynamicimageisthemostimportantdataformatwhichobtainedbyunmannedaerialvehicle.
ThecombinationofvideodataandUAVprovidesanovelremotesensingpattern.
Movingtargetdetectionandtrackingisanimportanttechniqueofvideoprocessingforitshugepotentialinmilitaryandotherapplications.
Thetechniquealwayscontainsthreebasicparts:motioncompensation,motiondetectionandobjecttracking.
Eachpartadoptskindsoftechnicalmethodstosolvetheproblemsinrespectivefields.
Thepaper,basedontheanalysisofthealgorithmsrelatedtothetechnology,presentsanewframeworkofit.
Differentfromothermovingtargetdetectionandtrackingframeworks,theframeworkperformsaparallelprocessingamongthethreesectionsbyincludingcollaborationcontrolanddatacapturemodules.
Comparingwithotherframeworks,itismoresuitabletotheUAVapplications,becauseofitsadvantagessuchastransferringparametersinsteadofrealdataandofferinginterfacetouserorexteriorsystem.
*Correspondingauthor.
Tel.
:+86-13526657654;E-mailaddress:.
ws_yu@yahoo.
cn.
1.
INTRODUCTIONUnmannedAerialVehicle(UAV)isanewdevelopingremotesensingplatform,anddifferentfromotherplatforms,forexamplesatelliteorairplane,itcarriesvideosensors.
SovideodataisthemaininformationgotbyUAV.
Videocouldbeinterpretedasdynamicimage,anddissimilartostaticimage,itcanreflectmotioninformationthroughthechangingofgray-level.
AnimportantresearchfieldofvideoprocessingforUAVapplicationismovingtargetdetectionandtracking.
Inactualenvironment,themovingtargetscouldbevehicles,peopleoraircrafts,andinsomespecialconditions,thesetargetsmightbeinterestingandvaluable.
Buttheproblemthatdetectingthetargetsfromthecomplicatedbackgroundandtrackingthemsuccessivelyisatoughwork.
Theremanytechniquemethodsonmovingtargetdetectionandtracking.
Mostofthemanalysedtheproblemundertheconditionofstaticbackground,forthestillnessofbackgroundmakesthedetectionandtrackingcomparativelyeasier,andthesekindsofmethodcanbeusedinsomeapplicationssuchassafetymonitoring.
Contrastingtothem,itismuchmoredifficultfortargetdetectionandtrackingwithmovingbackground.
EspeciallyforUAVvideodatawhosebackgroundchangingrapidlyandalwayshascomplextexturecharacteristic,itisreallyachallengingtasktosolvethetechnicalproblem.
FormovingtargetdetectionandtrackingusingUAVvideo,aratherreasonabletechnicalapproachisadoptedwidely.
Firstly,inordertocompensatethebackgroundmotioncausedbymovementofcamera,stabilizingthebackgroundthroughtheframe-to-frameregistrationofvideoimagesequencewouldbetakenasapreconditionofdetectionandtracking.
Asignificantproductthepanoramicimageisbuiltinthesameprocess.
Secondly,basingonthestabilizationofbackgroundandemployingpropermethods,thenextoperationisseparatingthetargetimagefromthebackgroundtorealizedetectionofmovingtarget.
Finally,movingtargettrackingislocatingtheobjectinimagebymeansofmodelingthetargetaccordingtotarget'sfeaturepropertyandchoosingappropriatetrackingmethod.
Accordingtothetechnicalapproachmentionedabove,thetechniquecanbedividedintothreesections:motioncompensation,motiondetectionandobjecttracking.
Italwaystakesthethreepartsasaserialcourseandimplementsthemoneafteranotherinaprocessing.
Actually,fortherearemutualactivitiesbetweendifferentsectionsofthetechnique,itisnotnecessarytoprocessthetechnologyorderly,whichmeansexecutingitstepbystep.
Soitnotonlyneedsaframeworktointegratealltheseparts,butalsorequirestheframeworkmoreeffectiveandpractical.
2.
MOTIONCOMPENSATIONMotioncompensationisthebasicpartofthetechnique,especiallyformovingbackgroundvideo.
Itestimatestheego-motionofcameraandcompensatesthebackgroundmotionofimage,andthroughthisway,itmakesthemovingobjectsmoreobviousandthedetectionoftargeteasier.
Therearetwokindsofapproachesadopted,oneisfeature-basedmethods,andtheotherisflow-basedmethods.
Thoughthelatteronehasrigoroustheoryfoundation,theformeroneismorepopular.
Feature-basedmethodsextractfeaturesandmatchthembetweenimageframestofittheglobalmotionmodelofvideoimagesequence.
Featureextractionandmatchingarepreparedforimageregistration.
Theimageregistrationthatimplementsframe-to-frameregistrationofthevideoimagesequenceisthekeypointofmotioncompensation.
Theresultofimageregistrationcouldbeusedintwodirections,imagestabilizationandimagemosaicking.
Formercanrestrainthemovingbackgroundandfacilitatethedetectingofmovingtarget,andlattercanupdatethelocalimage(alwaysexpresswiththeortho-image)andhelptoformthetrajectoryoftrackedobject.
2.
1FeatureExtractionandMatchingInfeatureextraction,choosingarightkindoffeatureshouldbeconsideredforonething.
Thefeaturecouldbepoint,lineorsurface.
Ithasbeenproventhatcornerfeatureisrobustandeasytooperate.
Harrisoperator(Harrisetal.
,1988)isatypicalcornerdetector,anditsprincipleisthatrecognisingthefeaturesbyjudgingthedifferenceofgray-level'schangewhilemovingthesearchwindow.
Detectingresultsoftwoseriesframesshowninfigure1,andthereisgoodcoherencebetweenthetwo,soitshouldbethoughtthattheoperatorhasastableperformanceandtheresultscouldbetakenastheinputofmatching.
Afterextractingthefeatures,acoarsematchingwouldbemadetogetapproximatematchingresults,andthiscourseisrealizedbymeasuringthesimilarityofcorrespondingfeatures.
Becausetherearemanymismatchesintheapproximateresultsandtheycannotmeettherequirementsofregistration,soithastoimplementafinematchingtoremovethemismatches.
AsuitablewaytokeepinliersiscombiningofepipolargeometryandRANSACalgorithm.
Epipolargeometryoffersamodel—fundamentalmatrixtothematching,causethetwoviewsshouldsatisfytheepipolarrestrictioninstereovision.
RANSAC—randomsampleconsensusalgorithm(Fischleretal.
,1981)isanonlinearalgorithm.
FittingdatamodelwithRANSACmaximallyrestrainstheimpactofoutliers,andreducesthecomputationtoacertainextent.
Thefinematchingisfittingthefundamentalmatrixthroughiterationcomputingandidentifyingmostoftheoutliers.
Figure2presentstheresultsofmatchingaftereliminatingwrongcorrespondencesfromthecandidatematcheswhichgotfromthecoarsematching.
Itcanbeseenthatthoughbulkofmismatcheshavebeenremoved,therestillafewincorrectcorrespondencesremain.
2.
2ImageStabilizationImagestabilizationiscompensationofunwantedmotioninimagesequences.
Thematterofimagestabilizationisimageregistration.
Thetransformationmodelofimageregistrationisnotcomplicate.
Ausualchoiceisaffinetransformationorprojectivetransformation.
Figure3.
ThecomparationofdifferenceresultsbeforeandafterimageregistrationThenormalmodeforregistrationiscalculatingtheparametersofthemodelusingcorrespondingpoints.
Whethertheprecisionofimageregistrationisgoodornotdependsontheresultsofmatching.
Soimagestabilizationcouldbedonebycomputingtheregistrationparameterswiththeoutputsoffinematchingandrectifyingthepreparedframetoreferenceframe.
Inordertooptimizetheresultofregistration,repeatingthecourseuntiltheaccuracyofregistrationgoodenough.
Figure3showsthecomparationofdifferenceresultsbeforeandafterimageregistration.
Theleftoneisthedifferenceresultpreviousregistration.
Exceptsomeregionswithsametextures,mostofthebackgroundimagecannotbesubtracted,especiallysomeobviousobjectsandlinearfeatures.
Therightoneisthedifferenceresultafterimageregistration.
Thoughthereareobjectsedgesstilldistinct,majorityofbackgroundimagegotbetterelimination.
Figure1.
DetectingresultsusingHarriscorneroperator2.
3ImageMosaickingMosaickingofvideoimagesequenceisrectifyingallframestothereferenceframeandpiecingthemtogetherasapanoramicimage.
Thereferenceframemaybethefirstframeorachosenone.
Akeystepforthegenerationofpanoramaisimageregistration.
Itisunavoidableaccumulateregistrationerrorsduringaligningtheimagesequences.
Theaccumulationoferrorscouldinducemisalignmentofadjoiningframes.
Toresolvetheproblem,therearemanymethodshavebeentried,suchasrefiningregistrationandintroducingreferencedata.
AnUAVvideoimagemosaickingisillustratedinfigure4,andtherearesomepiecingseamsforregistrationerrors.
Figure2.
OverlayoftwosuccessiveframesaftereliminatingwrongcorrespondenceswithRANSAC3.
MOTIONDETECTIONThecompensationhasreducedtheimpactofbackgroundmotion,buttherearestillsomeinfluencesofitremaininthestabilizedimage.
Motiondetectiondividesthevideoimageintotargetandbackgroundwhetheritismovingornot.
Therearemanyprocessingmethodsintroducedintomotiondetection,andthecommonpointofthemistheusingofmotioninformation.
Forstaticbackground,itusuallyprocessesonthebackground,suchasbackgroundmodelingmethod.
Formovingbackground,itassumesthedynamicimagejusthastargetandbackgroundtwopartitions,andiftherearemorethanonetargetinthevideo,itwillsegmenttheimageintonumbersofpartitionscorrespondingtothetargets,andinsomemethodsitsetsthetargetsondifferentlayersinordertomaketheprocessmuchfaster.
Theprimaryinformationfordetectingismotioninformation,ortheintensitychangesbetweenadjacentvideoimageframes.
3.
1MotionDetectionForvideoimagecapturedbymovingcamera,thebackgroundmotioncan'tbecounteractedabsolutelythroughimagestabilization.
Itmaynoteffectiveenoughtodetectthemovingtargetbyrestrainingthemovementofbackground.
Alltheimageinformationcouldbeclassifiedintothreekinds:target,backgroundandnoise.
Differentclassescorrespondtodifferentmotionfieldsindynamicimage.
Ifweknowtheclasscharacteristicsofpoints,wecanusethemtofittheparametricsetsofdifferentmotionregions.
Contrarily,ifweknowtheparametersofmotionvectors,wecoulddividethepixelsintodifferentfieldsaccordingmotioninformation.
Inmostofcases,bothofthecharacteristicsandparametersareunknown.
Theclusteringofimagepixelsisaprobabilityquestion.
AtypicalsolutionformotionclassificationisunitingthemixtureprobabilitymodelandEM—ExpectationMaximumalgorithm(Weissetal.
,1996).
Inpractice,itcanmakeahypothesisthattherearetwolayersinthedynamicimage,backgroundlayerandtargetlayer.
Afterimagestabilization,calculatingthemotionvectorsofallpixelsandassumingthattheflowvectorsoftargetlayerislargerthantheonesofbackgroundlayertoestimatetheweightsofmixturemodelwithiteratedcomputation.
Itwillhavethetargetdetecteduntiltheiterationconvergence.
Theparametersofimageregistrationcouldbetheinitialvaluesofiteration.
Figure5presentsadetectionresultforonevehicletargetinthreeframes.
3.
2MotionSegmentationmthesegmentationwiththeopticalflowformationonly.
enodesinthiswindowwhenconstructingtheweightedgraph.
4.
OBJECTTRACKINGFigure5.
AmotiondetectionresultwithmixturemodelndEMMotionsegmentationisakindofvideosegmentation,becauseitpartitionsvideoorimagesequenceintospatio-temporalregionsbasingonmotioninformation.
Therefore,itisessentiallysameasthemotiondetection.
Generally,motionsegmentationhastwobasicclassesthatopticalflowsegmentationmethodsanddirectmethods(Boviketal.
,2005).
Inperfectcases,therearejusttwokindsofopticalflowassociatedwiththemovementsofbackgroundandtarget.
However,opticalflowisnotanexactreflectionofmotionfieldbutanexplanationofilluminationchange.
Therefore,itisnotrigoroustoperforinAusuallyadoptionisgroupinginmotionfeaturespacetorealizethesegmentation.
Howtosettherelationbetweenclusteringanddynamicimageisanotherquestion.
Themethodofgraphtheoryisanaturalsolutionformotionsegmentation.
Pixelsinimagesequencecouldbetakenasthenodesofgraph,andifwepartitionthegraph,accordingmotionfeatures,maysegmenttheimageatthesametime.
Edgetheweightmeansthesimilarityoffeaturesbetweenthetwonodeswhichconnectedbyit.
Inmotionsegmentation,thissimilaritymeasurementisthemotionfeaturevectorofeachpixel.
Thegraphisnotconstructedinoneimageframe.
Itshouldconnectallthenodesinaspatiotemporalregion,andtheregionmayacrossseveralframes.
Aftertheconstructionoftheweightedgraph,itcouldsegmentthevideoimagesequenceusingbynormalizedcutmethod(Shietal.
,1998).
Inordertoreducethecomplicationofcomputing,aneffectivesolutionissubsamplingtheimagesequencebysettingspatiotemporalwindowthatjustconnectthAfterdetectingthelocationoftargetinimage,objecttrackingwillpersistentlylockthepositionoftargetduringaperiod.
Thebasicideaofobjecttrackingismodelingtheobjectaccordingtoobject'sfeaturecharacteristicpropertyandchoosingappropriatetrackingmethod.
Differentformmotiondetectionemphasizingonaccuracy,objecttrackingcouldn'tabidetakingtoomuchtimeoncomputingandneedsgivingattentiononbothprocessingspeedandprecision,soithastoabstractthetargetthroughfeatureextractionandobjectmodeling.
Simplythefeaturesusedcouldbeshape,size,directionandvelocityofthemovingobject,andcomplicatedlyitcouldbefeaturepointsset,colorspaceandsoon.
Combiningwithrespectivetechnicalapproach,itwillrealizethetargettracking.
Theessenceofobjectmodelingistryingtodefinethetargetuniquely,andinaFigure4.
ApanoramicimagemosaicedbyUAVvideoimagesequencesingletargettrackingitonlyneedtodependononefeatureproperty,butinmulti-targettrackingitmayneedaintegrationofdifferentkindsoffeaturesfordirectingatpropertarget,anditalsocouldusingsomesuitableways,suchasfiltermethodsrmulti-target.
4.
1ObjectModelingirectly,ortransformthemintootherrmssuchastemplates.
singmulti-featuresmodelandupdatingthemodel4.
2ObjectTrackingingintothematchingofpointsets(Huttenlocheretl.
,1993).
epeatseprocessuntilthefilterisstable(Forsythetal.
,2003).
irbornevideousingMean-shiftmethodisowninFigure6.
5.
SYSTEMFRAMEWORKandetrackingresultcanacceleratethedetectionprocessing.
them,anditprovidesinterfacetouserandexteriorstem.
foObjectmodellingisarepresentationofobject,inotherwordsitutilizesonefeaturecharacteristicorthecombinationoffeaturestoexpresstheobject.
Theobject'sfeaturecouldbecontour,shape,color,position,texture,velocityandsoforth.
Themorefeaturesincluded,theeasiertoidentifytheobject.
Butthecombiningfeatureswillincreaseburdenofprocessinganddemandcompositemethods.
Toconstructthemodelofobject,wecanusethefeaturesdfoFeaturesoftheobjectmaychangeduringthecourseoftracking,soitrequiresthatthemodelshouldbeadaptivetothechangingorotherinfluences,forexampleocclusionandunexpectedmovement.
Thisisconsideredastherobustnessofmodel.
Therearemanywaystomakethemodelmorestable,includinguovertime.
Usingpriorinformationthatformsthemodelofobject,trackerpredictstheobject'spositioninsuccedentframes.
Correspondingtodifferentmodels,objecttrackinghasdifferentmethods.
Objecttrackingmethodsattempttoascertainthecoherentrelationsoffeatureinformationbetweenframes,andthestrategyofitisnomorethansearchingandmatching.
Hausdorffdistanceisavalidmeasurementforshapeandtexturefeaturesoftheobject.
Itcancreatesparsepointsetswithfeaturedetectorsinimages,andthepointsetofimageregionlabelledastheobjectistheobject'smodelforHausdorffmeasurement.
Itisabletotacklethedeformationofobject,becauseitdescribesthecontourandtextureoftheobjectwithbulkofpoints.
Takingthemeasurementandthemodel,ittranslatesobjectlocataMotionisakindofstate.
Atypicalmotionstatevectoriscomposedoftheobject'sposition,velocityandaccelerationalongeachdirection.
Ifthepriorandcurrentstatesareknown,theposteriorstatewillbepredicted.
Itisfeasibletoresolvetheproblemofobjecttrackingbystateestimationmeans.
Kalmanfilterisoneofthestatespacemethods.
Todefineit,theKalmanfilterisabatchofmathematicequationsthatsolvestheleast-squaresquestionrecursively.
Itpredictsthevaluesofcurrentstateutilizingtheestimationvaluesofformerstateandtheobservationvaluesofcurrentstate,executingtheprocedurerecurrentlyuntilthevaluesofeverystateestimated.
Togettheestimationvaluesofeachstate,allthepreviousobservationvalueshavebeeninvolved.
Forobjecttracking,thestateequationisthemodelofobjectinKalmanfilter,anditdescribesthetransferofstates.
Theobservationisthepositionofobject,andthestatevectorlikementionedabovecontainsposition,velocityandacceleration.
PuttingthepositionsofobjectdetectedininitialframesintotheobservationequationofKalmanfilterandtakingtheaccuratepositionsastheinitialvalueofstatevariant,itcomparestheoutputoffilteringwithpreciseresulttotestifythecorrectnessofinitialinput.
ItrthMean-shiftalgorithmisanapproachthatsearchesthemaximumofprobabilitydensityalongitsgradientdirection,aswellasaneffectivemethodofstatisticaliteration.
ObjecttrackingwithMean-shiftalgorithmisanotherclassoftechniquethatlocatesthetargetbymodelingandmatchingit.
Boththemodelingandmatchingareperformedinafeaturespacesuchascolorspaceandscalespace.
Themodeofitisusingtherelevantsimilaritymeasurementtosearchthebestmatch.
TheobjecttrackingbasingonMean-shiftalgorithmmainlyprocessesonthecolorfeature.
Choosinganimageregionasthereferenceobjectmodel,itwillquantizethecolorfeaturespace,andthebinsofthequantizedspacerepresenttheclassesofcolorfeature.
Eachpixelofthemodelcancorrespondstoaclassandabininthespace,andthemodelcanbedescribedbyitsprobabilitydensityfunctioninthefeaturespace.
InsteadofPDF(probabilitydensityfunction),ittakesthekernelfunctionasthesimilarityfunctiontoconquerthelostofspatialinformation.
Anotherreasonforusingkernelfunctionissmoothingthesimilaritymeasurementtoensuretheiterationconvergetotheoptimizedsolutionduringsearch(Comaniciuetal.
,2003).
AnobjecttrackingresultofashFigure6.
AnobjecttrackingresultofairbornevideousingMean-shiftmethodTothetechnicalapproachesanalysedabove,itneedsaframeworktointegrateallthesemethods.
Forthetechniqueofmovingtargetdetectionandtrackingdividedintothreeparts,eachpartwouldbeanisolatedmoduleforitsindependentfunctioninapplicablesystem.
Therefore,theprocessingisinandbetweendifferentmodules.
Therearemanysystemsemployaseriesprocedure.
Compensationcomesfirst,thenextisdetection,andtrackingputonthelast.
Thereasonofthatisanteriormodulealwaysbetakenasthepreconditionofposteriormodule,andresultsofeachonecouldbeinputsofthenextone.
However,thiskindofsystemisnotconsideringtheinteractionsbetweendifferentmodules.
Forexample,theresultofsegmentationcanbetheinitialvalueofcompensation,thAsshowninthefigure7,distinguishingfromtraditionaltechniqueframework,thepresentedsystemframeworkintroducestwomoremodules,whicharedatacaptureandcollaborationcontrol.
Datacapturemodulegetsthevideoimagedataandsamplesitintoimagesequence,andthenitwilldistributethemtoanotherthreemodulesthatarethecentralpartsofthesystem.
Thethreemodulesimplementaparallelprocessing,andthiswilllowerthecostoftime.
Aftertheinteriorcomputing,theytransfertheoutputsthatalwaysinthemannerofparameterstocollaborationcontrolmodule.
Thecontrolmodulemanagesalltheothermodulesbysendingorderstosyeobjectbyutilizingmethodscorrespondingtothemodelofit.
computationtomeettherequirementofreal-timeapplication.
insteadofrealdatatominimizesthetransmissionbandwidth.
ontrolmoduletovaluatethemethodsormakeimprovement.
ethods,anotheruseofthisframeworkistestingthenewbornethods.
alUAVstemcomposesofaircraftandgroundcontrolstation,andthewirelesscommunication.
Oamework,constructthetestbedsystemtotesttheperformanceoftechnicalmethodsandsetthes(2)EmbeddingthefunctionalmodulesintotheUAVsystemndimprovingthemtomeetthepracticalrequirements.
ephens,M.
,1988.
ACombinedCornerandEdgeetector.
FourthAlveyVisionConference,ManchesterUK,FittingwithApplicationstoImagenalysisandAutomatedCartography.
Communicationsofthegmentation:incorporatingspatialcoherenceandtimatingthenumberofmodel.
InProc.
IEEEConf.
onCVPR,lik,J.
,1998.
MotionSegmentationandTrackingsingNormalizedCuts.
Proc.
Int'lConf.
ComputerVision,pp.
UsingtheHausdorffDistance.
IEEEansactionsonPatternAnalysisandMachineIntelligence,orsyth,D.
A.
,Ponce,J.
,2003.
ComputerVision:AModern2003.
Kernel-BasedObjectTracking.
IEEEtransactionsonPatternAnalysisandMachineIntelligence,25(5):564-577mm6.
CONCLUSIONOnthebasisofanalyzingthefunctionalpartsthatmotioncompensation,motiondetectionandobjecttrackingandthecorrespondingtechnicalmethodsofmovingtargetdetectionandtracking,wepresentedanewframeworkforthetechnique.
Werecognizethatalthoughthereareconnectionsbetweendifferentsectionsofthetechnology,aserialprocessingofthemisdispensable.
Werealizedaparallelcomputationofthethreepartsbyaddingcontrolandcapturemodules.
Thedesignoftheframeworkfacilitatesthespatialseparationofsystemandreducesthedatastreamtransferredbetweendifferentmodules.
ThisismeaningfultoUAVapplication.
BecauseatypicsydatatransferringdependsonFigure7.
Movingtargetdetectionandtrackingframeworkurfurtherworkincludes:(1)AccordingtothefrFigure8illustratesthemainfunctionalmodulesofthesystem.
Motioncompensationhasimagemosaickingandimageregistrationtwoparallelsub-modules.
Imagemosaickingthatcouldcombinewithotherdatamosaicstheimagesequence,andimageregistrationcalculatesregistrationparametersoropticalflowvectors.
Motiondetectionincludesbackgroundsubtractionandtargetdetectiontwoserialsub-modules.
Backgroundsubtractionrestrainsthemovementofbackgroundusingtheparametersorthevectors,andtargetdetectionextractstargetfromthecompensatedbackground.
Objecttrackingcontainstwoserialsub-modulesthatareobjectmodelingandobjecttracking.
Objectmodellingconstructsthemodelofobjectwithitsfeatures.
Objecttrackingrealizesthesuccessivelocatingoftandardforevaluation.
aREFERENCESHarris,C.
,StDpp.
147-151Fischler,M.
A.
,Bolles,R.
C.
,1981.
RandomSampleConsensus:AParadigmforModelthTheadvantagesofthisframeworklistedasbelow:sAACM,24(6),pp.
381-395Weiss,Y.
,Adelson,E.
H.
,1996.
Aunifiedmixtureframeworkformotionseepp.
321-326Alan,B.
,2005.
HandbookofImageandVideoProcessing.
Elsevier,pp.
474-485Shi,J.
,MaFigure8.
MainfunctionalmodulesofthesystemU(1)Parallelprocessingreducesthe1154-1160Huttenlocher,D.
P.
,Noh,J.
J.
,Rucklidge,W.
J.
,1993.
ComparingImages(2)Transferringkindsofparameterstr(3)Usersandexteriorsystemscanconductandmonitorthemodulesthroughtheinterfacesofferedbyc15(9),pp.
850-863FeApproach.
PrenticeHall,pp.
380-396Comaniciu,D.
,Ramesh,V.
,Meer,P.
,Movingtargetdetectionandtrackingisadevelopingtechnique,andmanytechnicalmethodswillbeinventedandintroducedforitinfuture.
Thoughthemethodsmaybediverseinformsandbasedtheories,theyhaveanidenticalpurposeandconformtoaregularsystemframework.
Besidesintegratingtheexisting

亚洲云Asiayu,成都云服务器 4核4G 30M 120元一月

点击进入亚云官方网站(www.asiayun.com)公司名:上海玥悠悠云计算有限公司成都铂金宿主机IO测试图亚洲云Asiayun怎么样?亚洲云Asiayun好不好?亚云由亚云团队运营,拥有ICP/ISP/IDC/CDN等资质,亚云团队成立于2018年,经过多次品牌升级。主要销售主VPS服务器,提供云服务器和物理服务器,机房有成都、美国CERA、中国香港安畅和电信,香港提供CN2 GIA线路,CE...

HostYun(月18元),CN2直连香港大带宽VPS 50M带宽起

对于如今的云服务商的竞争着实很激烈,我们可以看到国内国外服务商的各种内卷,使得我们很多个人服务商压力还是比较大的。我们看到这几年的服务商变动还是比较大的,很多新服务商坚持不超过三个月,有的是多个品牌同步进行然后分别的跑路赚一波走人。对于我们用户来说,便宜的服务商固然可以试试,但是如果是不确定的,建议月付或者主力业务尽量的还是注意备份。HostYun 最近几个月还是比较活跃的,在前面也有多次介绍到商...

火数云-618限时活动,国内云服务器大连3折,限量50台,九江7折 限量30台!

官方网站:点击访问火数云活动官网活动方案:CPU内存硬盘带宽流量架构IP机房价格购买地址4核4G50G 高效云盘20Mbps独享不限openstack1个九江287元/月立即抢购4核8G50G 高效云盘20Mbps独享不限openstack1个九江329元/月立即抢购2核2G50G 高效云盘5Mbps独享不限openstack1个大连15.9元/月立即抢购2核4G50G 高效云盘5Mbps独享不限...

yahoo.cn为你推荐
2021年中国城镇污泥处理处置技术与应用高级研讨会主机route考生ituneseacceleratoraccess violation问题的解决办法!xp如何关闭445端口Windows XP 怎么关闭445端口,我是电脑小白,求各位讲详细点photoshop技术photoshop技术对哪些工作有用?127.0.0.1传奇服务器非法网关连接: 127.0.0.1ipad上网为什么ipad网速特别慢micromediamacromedia的中文名电信版iphone4s4和苹果iPhone 4S 电信版有什么区别
解析域名 精品网 天猫双十一秒杀 免费个人网站申请 权嘉云 秒杀汇 域名和空间 酷番云 支持外链的相册 沈阳主机托管 美国asp空间 海外加速 德国代理 监控主机 免费免备案cdn lighttpdwindows 魔兽世界网通服务器 好看的空间留言 个人web服务器软件 杭州主机托管 更多