recognisingyahoo.cn

yahoo.cn  时间:2021-05-21  阅读:()
ANEWFRAMEWORKOFMOVINGTARGETDETECTIONANDTRACKINGFORUAVVIDEOAPPLICATIONWenshuaiYua,*,XuchuYub,PengqiangZhang,JunZhouaInstituteofSurveyingandMapping,450052,Zhengzhou,Henan,China-ws_yu@yahoo.
cnbInstituteofSurveyingandMapping,450052,Zhengzhou,Henan,China-xc_yu@yahoo.
comWGS,WGIII/5KEYWORDS:ImageProcessing,ComputerVision,MotionCompensation,MotionDetection,ObjectTracking,ProcessModeling,UAVVideoABSTRACT:Unmannedaerialvehicleisanewplatformforremotesensing,andtheprimarysensorofitisvideocamera.
Video,alsocouldbecalleddynamicimageisthemostimportantdataformatwhichobtainedbyunmannedaerialvehicle.
ThecombinationofvideodataandUAVprovidesanovelremotesensingpattern.
Movingtargetdetectionandtrackingisanimportanttechniqueofvideoprocessingforitshugepotentialinmilitaryandotherapplications.
Thetechniquealwayscontainsthreebasicparts:motioncompensation,motiondetectionandobjecttracking.
Eachpartadoptskindsoftechnicalmethodstosolvetheproblemsinrespectivefields.
Thepaper,basedontheanalysisofthealgorithmsrelatedtothetechnology,presentsanewframeworkofit.
Differentfromothermovingtargetdetectionandtrackingframeworks,theframeworkperformsaparallelprocessingamongthethreesectionsbyincludingcollaborationcontrolanddatacapturemodules.
Comparingwithotherframeworks,itismoresuitabletotheUAVapplications,becauseofitsadvantagessuchastransferringparametersinsteadofrealdataandofferinginterfacetouserorexteriorsystem.
*Correspondingauthor.
Tel.
:+86-13526657654;E-mailaddress:.
ws_yu@yahoo.
cn.
1.
INTRODUCTIONUnmannedAerialVehicle(UAV)isanewdevelopingremotesensingplatform,anddifferentfromotherplatforms,forexamplesatelliteorairplane,itcarriesvideosensors.
SovideodataisthemaininformationgotbyUAV.
Videocouldbeinterpretedasdynamicimage,anddissimilartostaticimage,itcanreflectmotioninformationthroughthechangingofgray-level.
AnimportantresearchfieldofvideoprocessingforUAVapplicationismovingtargetdetectionandtracking.
Inactualenvironment,themovingtargetscouldbevehicles,peopleoraircrafts,andinsomespecialconditions,thesetargetsmightbeinterestingandvaluable.
Buttheproblemthatdetectingthetargetsfromthecomplicatedbackgroundandtrackingthemsuccessivelyisatoughwork.
Theremanytechniquemethodsonmovingtargetdetectionandtracking.
Mostofthemanalysedtheproblemundertheconditionofstaticbackground,forthestillnessofbackgroundmakesthedetectionandtrackingcomparativelyeasier,andthesekindsofmethodcanbeusedinsomeapplicationssuchassafetymonitoring.
Contrastingtothem,itismuchmoredifficultfortargetdetectionandtrackingwithmovingbackground.
EspeciallyforUAVvideodatawhosebackgroundchangingrapidlyandalwayshascomplextexturecharacteristic,itisreallyachallengingtasktosolvethetechnicalproblem.
FormovingtargetdetectionandtrackingusingUAVvideo,aratherreasonabletechnicalapproachisadoptedwidely.
Firstly,inordertocompensatethebackgroundmotioncausedbymovementofcamera,stabilizingthebackgroundthroughtheframe-to-frameregistrationofvideoimagesequencewouldbetakenasapreconditionofdetectionandtracking.
Asignificantproductthepanoramicimageisbuiltinthesameprocess.
Secondly,basingonthestabilizationofbackgroundandemployingpropermethods,thenextoperationisseparatingthetargetimagefromthebackgroundtorealizedetectionofmovingtarget.
Finally,movingtargettrackingislocatingtheobjectinimagebymeansofmodelingthetargetaccordingtotarget'sfeaturepropertyandchoosingappropriatetrackingmethod.
Accordingtothetechnicalapproachmentionedabove,thetechniquecanbedividedintothreesections:motioncompensation,motiondetectionandobjecttracking.
Italwaystakesthethreepartsasaserialcourseandimplementsthemoneafteranotherinaprocessing.
Actually,fortherearemutualactivitiesbetweendifferentsectionsofthetechnique,itisnotnecessarytoprocessthetechnologyorderly,whichmeansexecutingitstepbystep.
Soitnotonlyneedsaframeworktointegratealltheseparts,butalsorequirestheframeworkmoreeffectiveandpractical.
2.
MOTIONCOMPENSATIONMotioncompensationisthebasicpartofthetechnique,especiallyformovingbackgroundvideo.
Itestimatestheego-motionofcameraandcompensatesthebackgroundmotionofimage,andthroughthisway,itmakesthemovingobjectsmoreobviousandthedetectionoftargeteasier.
Therearetwokindsofapproachesadopted,oneisfeature-basedmethods,andtheotherisflow-basedmethods.
Thoughthelatteronehasrigoroustheoryfoundation,theformeroneismorepopular.
Feature-basedmethodsextractfeaturesandmatchthembetweenimageframestofittheglobalmotionmodelofvideoimagesequence.
Featureextractionandmatchingarepreparedforimageregistration.
Theimageregistrationthatimplementsframe-to-frameregistrationofthevideoimagesequenceisthekeypointofmotioncompensation.
Theresultofimageregistrationcouldbeusedintwodirections,imagestabilizationandimagemosaicking.
Formercanrestrainthemovingbackgroundandfacilitatethedetectingofmovingtarget,andlattercanupdatethelocalimage(alwaysexpresswiththeortho-image)andhelptoformthetrajectoryoftrackedobject.
2.
1FeatureExtractionandMatchingInfeatureextraction,choosingarightkindoffeatureshouldbeconsideredforonething.
Thefeaturecouldbepoint,lineorsurface.
Ithasbeenproventhatcornerfeatureisrobustandeasytooperate.
Harrisoperator(Harrisetal.
,1988)isatypicalcornerdetector,anditsprincipleisthatrecognisingthefeaturesbyjudgingthedifferenceofgray-level'schangewhilemovingthesearchwindow.
Detectingresultsoftwoseriesframesshowninfigure1,andthereisgoodcoherencebetweenthetwo,soitshouldbethoughtthattheoperatorhasastableperformanceandtheresultscouldbetakenastheinputofmatching.
Afterextractingthefeatures,acoarsematchingwouldbemadetogetapproximatematchingresults,andthiscourseisrealizedbymeasuringthesimilarityofcorrespondingfeatures.
Becausetherearemanymismatchesintheapproximateresultsandtheycannotmeettherequirementsofregistration,soithastoimplementafinematchingtoremovethemismatches.
AsuitablewaytokeepinliersiscombiningofepipolargeometryandRANSACalgorithm.
Epipolargeometryoffersamodel—fundamentalmatrixtothematching,causethetwoviewsshouldsatisfytheepipolarrestrictioninstereovision.
RANSAC—randomsampleconsensusalgorithm(Fischleretal.
,1981)isanonlinearalgorithm.
FittingdatamodelwithRANSACmaximallyrestrainstheimpactofoutliers,andreducesthecomputationtoacertainextent.
Thefinematchingisfittingthefundamentalmatrixthroughiterationcomputingandidentifyingmostoftheoutliers.
Figure2presentstheresultsofmatchingaftereliminatingwrongcorrespondencesfromthecandidatematcheswhichgotfromthecoarsematching.
Itcanbeseenthatthoughbulkofmismatcheshavebeenremoved,therestillafewincorrectcorrespondencesremain.
2.
2ImageStabilizationImagestabilizationiscompensationofunwantedmotioninimagesequences.
Thematterofimagestabilizationisimageregistration.
Thetransformationmodelofimageregistrationisnotcomplicate.
Ausualchoiceisaffinetransformationorprojectivetransformation.
Figure3.
ThecomparationofdifferenceresultsbeforeandafterimageregistrationThenormalmodeforregistrationiscalculatingtheparametersofthemodelusingcorrespondingpoints.
Whethertheprecisionofimageregistrationisgoodornotdependsontheresultsofmatching.
Soimagestabilizationcouldbedonebycomputingtheregistrationparameterswiththeoutputsoffinematchingandrectifyingthepreparedframetoreferenceframe.
Inordertooptimizetheresultofregistration,repeatingthecourseuntiltheaccuracyofregistrationgoodenough.
Figure3showsthecomparationofdifferenceresultsbeforeandafterimageregistration.
Theleftoneisthedifferenceresultpreviousregistration.
Exceptsomeregionswithsametextures,mostofthebackgroundimagecannotbesubtracted,especiallysomeobviousobjectsandlinearfeatures.
Therightoneisthedifferenceresultafterimageregistration.
Thoughthereareobjectsedgesstilldistinct,majorityofbackgroundimagegotbetterelimination.
Figure1.
DetectingresultsusingHarriscorneroperator2.
3ImageMosaickingMosaickingofvideoimagesequenceisrectifyingallframestothereferenceframeandpiecingthemtogetherasapanoramicimage.
Thereferenceframemaybethefirstframeorachosenone.
Akeystepforthegenerationofpanoramaisimageregistration.
Itisunavoidableaccumulateregistrationerrorsduringaligningtheimagesequences.
Theaccumulationoferrorscouldinducemisalignmentofadjoiningframes.
Toresolvetheproblem,therearemanymethodshavebeentried,suchasrefiningregistrationandintroducingreferencedata.
AnUAVvideoimagemosaickingisillustratedinfigure4,andtherearesomepiecingseamsforregistrationerrors.
Figure2.
OverlayoftwosuccessiveframesaftereliminatingwrongcorrespondenceswithRANSAC3.
MOTIONDETECTIONThecompensationhasreducedtheimpactofbackgroundmotion,buttherearestillsomeinfluencesofitremaininthestabilizedimage.
Motiondetectiondividesthevideoimageintotargetandbackgroundwhetheritismovingornot.
Therearemanyprocessingmethodsintroducedintomotiondetection,andthecommonpointofthemistheusingofmotioninformation.
Forstaticbackground,itusuallyprocessesonthebackground,suchasbackgroundmodelingmethod.
Formovingbackground,itassumesthedynamicimagejusthastargetandbackgroundtwopartitions,andiftherearemorethanonetargetinthevideo,itwillsegmenttheimageintonumbersofpartitionscorrespondingtothetargets,andinsomemethodsitsetsthetargetsondifferentlayersinordertomaketheprocessmuchfaster.
Theprimaryinformationfordetectingismotioninformation,ortheintensitychangesbetweenadjacentvideoimageframes.
3.
1MotionDetectionForvideoimagecapturedbymovingcamera,thebackgroundmotioncan'tbecounteractedabsolutelythroughimagestabilization.
Itmaynoteffectiveenoughtodetectthemovingtargetbyrestrainingthemovementofbackground.
Alltheimageinformationcouldbeclassifiedintothreekinds:target,backgroundandnoise.
Differentclassescorrespondtodifferentmotionfieldsindynamicimage.
Ifweknowtheclasscharacteristicsofpoints,wecanusethemtofittheparametricsetsofdifferentmotionregions.
Contrarily,ifweknowtheparametersofmotionvectors,wecoulddividethepixelsintodifferentfieldsaccordingmotioninformation.
Inmostofcases,bothofthecharacteristicsandparametersareunknown.
Theclusteringofimagepixelsisaprobabilityquestion.
AtypicalsolutionformotionclassificationisunitingthemixtureprobabilitymodelandEM—ExpectationMaximumalgorithm(Weissetal.
,1996).
Inpractice,itcanmakeahypothesisthattherearetwolayersinthedynamicimage,backgroundlayerandtargetlayer.
Afterimagestabilization,calculatingthemotionvectorsofallpixelsandassumingthattheflowvectorsoftargetlayerislargerthantheonesofbackgroundlayertoestimatetheweightsofmixturemodelwithiteratedcomputation.
Itwillhavethetargetdetecteduntiltheiterationconvergence.
Theparametersofimageregistrationcouldbetheinitialvaluesofiteration.
Figure5presentsadetectionresultforonevehicletargetinthreeframes.
3.
2MotionSegmentationmthesegmentationwiththeopticalflowformationonly.
enodesinthiswindowwhenconstructingtheweightedgraph.
4.
OBJECTTRACKINGFigure5.
AmotiondetectionresultwithmixturemodelndEMMotionsegmentationisakindofvideosegmentation,becauseitpartitionsvideoorimagesequenceintospatio-temporalregionsbasingonmotioninformation.
Therefore,itisessentiallysameasthemotiondetection.
Generally,motionsegmentationhastwobasicclassesthatopticalflowsegmentationmethodsanddirectmethods(Boviketal.
,2005).
Inperfectcases,therearejusttwokindsofopticalflowassociatedwiththemovementsofbackgroundandtarget.
However,opticalflowisnotanexactreflectionofmotionfieldbutanexplanationofilluminationchange.
Therefore,itisnotrigoroustoperforinAusuallyadoptionisgroupinginmotionfeaturespacetorealizethesegmentation.
Howtosettherelationbetweenclusteringanddynamicimageisanotherquestion.
Themethodofgraphtheoryisanaturalsolutionformotionsegmentation.
Pixelsinimagesequencecouldbetakenasthenodesofgraph,andifwepartitionthegraph,accordingmotionfeatures,maysegmenttheimageatthesametime.
Edgetheweightmeansthesimilarityoffeaturesbetweenthetwonodeswhichconnectedbyit.
Inmotionsegmentation,thissimilaritymeasurementisthemotionfeaturevectorofeachpixel.
Thegraphisnotconstructedinoneimageframe.
Itshouldconnectallthenodesinaspatiotemporalregion,andtheregionmayacrossseveralframes.
Aftertheconstructionoftheweightedgraph,itcouldsegmentthevideoimagesequenceusingbynormalizedcutmethod(Shietal.
,1998).
Inordertoreducethecomplicationofcomputing,aneffectivesolutionissubsamplingtheimagesequencebysettingspatiotemporalwindowthatjustconnectthAfterdetectingthelocationoftargetinimage,objecttrackingwillpersistentlylockthepositionoftargetduringaperiod.
Thebasicideaofobjecttrackingismodelingtheobjectaccordingtoobject'sfeaturecharacteristicpropertyandchoosingappropriatetrackingmethod.
Differentformmotiondetectionemphasizingonaccuracy,objecttrackingcouldn'tabidetakingtoomuchtimeoncomputingandneedsgivingattentiononbothprocessingspeedandprecision,soithastoabstractthetargetthroughfeatureextractionandobjectmodeling.
Simplythefeaturesusedcouldbeshape,size,directionandvelocityofthemovingobject,andcomplicatedlyitcouldbefeaturepointsset,colorspaceandsoon.
Combiningwithrespectivetechnicalapproach,itwillrealizethetargettracking.
Theessenceofobjectmodelingistryingtodefinethetargetuniquely,andinaFigure4.
ApanoramicimagemosaicedbyUAVvideoimagesequencesingletargettrackingitonlyneedtodependononefeatureproperty,butinmulti-targettrackingitmayneedaintegrationofdifferentkindsoffeaturesfordirectingatpropertarget,anditalsocouldusingsomesuitableways,suchasfiltermethodsrmulti-target.
4.
1ObjectModelingirectly,ortransformthemintootherrmssuchastemplates.
singmulti-featuresmodelandupdatingthemodel4.
2ObjectTrackingingintothematchingofpointsets(Huttenlocheretl.
,1993).
epeatseprocessuntilthefilterisstable(Forsythetal.
,2003).
irbornevideousingMean-shiftmethodisowninFigure6.
5.
SYSTEMFRAMEWORKandetrackingresultcanacceleratethedetectionprocessing.
them,anditprovidesinterfacetouserandexteriorstem.
foObjectmodellingisarepresentationofobject,inotherwordsitutilizesonefeaturecharacteristicorthecombinationoffeaturestoexpresstheobject.
Theobject'sfeaturecouldbecontour,shape,color,position,texture,velocityandsoforth.
Themorefeaturesincluded,theeasiertoidentifytheobject.
Butthecombiningfeatureswillincreaseburdenofprocessinganddemandcompositemethods.
Toconstructthemodelofobject,wecanusethefeaturesdfoFeaturesoftheobjectmaychangeduringthecourseoftracking,soitrequiresthatthemodelshouldbeadaptivetothechangingorotherinfluences,forexampleocclusionandunexpectedmovement.
Thisisconsideredastherobustnessofmodel.
Therearemanywaystomakethemodelmorestable,includinguovertime.
Usingpriorinformationthatformsthemodelofobject,trackerpredictstheobject'spositioninsuccedentframes.
Correspondingtodifferentmodels,objecttrackinghasdifferentmethods.
Objecttrackingmethodsattempttoascertainthecoherentrelationsoffeatureinformationbetweenframes,andthestrategyofitisnomorethansearchingandmatching.
Hausdorffdistanceisavalidmeasurementforshapeandtexturefeaturesoftheobject.
Itcancreatesparsepointsetswithfeaturedetectorsinimages,andthepointsetofimageregionlabelledastheobjectistheobject'smodelforHausdorffmeasurement.
Itisabletotacklethedeformationofobject,becauseitdescribesthecontourandtextureoftheobjectwithbulkofpoints.
Takingthemeasurementandthemodel,ittranslatesobjectlocataMotionisakindofstate.
Atypicalmotionstatevectoriscomposedoftheobject'sposition,velocityandaccelerationalongeachdirection.
Ifthepriorandcurrentstatesareknown,theposteriorstatewillbepredicted.
Itisfeasibletoresolvetheproblemofobjecttrackingbystateestimationmeans.
Kalmanfilterisoneofthestatespacemethods.
Todefineit,theKalmanfilterisabatchofmathematicequationsthatsolvestheleast-squaresquestionrecursively.
Itpredictsthevaluesofcurrentstateutilizingtheestimationvaluesofformerstateandtheobservationvaluesofcurrentstate,executingtheprocedurerecurrentlyuntilthevaluesofeverystateestimated.
Togettheestimationvaluesofeachstate,allthepreviousobservationvalueshavebeeninvolved.
Forobjecttracking,thestateequationisthemodelofobjectinKalmanfilter,anditdescribesthetransferofstates.
Theobservationisthepositionofobject,andthestatevectorlikementionedabovecontainsposition,velocityandacceleration.
PuttingthepositionsofobjectdetectedininitialframesintotheobservationequationofKalmanfilterandtakingtheaccuratepositionsastheinitialvalueofstatevariant,itcomparestheoutputoffilteringwithpreciseresulttotestifythecorrectnessofinitialinput.
ItrthMean-shiftalgorithmisanapproachthatsearchesthemaximumofprobabilitydensityalongitsgradientdirection,aswellasaneffectivemethodofstatisticaliteration.
ObjecttrackingwithMean-shiftalgorithmisanotherclassoftechniquethatlocatesthetargetbymodelingandmatchingit.
Boththemodelingandmatchingareperformedinafeaturespacesuchascolorspaceandscalespace.
Themodeofitisusingtherelevantsimilaritymeasurementtosearchthebestmatch.
TheobjecttrackingbasingonMean-shiftalgorithmmainlyprocessesonthecolorfeature.
Choosinganimageregionasthereferenceobjectmodel,itwillquantizethecolorfeaturespace,andthebinsofthequantizedspacerepresenttheclassesofcolorfeature.
Eachpixelofthemodelcancorrespondstoaclassandabininthespace,andthemodelcanbedescribedbyitsprobabilitydensityfunctioninthefeaturespace.
InsteadofPDF(probabilitydensityfunction),ittakesthekernelfunctionasthesimilarityfunctiontoconquerthelostofspatialinformation.
Anotherreasonforusingkernelfunctionissmoothingthesimilaritymeasurementtoensuretheiterationconvergetotheoptimizedsolutionduringsearch(Comaniciuetal.
,2003).
AnobjecttrackingresultofashFigure6.
AnobjecttrackingresultofairbornevideousingMean-shiftmethodTothetechnicalapproachesanalysedabove,itneedsaframeworktointegrateallthesemethods.
Forthetechniqueofmovingtargetdetectionandtrackingdividedintothreeparts,eachpartwouldbeanisolatedmoduleforitsindependentfunctioninapplicablesystem.
Therefore,theprocessingisinandbetweendifferentmodules.
Therearemanysystemsemployaseriesprocedure.
Compensationcomesfirst,thenextisdetection,andtrackingputonthelast.
Thereasonofthatisanteriormodulealwaysbetakenasthepreconditionofposteriormodule,andresultsofeachonecouldbeinputsofthenextone.
However,thiskindofsystemisnotconsideringtheinteractionsbetweendifferentmodules.
Forexample,theresultofsegmentationcanbetheinitialvalueofcompensation,thAsshowninthefigure7,distinguishingfromtraditionaltechniqueframework,thepresentedsystemframeworkintroducestwomoremodules,whicharedatacaptureandcollaborationcontrol.
Datacapturemodulegetsthevideoimagedataandsamplesitintoimagesequence,andthenitwilldistributethemtoanotherthreemodulesthatarethecentralpartsofthesystem.
Thethreemodulesimplementaparallelprocessing,andthiswilllowerthecostoftime.
Aftertheinteriorcomputing,theytransfertheoutputsthatalwaysinthemannerofparameterstocollaborationcontrolmodule.
Thecontrolmodulemanagesalltheothermodulesbysendingorderstosyeobjectbyutilizingmethodscorrespondingtothemodelofit.
computationtomeettherequirementofreal-timeapplication.
insteadofrealdatatominimizesthetransmissionbandwidth.
ontrolmoduletovaluatethemethodsormakeimprovement.
ethods,anotheruseofthisframeworkistestingthenewbornethods.
alUAVstemcomposesofaircraftandgroundcontrolstation,andthewirelesscommunication.
Oamework,constructthetestbedsystemtotesttheperformanceoftechnicalmethodsandsetthes(2)EmbeddingthefunctionalmodulesintotheUAVsystemndimprovingthemtomeetthepracticalrequirements.
ephens,M.
,1988.
ACombinedCornerandEdgeetector.
FourthAlveyVisionConference,ManchesterUK,FittingwithApplicationstoImagenalysisandAutomatedCartography.
Communicationsofthegmentation:incorporatingspatialcoherenceandtimatingthenumberofmodel.
InProc.
IEEEConf.
onCVPR,lik,J.
,1998.
MotionSegmentationandTrackingsingNormalizedCuts.
Proc.
Int'lConf.
ComputerVision,pp.
UsingtheHausdorffDistance.
IEEEansactionsonPatternAnalysisandMachineIntelligence,orsyth,D.
A.
,Ponce,J.
,2003.
ComputerVision:AModern2003.
Kernel-BasedObjectTracking.
IEEEtransactionsonPatternAnalysisandMachineIntelligence,25(5):564-577mm6.
CONCLUSIONOnthebasisofanalyzingthefunctionalpartsthatmotioncompensation,motiondetectionandobjecttrackingandthecorrespondingtechnicalmethodsofmovingtargetdetectionandtracking,wepresentedanewframeworkforthetechnique.
Werecognizethatalthoughthereareconnectionsbetweendifferentsectionsofthetechnology,aserialprocessingofthemisdispensable.
Werealizedaparallelcomputationofthethreepartsbyaddingcontrolandcapturemodules.
Thedesignoftheframeworkfacilitatesthespatialseparationofsystemandreducesthedatastreamtransferredbetweendifferentmodules.
ThisismeaningfultoUAVapplication.
BecauseatypicsydatatransferringdependsonFigure7.
Movingtargetdetectionandtrackingframeworkurfurtherworkincludes:(1)AccordingtothefrFigure8illustratesthemainfunctionalmodulesofthesystem.
Motioncompensationhasimagemosaickingandimageregistrationtwoparallelsub-modules.
Imagemosaickingthatcouldcombinewithotherdatamosaicstheimagesequence,andimageregistrationcalculatesregistrationparametersoropticalflowvectors.
Motiondetectionincludesbackgroundsubtractionandtargetdetectiontwoserialsub-modules.
Backgroundsubtractionrestrainsthemovementofbackgroundusingtheparametersorthevectors,andtargetdetectionextractstargetfromthecompensatedbackground.
Objecttrackingcontainstwoserialsub-modulesthatareobjectmodelingandobjecttracking.
Objectmodellingconstructsthemodelofobjectwithitsfeatures.
Objecttrackingrealizesthesuccessivelocatingoftandardforevaluation.
aREFERENCESHarris,C.
,StDpp.
147-151Fischler,M.
A.
,Bolles,R.
C.
,1981.
RandomSampleConsensus:AParadigmforModelthTheadvantagesofthisframeworklistedasbelow:sAACM,24(6),pp.
381-395Weiss,Y.
,Adelson,E.
H.
,1996.
Aunifiedmixtureframeworkformotionseepp.
321-326Alan,B.
,2005.
HandbookofImageandVideoProcessing.
Elsevier,pp.
474-485Shi,J.
,MaFigure8.
MainfunctionalmodulesofthesystemU(1)Parallelprocessingreducesthe1154-1160Huttenlocher,D.
P.
,Noh,J.
J.
,Rucklidge,W.
J.
,1993.
ComparingImages(2)Transferringkindsofparameterstr(3)Usersandexteriorsystemscanconductandmonitorthemodulesthroughtheinterfacesofferedbyc15(9),pp.
850-863FeApproach.
PrenticeHall,pp.
380-396Comaniciu,D.
,Ramesh,V.
,Meer,P.
,Movingtargetdetectionandtrackingisadevelopingtechnique,andmanytechnicalmethodswillbeinventedandintroducedforitinfuture.
Thoughthemethodsmaybediverseinformsandbasedtheories,theyhaveanidenticalpurposeandconformtoaregularsystemframework.
Besidesintegratingtheexisting

618云上Go:腾讯云秒杀云服务器95元/年起,1C2G5M三年仅288元起

进入6月,各大网络平台都开启了618促销,腾讯云目前也正在开展618云上Go活动,上海/北京/广州/成都/香港/新加坡/硅谷等多个地区云服务器及轻量服务器秒杀,最低年付95元起,参与活动的产品还包括短信包、CDN流量包、MySQL数据库、云存储(标准存储)、直播/点播流量包等等,本轮秒杀活动每天5场,一直持续到7月中旬,感兴趣的朋友可以关注本页。活动页面:https://cloud.tencent...

ZJI:520元/月香港服务器-2*E5-2630L/32GB/480G SSD/30M带宽/2IP

ZJI发布了一款7月份特别促销独立服务器:香港邦联四型,提供65折优惠码,限量30台(每用户限购1台),优惠后每月520元起。ZJI是原来Wordpress圈知名主机商家:维翔主机,成立于2011年,2018年9月启用新域名ZJI,提供中国香港、台湾、日本、美国独立服务器(自营/数据中心直营)租用及VDS、虚拟主机空间、域名注册等业务。下面列出这款服务器的配置信息。香港邦联四型CPU:2*E5-2...

星梦云:四川100G高防4H4G10M月付仅60元

星梦云怎么样?星梦云资质齐全,IDC/ISP均有,从星梦云这边租的服务器均可以备案,属于一手资源,高防机柜、大带宽、高防IP业务,一手整C IP段,四川电信,星梦云专注四川高防服务器,成都服务器,雅安服务器。星梦云目前夏日云服务器促销,四川100G高防4H4G10M月付仅60元;西南高防月付特价活动,续费同价,买到就是赚到!点击进入:星梦云官方网站地址1、成都电信年中活动机(成都电信优化线路,封锁...

yahoo.cn为你推荐
I:\Sam-research\QEF\Publications\Conference支持ipad支持ipad模块iphoneC1:山东品牌商品馆重庆网通重庆联通宽带ipad如何上网ipad如何允许app使用网络ipad连不上wifiipad显示无互联网连接怎么回事?google中国地图强大的谷歌地图,为什么中国不用起来chromeframe我的Chrome Frame为什么不能使用?
租服务器价格 主机优惠码 冰山互联 siteground 毫秒英文 大容量存储器 合租空间 优酷黄金会员账号共享 独享主机 网站加速 睿云 乐视会员免费领取 alexa搜 电信测速器在线测网速 ssd 报警主机 宿迁服务器托管 联想塔式服务器 服务器操作系统安装 博世报警主机 更多