计算机xp

iexplore.exe应用程序错误  时间:2021-02-04  阅读:()

2018超级计算机研究报告AMiner研究报告第十期清华大学(计算机系)-中国工程科技知识中心知识智能联合研究中心(K&I)2018年9月Contents目录1概述篇2技术篇3人才篇4市场篇5应用篇2.
1基础层:以异构并行为基础的超级计算机组成.
112.
2中间层:六类设备+三大网络142.
3应用层:解决方案.
152.
3.
1石油气勘探.
162.
3.
2生物医药与智能医疗162.
3.
3工程仿真与航天器研发182.
3.
4天气预报与雾霾预警192.
3.
5海洋环境工程.
212.
3.
6建筑信息模型.
221.
1超级计算机相关概念21.
2超级计算机发展脉络41.
3典型超级计算机简介73.
1学者概况253.
2国外学者273.
3国内学者314.
1超级计算机的市场375.
1超级计算机的应用.
40图表目录图1超级计算机发展历史.
4图2CDC6600超级计算机与系统控制台.
5图3Cray-1超级计算机及其内部结构.
5图4超级计算机技术分层.
11图5超级计算机系统的架构分类12图6浪潮集团建构的超级计算机生态结构图15图7超级计算机应用示意图15图8全基因组测序成果.
17图9某型航空发动机内部三维流动工程仿真效果图.
18图10大规模并行模拟"天宫一号"两舱绕流状态19图112015年4月2日08时~3日08时暴雨过程模式预报图.
20图122015年4月2日08时-4月3日08时暴雨过程实况图.
20图13大气模拟中不同kernel的数据划分和任务调度21图14利用"神威·太湖之光"模拟的全球(a)与区域(b)重要海浪高度分布.
21图15远程可视化建模22图16超级计算机全球学者分布图.
25图17超级计算机全球学者迁徙图.
25图18全球超级计算机领域TOP学者h-index分布图.
26图19全球超级计算机领域TOP学者性别比例.
26图20超级计算机学者中国分布图.
27图21超级计算机相关研究近期热点关键词及其走势40表1历年TOP500超级计算机排名第一.
6表2各国排名进入TOP500的计算机数量情况(2018年6月)37表32018年6月超级计算机TOP500前十.
37摘要随着计算技术的发展,科学计算对超级计算机的计算能力提出了越来越高的需求,超级计算机为解决国家经济建设、科学进步、国家安全等一系列重大挑战性问题提供了不可替代的重要作用.
本研究报告对超级计算机这一课题进行了简单梳理,包括以下内容:超级计算机概述.
报告首先从多个角度对超级计算机进行定义;其次介绍了超级计算机的评价体系,包含TOP500、Green500与"戈登·贝尔"奖;接着对超级计算机的研究价值进行介绍,无论是在理论研究层面,还是实际应用层面,超级计算机都做出了突出贡献,并且发挥着越来越重要的作用;最后,我们对超级计算机的发展历程进行梳理,按照时间先后,结合国家与超算技术架构的发展情况,分为了四个阶段,目前超级计算机处于多向发展阶段,中国在超算领域的地位迅速提升.
超级计算机技术原理.
将超级计算机技术分为基础层、中间层和应用层三个层次来进行介绍.
基础层介绍了以异构并行为基础的超级计算机组成,按照并行计算方式是单指令多数据流(SIMD)还是多指令多数据流(MIMD),存储器是共享还是分布,对现阶段超算架构进行了详细的分类;中间层介绍了六大设备与三大网络,包括登录节点、管理节点、计算节点、异构节点、交换设备与I/O设备、存储设备、管理网络、计算网络和存储网络;应用层结合了相应的实例,介绍了目前超算的主要应用,包括石油气勘探、生物医药与智能医疗、工程仿真与航天器研发、天气预报与雾霾预警、海洋环境工程、建筑信息模型与基础科学研究.
超级计算机领域人才介绍.
基于AMiner大数据,对超级计算机领域专家进行深入挖掘和介绍.
包括顶尖学者的全球与中国分布、迁徙概况、h-index分析,并依据AMiner评价体系,在世界与中国两个层面各选取十人进行详细介绍.
超级计算机市场统计分析.
依据TOP500历年数值,按照运算性能与市场份额,对各国超级计算机实力进行了分析.
随着E级超级计算机的研发,各国对市场的竞争也愈演愈烈.
超级计算机发展趋势预测.
超级计算机无论是在科学领域还是工程领域、理论研究还是现实生活中,其应用十分广泛,有着极为广阔的发展前景.
本文在结合当前应用的基础上,对超级计算机未来的发展趋势作出了四点相应的预测,运算速度进一步大幅提升、与AI或VP相融合、量子计算机、生物计算机是目前超级计算机发展的热门趋势.

报告(电子版)实时更新,获取请前往:https://www.
aminer.
cn/research_report/5c35d4655a237876dd7f1288download=true&pathname=sc.
pdf.
11concept概述篇21.
概述篇1.
1超级计算机相关概念(1)什么是超级计算机"Supercomputer"一词最早出现于1929年,《纽约世界报》一则关于IBM为哥伦比亚大学建造大型报表机(tabulator)的报道中首次使用了它.
《计算机科学技术百科辞典》中将其解释为"具有非常高的运算速度,有非常快而容量又非常大的主存储器和辅助存储器,并充分使用并行结构软件的计算机".

维基百科解释其为"能够执行一般个人电脑无法处理的大量资料与高速运算的计算机,规格与性能比个人计算机强大许多.
现有的超级计算机运算速度大都可以达到每秒一兆(万亿)次以上".
通俗来讲,超级计算机又称高性能计算机、巨型计算机等,在计算速度、存储容量等方面有着普通计算机所不具备的超高性能,主要运用于尖端科研、国防军工、产业升级、重大社会问题等大科学、大工程、大系统中,是一个国家科研实力的体现,是国家科技发展水平和综合国力的重要标志.
超级计算机当前以每秒钟浮点运算速度(flops)为主要衡量单位.
现有最先进的超级计算机运算速度大都可以达到每秒十亿亿次以上,目前处理速度最快的超级计算机Summit实测峰值可以达到122.
300Pflops(Pflops=1015flops),理论峰值为187.
659Pflops1;在2016年6月的TOP500榜单中,第一名为神威·太湖之光,实测峰值为93.
015Pflops2;在2013年11月的TOP500榜单中,第一名为天河-2A,实测峰值为33.
862Pflops3;在2008年6月的榜单中,第一名为Roadrunner(走鹃),实测峰值为1.
026Pflops4.
可以看到,在2008-2018十年间,超算的实际峰值增加了百倍之多,可见超算的运算能力发展极为迅速.
目前,超级计算机领域顶尖研究机构正在针对E级(Eflops=1018flops)系统的研发进行激烈竞争.
(2)超级计算机评价体系有哪些lTOP500TOP500是业界公认的超级计算机性能排行榜.
1993年以来,TOP500组织会依据基准程序LINPACK测试值来评定全球超级计算机五百强,并在每年6月和11月召开的两次国际超级计算机大会(ISC和SC)上公布最新评选结果,其目的是促进国际超级计算机领域1TOP500(2018年6月数据):https://www.
top500.
org/list/2018/06/2TOP500(2016年6月数据):https://www.
top500.
org/list/2016/06/3TOP500(2013年11月数据):https://www.
top500.
org/list/2013/11/4TOP500(2008年6月数据):https://www.
top500.
org/list/2008/06/3的交流和合作,促进超级计算机的推广应用.
2010年,中国凭借天河1号首次问鼎TOP500.
lGreen500如果说TOP500是超级计算机性能排行榜,那么Green500就是针对超级计算机能效的排行榜.
基于LINPACKBenchmark模型,衡量计算机每瓦功耗可以提供的计算速率——每瓦性能(Gflops/watts).
与TOP500一样,Green500也是每年发布2次,评选出全球能效最高的超级计算机系统五百强.
2016年起,Green500与TOP500开始同时发布.
l"戈登·贝尔"奖戈登·贝尔奖被认为是超级计算应用领域的诺贝尔奖.
设立于1987年,由美国计算机协会(AssociationforComputingMachinery,ACM)于每年全球超级计算大会(SC)上颁发,象征性奖金1万美元,获得者主要是当年在TOP500排行中名列前茅的计算机系统的应用团队,例如美国"泰坦"超级计算机、日本"京"超级计算机上的应用软件都曾得奖.
该奖项自设立后,30多年来一直由美国和日本的软件获得,直到2016年11月全球超级计算机大会上,中国科学院软件研究所研究员杨超等人凭借在神威·太湖之光超级计算机上的"千万核可扩展大气动力学全隐式模拟"研究成果,实现了中国人在该奖项上的首次突破.
2017年,清华大学地学系副教授付昊桓等人,凭借基于神威·太湖之光的"非线性大地震模拟"再次获得此奖项.
(3)超级计算机有何研究价值随着风险社会的来临,人类面临越来越多的极端灾害天气、能源环境危机等非传统挑战,在太空探索、基因工程等方面的研究也不断深入.
无论是理论研究还是应用问题求解,利用计算方法进行科研已经成为一种重要的手段,同时对计算机运行速度、精确度、储存能力等都提出了更高的要求,计算机能够准确高效地完成大规模问题的计算和海量数据处理成为当务之急.
作为对时代需求的直接回应,超级计算机在天气预测、污染检测与防控、石油气勘探与地震预测、工程仿真、天体物理建模、纳米材料研发、生物制药与基因对比、大规模人类组织行为、核爆炸模拟、动画效果渲染等领域已经创造了不可估量的价值.
与此同时,虚拟现实、人工智能等技术想象的实现,也离不开超级计算机的具体落实.
41.
2超级计算机发展脉络图1超级计算机发展历史(1)国防驱动阶段(1950s——mid-1960s):军事目标下的国家资助模式早期的计算机科学研究有着浓厚的国防军事色彩.
20世纪50年代后期,美国政府主要根据国家安全需求来支持情报和核武器应用研究.
国家安全是开发高性能计算技术的主要推动力.
20世纪60年代初的IBM7030Stretch和SperryRandUNIVACLARC正是在这样的背景之下诞生的,因为其计算速度显著超出顶尖商用机的数量级而被视为早期的超级计算机.
军事目标驱动阶段也是奠定超级计算机技术基础的阶段.
早期超级计算机系统中首创的技术,随着后来的商用计算机系统进入工业主流,例如,IBM7030虽然被认为并不成功,但是它催生了许多在后续计算机中发挥巨大作用的新技术,如晶体管逻辑、多线程、存储器保护、通用中断等等;另外,军事目标的主导作用也催生了超级计算机研究的一种典型管理模式——政府资助支持、国防科研单位主导,目前多数拥有超级计算机技术的国际和地区都采取这种模式.
(2)公司主导阶段(mid-1960s——1970s):成本降低、向量处理起步20世纪60年代中期到70年代末期,美国乃至全球的超级计算机行业主要由两家公司主导,即ControlData和CrayResearch.
在这一阶段,超级计算机的成本得到有效控制,同时向量处理技术的速度得到了大幅提升,大量廉价高速的计算机走向商品市场.

5图2CDC6600超级计算机与系统控制台1964年,ControlData的超级计算机CDC6600大获成功——在绝对计算能力方面,CDC6600相比前代超级计算机有了大幅提升(IBM7030的三倍),以1Mflops的运算速度成为1964-1969年间最快的计算机;在成本控制方面,CDC6600以接近甚至低于主流商用机最佳性价比的价格提供超级计算能力.
先后有150台CDC6600被生产出来,在欧美顶级实验室效力于高能核物理研究.
图3Cray-1超级计算机及其内部结构1972年,超级计算机设计师SeymourCray离开ControlData之后创办了CrayResearch,并在1976年研制出具有流水结构的向量机Cray-1.
这种向量机有着较高的性价比,持续计算能力成本与当时的成本性能冠军AppleII微型计算机的成本相当;不仅如此,它采用向量体系结构,其中浮点数的向量可以从存储器加载到向量寄存器中,并在算术单元中以流水线方式处理,速度比CDC6600等前代标量运算数高得多,向量处理也成为后代超级计算机的理论基石.
(3)蓬勃发展阶段(1980s——1990s):日本崛起、并行计算流行从Cray-1诞生到80年代,Cray系列超级计算机一直盘在全球计算机处理速度之首,直到1990年被日本超级计算机NECSX-3/44R超越,超级计算机研发领域美国一家独大的局面得到改善;同时随着并行计算等技术的成熟,超级计算机速度也到达前所未有的数量级.

20世纪80年代,日本政府大规模补贴计算机科研项目,同时推行排除国外竞争对手的产业政策.
到了90年代,一批深耕半导体领域的日本计算机公司,如富士通、日立、NEC等,成功获取IBM大型机技术的关键部分,并在本土推出了价格实惠的商用计算机系统.
6在高性能超级计算机的研发上,日本将大型机开发技术转移到超级计算机上,使本土产品也逐渐具备了与Cray系列超级计算机竞争的能力,例如首次超越美国超级计算机的NECSX-3/44R、1994年富士通使用166个向量处理器的数字风洞超级计算机、1996年日立公司使用快速三维交叉网络连接2048个处理器的SR2201以及后来的CP-PACS/2048,基本整个90年代速度最快的超级计算机都来自日本.
20世纪80年代,业界开始转向大规模并行运算系统.
1976年问世的超级计算机Cray-1是单向量机系统,之后为了进一步提高向量机的性能,在系统中不断增加向量部件的数量,即采用并行向量或多向量部件的技术.
1982年推出的CrayX-MP/2有2个向量处理部件,1984年生产的CrayX-MP/4有4个向量处理部件,1988年推出的CrayY-MP816最多可有8个向量处理部件,而此后出现的C90则有16个向量处理部件.
进入20世纪90年代后,向量部件数量已达到数百个,1993年速度最快的IntelParagon可以拥有1000到4000个不同配置的Inteli860处理器,1995年的CrayT3E拥有2000多个处理器,并行计算逐渐成为超级计算机主流.
(4)多向发展阶段(21世纪以来):中国赶超、异构集群系统夺魁21世纪以来,美、日两国依旧是超级计算机研发大国但是不再具有垄断地位,超级计算机开始呈现多极化发展.
MPP系统、集群系统的应用进一步提高了超级计算机性能,每秒千万亿次的P级(1015)超级计算机已经相对成熟,各个国家、各个科研机构和供应商正在E级超级计算机的研制中激烈竞争.
从历年TOP500名单来看,中国在顶尖超级计算机研发上的努力已经突显出来,自2010年凭借天河1号首次问鼎TOP500后,2013年到2017年中国连续五年盘踞榜首.
2018年6月,美国能源部宣布建成超级计算机Summit,其LINPACK浮点运算速度为每秒12.
23亿亿次、峰值接近每秒18.
77亿亿次,它由IBM与Nvidia联合建造,现位于田纳西州的橡树岭国家实验室,并凭借Summit这一超级计算机登上TOP500榜首.
表1历年TOP500超级计算机排名第一公司名称国家时间IBMSummit美国2018.
06–今国家并行计算机工程技术研究中心神威·太湖之光中国2016.
6-2017.
11国防科技大学天河-2中国2013.
06-2016.
06克雷公司(Cray)Titan美国2012.
11-2013.
06IBM蓝色基因/Q美国2012.
06-2012.
11理化学研究所京(超级计算机)日本2011.
06-2012.
06国防科技大学天河-1中国2010.
11-2011.
06Cray美洲虎(超级计算机)美国2009.
11-2010.
11IBM走鹃(超级计算机)美国2008.
06-2009.
11IBM蓝色基因/L美国2004.
11-2008.
06日本电气(NEC)地球模拟器日本2002.
06-2004.
117此外,亚洲、欧洲的多个国家在超级计算机领域的相关研究也取得长足进步.
根据2018年6月公布的TOP500排名,除美国之外,中国、日本、英国、德国、法国等5个国家有10个以上排名进入TOP500的超级计算机,荷兰、韩国、爱尔兰等紧随其后.
其中,中国是顶尖计算机数量最多的国家,有206台超级计算机进入TOP500,占比41.
2%,远远超过占比24.
8%的美国.
尽管如此,我国在TOP20的超级计算机数量上依然与美国有较大差距,前20名的超级计算机中,有8个来自美国,只有2个来自中国.
到了21世纪,出现了许多具有挑战性的应用问题,如气候建模、精密的气象预报、量子染色动力学、海洋环流、污染弥散、模拟核爆炸以及认知和视觉等.
这些都要求计算机系统能够在适当的时间内处理更加复杂的问题.
所以,必须采用更大规模的附属处理器数,研制具有低功耗、高性能的附属设备,优化编译器和并行编程语言等等.
超级计算机最早的单一处理(singleprocessor)、单指令多数据流(SIMD)、对称多处理(SMP)已经失去竞争优势;TOP500被群聚集(constellations)、大规模并行计算(MPP)和集群系统(cluster)瓜分,尤其是集群系统,在2005年全球顶尖计算机中一般都采取了这种架构方式.
1.
3典型超级计算机简介根据2018年6月最新的超级计算机TOP500排名情况5,本文选取排名前三的超级计算机进行简单介绍.
(1)SummitSummit,代号"OLCF-4",是IBM为美国能源部旗下橡树岭国家实验室开发建造的超级计算机.
机组于2018年6月8日落成,理论运算能力接近200Pflops(浮点运算速度每秒20亿亿次),超过峰值运算性能125Pflops的神威·太湖之光,2018年6月25日正式由TOP500认证为全球最快的超级计算机.
5TOP500(2018年6月数据):https://www.
top500.
org/list/2018/06/IBMASCIWhite美国2000.
11-2002.
06英特尔ASCIRed美国1997.
06-2000.
11日立CP-PACS日本1996.
11-1997.
06日立SR2201日本1996.
06-1996.
11富士通数值风洞日本1994.
11-1996.
06英特尔ParagonXP/S140美国1994.
06-1994.
11富士通数值风洞日本1993.
11-1994.
06TMCCM-5美国1993.
06-1993.
118Summit一共有4608个运算节点,每节点是一台主机,节点内使用CPU+GPU异构运算体系,由两颗POWER9CPU以及六块TeslaV100运算加速卡组成,CPU与GPU之间的连接采用的是英伟达公司开发的NVLink总线,每个节点的CPU和GPU共用512GiB的一致性存储器(GPU拥有的第二代高带宽存储器,加上CPU拥有的多通道DDR4存储器),CPU和GPU可相互直接访问这个存储器空间以共用数据,另外还配备了容量高达800GB的非易失性随机存取存储器(NVRAM)作为突发性缓存或扩展存储器容量之用.

Summit使用液冷系统,每分钟流量高达4000加仑,4608台主机连同液冷系统的整机组全速运行时的功率就高达一千五百万瓦.
仅GPGPU部分的双精度浮点数的运算性能就高达215Pflops;TeslaV100内置有用于深度学习运算的TensorCore,因此每颗GPGPU也能提供约125Tflops的混合精度浮点数性能,而全机组的更高达3.
3Eflops.
Summit擅长人工智能、机器学习和深度学习方面的运算,将其运用于动物健康、物理、气候模式等运算,获得的运算结果也比运行同样项目的泰坦更细致.
未来还会加入天体分析、超导体、新型材料等方面的研究6.
(2)神威·太湖之光神威·太湖之光是由中国国家并行计算机工程技术研究中心研制的超级计算机,2016年6月20日在LINPACK性能测试中以93Pflops的测试结果超越同为中国组建的天河二号(LINPACK成绩约为34Pflops),成为世界上最快的超级计算机,直到2018年6月8日被美国的超级计算机Summit超越.
目前神威·太湖之光部署在江苏省无锡市的国家超级计算无锡中心,由清华大学负责运营.
它的组件均由中国自主设计生产,是中国大陆首个不使用英特尔等美国公司的核心产品而登上TOP500第一名宝座的超级计算机.
"神威·太湖之光"的理论浮点数运算性能为125435.
9Tflops,在LINPACK测试中的实际性能为93014.
6Tflops,有74%的效率,相比天河二号(62%)以及排名第三的泰坦(65.
8%)都要高.
同时它的图形性能也较为突出,在Graph500排名中位列亚军.
神威·太湖之光系统功耗仅15.
3百万瓦,且每瓦性能达到6Gflops/W,截至2017年11月为止,在Green500能效比排名中排名第20位.
清华大学地球系统科学系与计算机系合作,利用"神威·太湖之光"首次实现了百万核规模、高分辨率的地球系统数值模拟.
此前,中国大陆的地球模拟系统模式一般采用百公里网格规模的分辨率,但现在已可开展25公里网格分辨率的地球系统模拟工作,在海洋上可达到10公里分辨率.
目前,三十多家用户单位在天气气候、航空航天、海洋科学、新药创制、先进制造、新材料等领域与国家超级计算机无锡中心开展了合作.
2016年,神威·太湖6http://dwz.
cn/ADZJof339之光上的"千万亿次八百五十万核可扩展非静力大气动力全隐求解器"应用软件获得"戈登·贝尔"奖.
2017年,基于神威·太湖之光的"非线性大地震模拟"再次获得"戈登·贝尔"奖7.
此外,"千万核可扩展全球大气动力学全隐式模拟"、"高分辨率海浪数值模拟"、"钛合金微结构演化相场模拟"、"高分辨率大气模式"、"非线性地震模拟"与"大规模并行图计算应用"六项应用在2016-2018连续三年入围年度"戈登·贝尔"奖提名.
(3)SierraSierra,代号ATS-2,是IBM为美国能源部下属的劳伦斯利福摩尔国家实验室建造的超级计算机,由美国国家核安全局管理,Sierra与前文提到的橡树岭国家实验室的Summit使用几乎相同的架构.
Sierra的运算节点采用IBM的WitherspoonS922LCOpenPower主机,每台主机中配备IBMPOWER9CPU配以NVIDIATeslaV100运算加速卡,CPU和加速卡之间使用NVLink连接,每颗CPU配以两块运算加速卡,节点之间的连接采用EDRInfiniBand8.
7http://dwz.
cn/EwRWUczR8http://dwz.
cn/ztX6CrtK102technology技术篇112.
技术篇超级计算机技术有三个层次:基础层、中间层和应用层.
其中,基础层主要是超级计算机的基本原理与方法,应用层涉及超级计算机使用场景,而中间层则包含了数据存储、计算、管理等多重技术支持,正是有了中间层的链接,超级计算机原理才能落实到应用问题解决之中.
图4超级计算机技术分层2.
1基础层:以异构并行为基础的超级计算机组成(1)基本原理超级计算的基本原理是并行计算,其优点是可以节省时间、处理大型问题、提高准确度.
在这种方法中,整个求解问题被分成n干份,然后每个部分各由一个处理机\并行计算,理论上,求解问题可以以1/n时间完成,但实际情况中,求解的问题通常不能很好地划分为各个独立部分,各个部分之间必须进行交互,包括计算中的数据传送和同步.
因此,超级计算的性能优化之一是提高并行可扩展性.
目前来看,硬件层面并行化的实现手段为:多重执行单元、连接结构、多核处理等.
(2)架构分类按照并行计算方式是单指令多数据流(SIMD)还是多指令多数据流(MIMD),存储器是共享还是分布,可以将超级计算机系统的架构作如下划分:12图5超级计算机系统的架构分类早期的超级计算机系统以SIMD方式工作.
由于系统中的各个处理器按阵列方式排列,所以又称为阵列处理机.
阵列处理机中的存储器可以是共享式的(SM-SIMD),也可以是分布式的(DM-SDMD).
阵列处理机的专用性较强,一般只适合于求解某类算法,工作效率往往很高.
单向量机系统中只有一套向量部件,但存储器为向量部件、标量浮点部件和标量整数率往往和部件所共享,因此属于SM-SIMD类型.
它有较强的通用性,特别是在求解向量应用问题时,有很高的效率.
当今的超级计算机系统大多以MIMD方式工作.
多向量机(multivectorprocessor,MVP)系统中有多套向量部件,但存储器是共享的,因此属于SM-MIMD类型.
对称多处理器(symmetricmultiprocessor,SMP)系统也属于这一类型.
MVP和SMP又称为UMA(uniformmemoryaccess)系统,因为系统中所有处理器对任何存储单元有相同的访问时间.
与UMA系统相对的系统称为NUMA系统,在NUMA系统中,存储器是分布的,各访问时间和处理器对同一存储单元的访问时间可能是不同的,依赖于处理器在系统中所处的具体物理位置.
NUMA系统属于DM-MIMD类型.
需要注意的是,NUMA系统中的处理器可对远程存储器(即非本地存储器)以load-store指令形式进行直接访问,因此该系统有一个统一的存储器逻辑地址空间.
NUMA并行机系统按是否对Cache一致性提供硬件支持可进一步分为CC-NUMA(cache-coherent)和NCC-NUMA(non-cache-coherent).
当存储器全由Cache组成时就变为COMA(cacheonlymemoryarchitecture)系统.
13如果并行计算机系统中的处理器必须以消息传递的方式访问远程存储器,就称为NORMA(noremotememoryaccess)系统,它也是DM-MMD类型.
与NUMA系统不同,它有多个存储器地址空间,且系统中的每个处理器是一个独立的计算机.
NORMA系统按计算机间的互连紧密程度,又分为紧耦合和松耦合两种.
集群(cluster)系统是松耦合的典型代表,而MPP系统则是紧耦合的典型代表.
MPP系统使用大量的商品化处理节点,用定制的高带宽、低时延互连网络将它们连接起来,存储器在物理上是分布的,必须通过消息传递实现进程间的相互通信,是紧耦合的并行机系统,具有良好的可扩展性.
CrayT3E和IBMBlue/Gene系统是它的典型代表.
集群系统中每个节点是一个完整的计算机,可能没有某些外设,节点也可以是一台SMP或个人计算机(personalcomputer,PC)等.
它采用商品化的互连网设备,节点机通过I/O总线与网络接口相连.
每个节点机上留驻有一个完整的操作系统,并有一个附加的中间件以支持单一系统映像和高可用性.
(3)最新发展自1996年以来,由于挑战性应用问题的急切需求,以及超大规模集成电路技术和网络技术的迅速发展,加快了计算机系统结构的演变和发展进程.
虽然开发指令级并行性的超标量技术日臻完善,动态预测执行、显性并行指令计算(explicitlyparallelinstructioncomputing,EPIC)等方法也已成功应用到商品化产品中,但随之而来的超标量处理器的设计越来越复杂,以至于进一步开发指令级并行性已变得相当困难.
另一方面,为了提高性能,微处理器芯片的时钟频率越来越高,导致功耗的急剧增加和组件装配密度的下降.
显然,单纯依赖提升单处理器时钟频率和一味开发指令级并行性以提高计算机性能的方法已不再经济有效,必须加强对线程级和数据级并行性的开发才能大幅提高计算机性能.
进入21世纪之后,多线程、多核技术应运而生,将异构并行计算架构引入超级计算机中,采用专用处理器或者附属加速处理器的方式加以实现.
异构并行技术,需要有效开发计算任务的并行性,与机器不同部件支持的计算类型最佳匹配,以充分利用各种计算机资源,神威·太湖之光、天河二号与天河2A、红杉等顶尖超级计算机都采取异构并行的处理器架构.
异构并行计算的基本工作原理是,首先析取求解任务的并行性类型,其次将具有相同类型的代码段划分到同一个子任务中,然后根据不同的并行性类型将各子任务分配到最适合执行它的计算资源上加以执行,达到使计算任务总的执行时间为最小的目的.
一个异构计算系统通常由以下三部分组成:①一组异构机器,如向量机、MIMD机、集群、图形处理机等;②将各种异构机互连起来的高速网,可以是商品化网络,也可以是用户定制的网络;③相应的异构计算的支撑软件.
142.
2中间层:六类设备+三大网络当前HPC的主要架构包括Cluster集群和MPP(大规模并行处理)两种,2018年6月发布的TOP500中437个超级计算机系统为集群架构、占比87.
4%,其余63个均为MPP架构.
典型的HPC集群系统主要由五类计算(或网络)设备和三类网络组成.
五类设备主要是指管理节点及登录节点、计算节点、交换设备、I/O设备和存储设备.
当前有很多高性能服务器都采用CPU+加速处理器异构的方式,因此有些集群系统还包括加速节点.
(1)六类设备:l登录节点,相当于用户访问集群系统的网关,用户通常登录到这个节点上编译并提交作业,是外部访问的唯一入口,需要保证用户节点的高可用性和数据安全性,但是对计算性能要求不高.
l管理节点,是集群系统各种管理措施的控制节点,负责监控各个节点和网络运行状况,运行相应的管理软件.
管理节点需要有硬件冗余保护,但是对计算性能要求不高.

l计算节点,用于执行计算,一般可以分为瘦节点和胖节点,前者主要用于执行并行运算,成本相对较低,还可以节约能耗、节省空间,刀片服务器已成为主流;后者用于数据划分困难或者内容需求特别大的特殊应用运算等,价格较高.
l异构节点,即加速节点,目前的异构节点通常同时使用CPU以及加速器设备(GPU、MIC等),或者直接采用异构处理器,以此提升并行运算效率.
异构节点也可以是计算节点.
l交换设备,集群节点之间需要通过网络连接在一起,节点之间的信息和数据的交换需要使用交换设备,大型集群中,计算网络的交换设备往往采用大型交换机.
lI/O设备和存储设备,为了使任务并行执行,每台执行任务的计算节点必须能够访问同样的数据,同时计算产生的大量数据需要有较大的存储空间,用来确保数据访问的同步;另外,高性能计算机的存储系统还起到提高读写带宽的作用.
(2)三类网络:l管理网络,用于管理节点和各个计算节点、I/O节点的互联,管理网络连接的机器就是集群内部的本地机器,所以高带宽和低延迟都不需要,同时可以容忍一定的过预定率.

l计算网络,用于各计算节点之间的互联,是并行任务执行时进程间通信的专用网络,并行计算机的核心就是它和集群内的其他节点交换信息的能力,通常称为IPC(Inter-processCommunication).
它需要高性能的网络来进行快速交换,才能够发挥出单节点的最大性能;此外,它还决定了系统架构、性能和适合的应用等.
计算网络一般采用千兆或万兆以太网、InfiniBand网络等.
15l存储网络,需要向高性能计算机的节点提供数据访问服务.
高性能计算机节点规模庞大、硬件设备繁多,软件配置复杂.
随着用户数量和作业数量的增加、作业队列数目和长度的增加,有必要对高性能计算机进行更加专业系统的管理和维护以充分发挥其性能.
图6浪潮集团建构的超级计算机生态结构图超级计算涉及的关键技术非常多,包括适用于超级计算的多/众核处理器技术、高速大容量的数据缓存技术、能够处理大量并发请求的低延迟高带宽的互联网络技术、低能耗的降温散热技术、任务调度技术、大规模并行文件访问技术等等.
2.
3应用层:解决方案图7超级计算机应用示意图16随着计算机科学的成熟,越来越多的科研创新和应用问题解决离不开海量数据、高速计算,超级计算机成为了诸多领域不可或缺的技术手段.
2.
3.
1石油气勘探石油勘探,尤其是石油地球物理勘探,一直是高性能计算技术的传统和主要应用领域.

长期以来,油气地球物理勘探技术的发展与应用高度依赖于包括高性能计算技术在内的信息技术的发展,尤其是近年来"两宽一高"(宽方位、宽频带、高密度)勘探技术的普及,和逆时偏移、全波形反演等一系列处理解释手段的应用,使得石油勘探对超级计算机的需求进一步增加.
国家超级计算天津中心基于"天河一号"开展的石油勘探数据处理程序,实现了复杂地质条件下上千平方公里数据的逆时偏移处理,支持中石油、中石化等单位大规模高精度三维成像处理软件的开发.
解决方案与服务内容包括:①大规模地震数据处理软件的测试服务;②石油地震勘探数据的偏移处理服务,在"天河一号"平台部署了GeoEast地震数据处理解释一体化系统和GeoEast-Lightning波动方程深度偏移模块,可为用户提供叠前时间偏移、单程波叠前深度偏移和逆时偏移等偏移处理的计算平台服务;③石油应用并行优化开发服务,涉及处理新方法新技术研究、应用软件高性能计算开发与优化、行业信息系统开发等方面的开发服务.
2.
3.
2生物医药与智能医疗超级计算机在探究基因奥秘、蛋白质结构、生物信息以及药物设计等方面已经成为不可或缺的工具,生物医药与智能医疗也就成为了活跃度较高的应用领域之一.
依托高性能计算、云计算、大数据及人工智能等技术的高度发展,生物医药、智能医疗技术必将推动医疗事业的繁荣发展,使国民健康行业走向真正意义上的智能化.
生物医药(BiologicalMedicine)综合应用生命科学与工程科学的原理和方法,从工程学角度,在分子、细胞、组织、器官乃至整个人体系统,多层次认识人体的结构、功能和其他生命现象,研究用于防病、治病、人体功能辅助及卫生保健的人工材料、制品、装置和系统技术.
生物医药产业具有创新成本高、投资风险大、研发周期长等特点.
而依托高性能计算、云计算及大数据平台开展相关科学研究和项目合作,可以大大缩短研发周期、降低创新成本、整体提高行业和企业的竞争力.
智能医疗(IntelligentMedical)通过打造医疗信息平台、智能诊断系统等,结合大数据、高性能计算和人工智能三大关键技术,结合循证医学和经验医学两大模型,将人工智能技术应用于医疗行业,核心算法融合一系列人工智能算法,白日辅助医生看病,夜间把最新的病例和手册等数据传输回超级计算机中心,进行机器学习,学习与诊断相互结合,显著提高临17床疾病的诊断效率和精度.
案例:大规模基因数据处理分析.
"天河一号"支持华大基因开展大规模生物基因处理及数据存储:①开发了基于GPU的高效基因测序处理软件,并利用该软件进行了3000株水稻的基因组重测序分析,短序列比对程序相对于之前应用的CPU版本速度提高15倍,且输出格式不需要再次进行转换,降低了I/O消耗;②构建Hadoop平台,将原来华大拥有的100个节点规模的计算平台扩展至数千节点,大幅度缩短项目的计算时间;③构建华大基因北方基因库,基因数据规模已经超过1PB;④开发完成了基于天河系统的群体基因型高分辨率分析软件,使用"天河一号"的Gaea软件15个小时便能完成人类64X的WGS数据所有分析过程.
图8全基因组测序成果美国能源部和美国国家癌症研究院的联合项目CANDLE(CANcerDistributedLearningEnvironment)旨在实现面向疾病精准医疗职能的E级深度学习和模拟.
目前此项目正在评估顶级社区开发的深度学习系统(Argonne的Theta,OakRidge的Summit早期访问系统和LLNL的Sierra早期访问系统),并在此基础上解决癌症的三个问题:RAS途径问题——是了解在30%的癌症中存在的RAS/RAF途径中关键蛋白质相互作用的分子基础;药物反应问题——开发用于药物反应的预测模型,可用于优化临床前药物筛查并推动针对癌症患者的精确医学治疗;治疗策略问题——自动分析和提取数百万癌症患者记录中的信息,以确定一系列患者生活方式、环境因素、癌症类型和医疗保健系统的最佳癌症治疗策略9.
由ORNL(橡树岭国家实验室)计算生物学家DanJacobson领导的一个研究小组利用ORNL的Summit发现植物细胞壁的关键调节基因,这些基因可被操作以增强生物燃料和生物产品.
该团队的研究结果发表于2018年5月的《FrontiersinEnergyResearch》(能源研究前沿).
ORNL用时也与美国退伍军人事务部之间展开战略合作项目,该项目的目标是将临床和基因组数据与机器学习和Summit的先进架构相结合,以更好地了解导致心血管疾病、前列腺癌、自杀心理、阿尔茨海默病、药物成瘾等疾病的遗传因素10.
9CANDLE官网:http://candle.
cels.
anl.
gov/10ORNL官网:https://www.
olcf.
ornl.
gov/olcf-resources/compute-systems/182.
3.
3工程仿真与航天器研发工程仿真CAE(ComputerAidedEngineering),即计算机辅助工程技术,是计算机和工程分析相结合形成的新兴技术,利用计算机辅助求解力学性能的分析计算结果、进行结构性能优化设计,是一种近似数值分析方法.
其核心思想是结构离散化,将实际结构离散为有限数目的规则单元组合体,通过对离散体进行分析求解,得出满足工程精度的近似结果,替代对实际结构的分析,可以解决很多实际工程需要解决,而理论分析和实验验证又无法解决的复杂问题.
案例:在航空发动机研制中,气动稳定性是最重要的技术标准之一,需使用工程仿真技术对气压机以及涡轮的效率、涡轮叶片冷却效果等进行分析模拟,通过编制包含稳态及动态过程在内的程序,输入初始参数后,计算得到发动机各截面的气动参数和性能参数,透过航空发动机复杂的设计,直接模拟和观察到其工作特性和结构特性,进行结构设计优化.
为达到航空发动机研发的精度要求,需要进行500-3000万网格以上的精细计算.
通过超级计算机,可避免航空发动机台架试验的难度和危险性,将设计效果验证深度、广度增加,产品设计周期缩短(单个部件的分析时间可从一周缩短为5小时),大幅降低设计及试验验证成本,快速提升航空发动机整体创新水平.
图9某型航空发动机内部三维流动工程仿真效果图基于"神威·太湖之光"的超级计算机,对"天宫一号"飞行器两舱简化外形(长度10余米、横截面直径接近3.
5米)陨落飞行(H=65km、62km、Ma=13)绕流状态进行大规模并行模拟,使用16,384个处理器在20天内便完成常规需要12个月的计算任务,计算结果与风洞试验结果吻合较好,为"天宫一号"飞行试验提供重要数据支持.
19图10大规模并行模拟"天宫一号"两舱绕流状态2.
3.
4天气预报与雾霾预警数值天气预报(NumericalWeatherPrediction)是用数学方法构建方程,将气象数据和边界参数导入方程求解,从而预测大气变化和状态的科学.
业务流程大致为:气象数据收集和预处理、数值天气预报流程、综合数值天气预报、天气学与统计学等输出预报结果.
它是典型的计算密集型应用(Computing-Intensive),要求建立一个较好的反映预报时段的(短期的、中期的)数值预报模式和误差较小、计算稳定并相对运算较快的计算方法;其次,由于数值天气预报要利用各种手段(常规观测、雷达观测、船舶观测、卫星观测等)获取气象资料,因此必须恰当地对气象资料做调整、处理和客观分析;再者,由于数值天气预报的计算数据量非常之大,很难用手工或小型计算机去完成,因此,开展数值天气预报必须依赖超级计算机极强的计算能力.
案例:国家超级计算长沙中心为中部某省气象局提供了数值天气预报计算的平台支持,以提高天气预报、气候预测的及时性、准确性、可靠性和精细化,更早的对灾害性天气进行预警,更好地分析灾害天气情况的规律,更有效地形成防御灾害天气的对策.
业务化运营后,该气象局数值预报能力大幅提升,WRF模式最高水平分辨率从20公里提升为4公里,覆盖包括该省在内的10*10区域;AREM暴雨模式水平分辨率从37公里提升为15公里;该气象局内部原有计算平台对中小尺度系统和强对流发展演变情况无法清晰模拟,但提高模式分辨率又难以满足时效性要求,超级计算平台解决了该省数值模式业务运算能力不足的问题,为省级数值模式预报业务发展创造了良好的运算环境,并进一步提高了天气预报预警服务质量和水平.
20图112015年4月2日08时~3日08时暴雨过程模式预报图图122015年4月2日08时-4月3日08时暴雨过程实况图2016年,"神威·太湖之光"的"千万亿次八百五十万核可扩展非静力大气动力全隐求解器",由中科院软件所、清华大学、北京师范大学等单位共同研发.
项目发展了适应异构众核体架构的隐式求解算法与优化技术,使模拟的性能达到0.
8亿亿次,与相同优化的显式求解算法相比计算速度提升近两个数量级,可支持500米大气动力模拟,是国际上领先的研究成果,将其嵌入到大气模式中,对我国解决高精度气象问题具有重要作用.

21图13大气模拟中不同kernel的数据划分和任务调度2.
3.
5海洋环境工程从海洋环流数值模拟到空气质量实时监测,再到海洋灾害预报等,高性能计算正在以强大计算力帮助人类实现对环境生态的深入洞察,实现海洋环境数值预报的精确性,为我国海洋资源开发以及海洋环境保护提供技术保障.
广州市香港科大霍英东研究院建立的CMOMS数值模拟系统,对中国近海环流、生态及碳循环动力系统的调控机理等前沿科学问题进行数值模拟,并在气候变化、全球变暖的背景下,对未来100年西太平洋-中国海区域的碳收支、循环及其变异等进行数值预测,为应对中国海域及其附近海域的气候变化提供参考与支持.
"神威·太湖之光"超级计算机实现了MASNUM海浪数值模拟的(1/60)°高分辨率的全球海洋模式,通过众核加速以及负载均衡、通信重叠和指令流水等优化手段,模式成功扩展到8,519,680核数,达到最高30.
07Pflops的峰值性能.
该模式基于波数谱空间下能量平衡方程,以海浪谱直接模拟为目标.
"神威·太湖之光"使其获得了优异的扩展性与并行效率.
图14利用"神威·太湖之光"模拟的全球(a)与区域(b)重要海浪高度分布222.
3.
6建筑信息模型建筑信息模型(BuildingInformationModeling,简称BIM)是一项将建筑与信息相结合的综合技术,通过高性能计算机系统对建筑过程中产生的主要数据进行存储处理,可对建筑的规划、设计、施工、运营管理的全生命周期进行信息化管理,优化设计、控制成本、协助管理、提高工程效率与质量,为推动智慧城市的建设与发展起到重要作用.

图15远程可视化建模案例:天津滨海新区天河建筑云产业园的建设就是以天河BIM云平台为基础的工程项目.
天河BIM云平台以工程仿真系统、大数据平台和云平台为依托,为产业园建设提供四类服务:①BIM远程可视化建模平台,用户本地无需采购高性能图形工作站、无需安装BIM建模软件,只需使用普通配置的主机连接到天河BIM云平台提供的桌面或应用程序,即可进行BIM远程可视化建模.
②BIM协同设计服务,以业主为核心,有效管控设计过程,减少设计风险,提高管控质量和效率,实现不同参与方、不同专业的多地点、实时协同工作.
③BIM仿真模拟,基于天河工程仿真设计平台,为建筑设计提供结构力学分析、流体力学分析和有限元分析等基础环境,如为建筑结构的强度及抗震分析,建筑单体与整体园区的室内外空气流通性等.
④BIM协同施工管理平台,支持多平台的BIM模型浏览.
通过二维码实现BIM数据与现场信息高效而有序地交互和材料跟踪管理,记录状态信息并同步至BIM模型中.
现场问题可即时在移动端以照片、文字记录至云平台,方便现场质量管理.
计划任务、采集的完成时间与BIM结合,形成真实的可视化4D进度模拟,辅助进度管理.
项目资料(图纸、文23档、图片、视频等)分类管理,可与BIM构建关联,形成BIM资料库.
2.
3.
7基础科学研究随着计算机技术和应用的迅猛发展,利用高性能计算模拟已经成为基础科学研究中不可缺少的重要手段.
在过去几十年中,科研人员在化学、材料科学、生命科学、固体物理、生物物理、生物化学、药物研究等微观领域的研究中,基于量子力学方法发展了大量而可靠的非相对论薛定谔方程和相对论迪拉克方程的近似解法,用来模拟微观世界中原子和分子的相互作用和行为.
例如,①使用并行程序进行密度泛函理论(DFT)计算已经成为材料科学、固体物理、计算化学、计算生物学等领域内必不可少的研究手段之一;②并行实现的高精度耦合簇理论(CC)和组态相互作用(CI)方法被许多量子化学计算程序采用,成为计算化学的主要工具;③基于牛顿力学并结合了量子力学的分子动力学计算的并行实现,是生命科学、生物物理、生物化学、药物研究等领域的主要模拟手段.
江苏无锡的国家超级计算中心已利用新研发的"神威·太湖之光"超算进行算法库swDNN的深度学习.
基于"神威·太湖之光"的异构众核处理器,已开发出针对卷积、矩阵乘等深度学习核心计算模块的算法库swDNN,通过采用计算任务划分、计算通信重叠、寄存器通信等优化技术,计算模块的计算效率可达到60%.
相比于K40m图形处理器(graphicsprocessingunit,GPU)上的cuDNN算法库,swDNN具有1.
91-9.
75倍的双精度浮点数性能优势.
这一算法库可为人工智能开发开辟道路,目前国家无锡超算中心与中国电子学会、北京邮电大学合作,开展了以深度学习为核心的围棋人工智能项目.
目前已完成软件开发优化,开始进入训练阶段,目标是利用"神威·太湖之光"这一超算平台,实现中国自己的专业级围棋人工智能11.
随着具备更强大计算能力的超级计算机的出现,人们可以模拟越来越大规模的微观系统、越来越长时间的微观过程、越来越精细的微观现象,从而极大地增强了对自然的认知能力.
时至今日,高性能计算已在基础科学研究、工业工程、公益事业、国防安全等各个领域广泛应用,解决了一些重大、关键、具有挑战性的重要科学和工程问题,对支持科技创新、推动经济发展起到了重要作用.
11杨广文,赵文来,丁楠,段芳.
"神威·太湖之光"及其应用系统[J].
科学,2017,69(03):12-16+2.

243talent人才篇253.
人才篇3.
1学者概况AMiner基于发表于国际期刊会议的学术论文,对超级计算机领域h-index排名全球TOP1000的学者进行计算分析,绘制了该领域学者全球分布地图.
图16超级计算机全球学者分布图上图是以"supercomputer"为关键词,在AMiner数据库中得到的全球超级计算领域人才分布图.
由图可见,美国在这一领域人才最多、最为集中,中国紧随其后,西欧的英国、荷兰、德国、意大利、瑞士,亚洲的日本、印度等也有不少超级计算机人才,南美洲、非洲和大洋洲则人才比较匮乏.
这与国家超级计算机发展水平呈正相关.
图17超级计算机全球学者迁徙图AMiner选取超级计算机领域h-index排名TOP1000的专家学者,对其迁徙路径做了分析.
由上图可以看出,各国超级计算机领域人才的流失和引进是相对比较均衡的,其中美国是超级计算机领域人才流动大国,人才输入和输出幅度都大幅度领先,且从数据来看人才流入略大于流出.
英国、德国、中国和加拿大等国人才流动量落后于美国,英国和中国的人才流入量大于流出量,德国和加拿大有轻微的人才流失现象.
26图18全球超级计算机领域TOP学者h-index分布图全球超级计算机领域TOP学者h-index≤10的人数最多,占比67.
17%,h-index在10-19之间的学者人数次之,占比16.
52%,h-index≥60和在50-59之间的学者人数最少,前者占比1.
21%,后者占比0.
71%.
图19全球超级计算机领域TOP学者性别比例全球超级计算机TOP学者男性占97%,女性占3%,男女人数相差悬殊.
67.
17%16.
52%8.
08%3.
94%2.
52%1.
21%0.
71%≤1010-1920-2930-3940-49≥6050-59male97%female3%malefemale27图20超级计算机学者中国分布图我们以"supercomputer"为关键字在AMiner数据库中对国内超级计算机人才进行挖掘,得到了国内超级计算机人才(全球TOP1000中分布于中国的学者)分布图.
超级计算机学者在中国集中于北京及广州等有计算机基础的地方.
AMiner基于发表于国际期刊会议的学术论文,对超级计算机领域内的专家进行深入挖掘,并按照相关度和影响力等对专家进行排序和分类,排序和分类规则主要参考专家的h-index、paper、citation、专家所获得的荣誉、任职机构排名、专家Activity、Sociability以及Diversity等.
我们按照AMiner提供的数据选取国内外10位学者做简单介绍.
由于本报告篇幅有限,只列出部分学者信息,如有更多相关学者信息需求,请与作者联系.

3.
2国外学者lJackDongarra28JackDongarra,田纳西大学电子工程与计算科学系教授、橡树岭国家实验室高级研究人员、全球超级计算机排行榜TOP500发起人,该排名中的基准程序LINPACK的作者.
求学工作经历:1980年,JackDongarra在新墨西哥大学获得应用数学专业博士学位,后在阿贡国家实验室工作到1989年,目前担任曼彻斯特大学图灵研究员、莱斯大学计算机科学系兼职教授、得克萨斯A&M大学高级研究所的教职研究员.
研究领域:JackDongarra擅长线性代数中的数值算法、并行计算、高级计算机体系结构的使用,编程方法以及并行计算机的工具,研究包括高质量数学软件的开发,测试和文档编制.
他为EISPACK、LINPACK、BLAS、LAPACK、ScaLAPACK、Netlib、PVM、MPI、NetSolve、Top500、ATLAS和PAPI等开源软件包及系统的设计和实现做出了突出贡献.
获奖情况:他是美国科学促进会、ACM、SIAM和IEEE的会士,俄罗斯科学院的外国成员和美国国家工程院院士.
此外,2004年因其在使用创新方法应用高性能计算机方面的贡献,获得IEEESidFernbach奖;2008年获得了IEEE可扩展计算卓越奖;2010年成为SIAM特别兴趣小组第一位获得超级计算职业成就奖的人;2011年获得IEEE计算机学会CharlesBabbage奖;2013年因设计和推广用于解决高性能计算常见数字问题的数学软件标准而领导ACMIEEEKenKennedy奖.
lIanT.
FosterIanT.
Foster,芝加哥大学教授、贡国家实验室联合研究所计算研究所所长、资深科学家和杰出研究员.
求学工作经历:IanT.
Foster在英国帝国理工学院获得计算机科学博士学位,于2006年至2016年间担任芝加哥大学和阿贡国家实验室联合项目计算研究所(CI)主任.
29研究领域:IanT.
Foster擅长分布式、并行和数据密集型计算技术以及这些技术在气候变化和生物医学等领域的科学问题的创新应用.
由他领导开发的算法和软件为许多大型国家和国际网络基础设施奠定了基础.
获奖情况:他是美国科学促进会、计算机协会、英国计算机协会的资深会员,还是云计算公司UnivaUDInc.
的联合创始人.
同时,2001年获得"戈登·贝尔"奖;2011年获得IEEETsutomuKanai奖;2012年获得ACM首批高性能计算和分布式计算成就者荣誉;2017年获得Euro-Par成就奖.
此外他还获得过全球信息基础设施(GII)下一代奖、英国计算机协会的Lovelace奖章、R&D杂志的年度创新奖等.
lMarcSnirMarcSnir,以色列裔美国计算机科学家、伊利诺伊大学香槟分校计算机科学系教授、美国阿贡国家实验室数学与计算科学部门主任、P级超级计算机BlueWaters的首席研究员、英特尔和微软资助的通用并行计算研究中心(UPCRC)联合主任.
求学工作经历:1979年,MarcSnir在耶路撒冷希伯来大学数学系学习获得博士学位,1980年至1982年在纽约大学负责UltraComputer项目工作,1982年至1986年回希伯来大学工作,之后加入IBM,担任IBMTJWatson研究中心的高级经理.
他领导的可扩展并行系统研究小组对IBMSP可扩展并行系统、IBMBlueGene超级计算机做出突出贡献.
2001年至2007年在伊利诺伊大学香槟分校担任计算机科学部主任,2011年至2016年担任阿贡国家实验室数学和计算机科学部主任.
研究领域:MarcSnir擅长计算复杂性、并行算法、并行体系结构、互连网络、并行语言和库以及并行编程环境等细分领域.
获奖情况:MarcSnir是美国科学促进会(AAAS)会士(Fellow)、美国计算机协会(ACM)资深会员和美国电子电气工程师协会(IEEE)会士、获得IEEE可扩展计算卓越奖和IEEESeymourCray计算机工程奖.
30lBronisR.
DeSupinskiBronisR.
DeSupinski,劳伦斯利弗莫尔国家实验室(LLNL)LivermoreComputing项目的首席技术官(CTO),负责制定LLNL的大规模计算战略并监督其实施.
求学工作经历:1998年,BronisR.
DeSupinski在弗吉尼亚大学获得计算机科学专业博士学位,并于1998年7月加入LLNL应用科学计算中心(CASC).
目前,主要领导Exascale计算技术(ExaCT)项目,探讨与未来大规模系统相关的编程模型、算法、性能、代码正确性、弹性等几个相关的课题.
并且领导高级仿真和计算(ASC)计划下属的应用程序开发环境和性能团队(ADEPT),负责LLNL大型系统的开发环境,包括编译器、工具和运行系统.
研究领域:主要包括数据挖掘技术及其在性能分析和建模上的应用,包括通过非线性回归技术进行性能建模(即人工神经网络和分段多项式回归),研究机制和工具以改善记忆性能,MPI的各种优化技术和工具,以及OpenMP的几个问题,包括其内存模型和工具支持.
获奖情况:他是ACM和IEEE计算机学会的资深成员.
此外,其于2005年、2006年两次获得"戈登·贝尔"奖,凭借在新型可扩展调试工具的团队中的领导能力获得R&D100.
lSatoshiMatsuoka31SatoshiMatsuoka,日本东京工业大学教授,日本理化学研究所带头人,2018年4月被任命为日本最大的超级计算机中心RIKEN的计算科学中心负责人.
他曾是TSUBAME超级计算机项目的首席研发专家,将继续负责监督K-computer的后续研究Post-K的研发进展.
求学工作经历:1986年,SatoshiMatsuoka从东京大学毕业,学生时代在日本视频游戏公司HALLaboratory工作,并与后来的任天堂CEOSatoruIwata共同开发任天堂和滚球的弹球,1989年Matsuoka成为东京大学的研究助理和讲师,1993年提交了题为"可扩展性和在并发面向对象语言中重用的语言特征"的论文,并获得博士学位,1996年成为东京工业大学的助理教授并于2001年成为正教授,领导了东工大TSUBAME系列超级计算机的建设.
现入职日本理化研究所.
此外他还是日本国家信息学研究所的客座教授、美国计算机协会(ACM)会士.
研究领域:主要是大型超级计算机和类似基础设施的系统软件,例如用于HPC的云计算,大数据/人工智能与HPC的融合,以及调查后摩尔技术.
参与并领导了许多大型协作项目,对超级计算机基本元素如容错、低功耗、强可扩展性、可编程性以及大规模的I/O等有深入研究.
获奖情况:他是超级计算机大会(SC)委员会委员、国际超级计算机大会(ISC)会士,"戈登·贝尔"奖评奖委员会主席.
此外,他曾获1999年获得日本Sakai奖,2005年获得日本科学促进会奖,2011年获得"戈登·贝尔"奖,2014年获得SidneyFernbach奖.
3.
3国内学者l杨广文32杨广文,清华大学计算机科学与技术系教授、高性能计算研究所所长、地球系统数值模拟教育部重点实验室主任、国家超级计算无锡中心主任.
求学工作经历:1996年,他在哈尔滨工业大学获得计算机系统结构专业工学博士学位.
现担任"国家863高效能计算机及网格服务环境"重大项目总体组专家、国家超级计算无锡中心主任.
研究领域:他擅长分布式信息服务与集成技术、网格关键技术、网格应用支撑与网格应用、高性能计算技术等方面,并取得了一些创新性成果.
主持参加了多项863、973、国家自然科学基金等重点项目的研究.
获奖情况:他曾获2016年和2017年"戈登·贝尔"奖.
在国内外杂志和学术会议发表学术论文上百篇,获国家科技进步二等奖2项、部级科技进步二等奖1项、中创软件人才奖、清华大学青年教师教学优秀奖.
l廖湘科廖湘科,现任国防科技大学计算机学院院长、天河二号总设计师.
求学工作经历:1985年,他获得清华大学计算机系学士学位,1988年于国防科技大学计算机学院获得硕士学位.
现任国防科技大学计算机学院院长,研究员.
33研究领域:他长期从事高性能计算机系统软件与通用操作系统的科研工作,参加了银河二号到银河Y四代高性能计算机的研制,主持了天河一号、天河二号高性能计算机的研制,主持了麒麟操作系统的研制.
获奖情况:廖湘科2015年当选中国工程院院士.
获国家科技进步特等奖1项、一等奖3项,部委级科技进步一等奖8项,为我国高性能计算机系统研制跻身世界领先行列、为国产基础软件的安全可靠发展做出重要贡献.
此外,其曾获光华工程科技奖、中国青年科技奖、"求是"奖、中国计算机学会王选奖等.
l钱德沛钱德沛,北京航空航天大学教授,中山大学数据科学与计算机学院院长、教授.

求学工作经历:1977年,他毕业于西安交通大学计算机专业,1984年获得美国德克萨斯州北德州立大学硕士学位,1991年6月至92年3月作为高级访问学者,在德国汉诺威大学计算机系统结构与操作系统研究所进修工作,1992年起任北京航空航天大学教授.
自1996年起任国家863计划专家组专家,现任国家863计划"高效能计算机及应用服务环境"重大项目总体组组长、国家973计划信息领域咨询专家组成员、国家基金委重大研究计划"高性能科学计算的基础算法预科计算建模"指导专家组成员、CNGI专家委员会委员.
研究领域:主要包括高性能计算机体系结构、分布式系统、众核处理器并行编程等.

获奖情况:他曾主持完成国家自然科学基金、863计划、973计划、国际合作计划等多项课题的研究工作,发表论文300余篇,获国家科技进步二等奖一项,北京市科技进步一等奖一项.
34l王恩东王恩东,中国工程院院士,高效能服务器和存储技术国家重点实验室主任,浪潮集团首席科学家.
求学工作经历:1991年,他在清华大学获得硕士学位,2015年当选中国工程院院士,2016年1月19日,被评为"2015中国科学年度新闻人物".
浪潮集团首席科学家、浪潮K1的研发者,曾担任高效能服务器和存储技术国家重点实验室主任,主机系统国家工程实验室主任,863计划信息领域专家,中国计算机学会副理事长等职.
发表论文22篇、出版专著3部,授权中国和美国发明专利26项.
2017年5月,获得全国创新争先奖.
研究成果:王恩东和他的技术团队打破了高端容错计算机、人工智能超级计算机等前沿技术长期被国外垄断的局面.
自主研发的云计算服务器、云数据中心操作系统、模块化数据中心、人工专用平台等前沿技术和装备,融合架构云服务器系列产品,在开放计算领域都达到了国际领先水平.
l杨超35杨超,中国科学院软件研究所研究员,荣获2016年"戈登·贝尔"奖.
研究成果:自2007年起,杨超就带领团队在面向大气动力学模拟的全隐式求解器算法和软件研究方面辛勤耕耘.
历经了"蓝色基因/L"、"曙光5000A"、"深腾7000"、"天河一号"以及"天河二号"等国内外多代超级计算机系统的考验后,杨超团队最终在国产"神威·太湖之光"这一配备了国产众核处理器的世界顶级超级计算机系统上取得了突破.

研究团队重新设计了基于区域分解、多重网格和不完全矩阵分解技术的新型求解器算法,在国际上首次研制出一套具有千万核扩展能力、适应于"神威·太湖之光"等众核体系结构特征的全隐式求解器软件,并在非静力大气动力全隐求解中取得良好的应用效果.

364marketing市场篇374.
市场篇表2各国排名进入TOP500的计算机数量情况(2018年6月)排名国家和地区排名进入TOP500的计算机数量所占百分比处理器总数1中国20641.
2%25,107,6802美国12424.
8%15,829,7203日本367.
2%7,170,4084英国224.
4%1,678,2205德国214.
2%1,422,8146法国183.
6%1,816,7207荷兰91.
8%424,8008韩国71.
4%843,3009爱尔兰71.
4%334,824作为世界高性能计算领域规模最大的权威会议之一,国际高性能计算大会每半年公布一次全球超级计算机TOP500榜单.
根据超级计算机TOP500最新榜单,中国已经成为全球拥有最多超级计算机的国家,全球TOP500的超级计算机中,有206台是中国研制的,美国则拥有124台.
表32018年6月超级计算机TOP500前十排名名称国家场所供应商1Summit美国橡树岭国家实验室国际商业机器公司2神威·太湖之光中国国家超级计算无锡中心国家并行计算机工程技术研究中心3Sierra美国劳伦斯利福摩尔国家实验室国际商业机器公司4天河-2A中国国家超级计算广州中心中国人民解放军国防科学技术大学5ABCI日本国家先进工业科学技术研究所富士通株式会社6代恩特峰瑞士瑞士国家超级计算中心克雷公司7泰坦美国橡树岭国家实验室克雷公司8红杉美国劳伦斯利福摩尔国家实验室国际商业机器公司9Trinity美国洛斯阿拉莫斯国家实验室克雷公司10Cori美国国家能源研究科学计算中心国际商业机器公司上表对2018年6月超级计算机TOP500的前十名做了列举.
由TOP500的排名可以发现,除了排名第二的神威·太湖之光,前五名中的其余四个都是新建或是大幅升级过的系统.
在一年没有进入前三以后,美国两台新系统机器此次分别占据第一和第三的位置,中国的顶级超级计算机系统占据第二和第四的位置,日本的超级计算机系统占据第五的位置,欧洲的超级计算机(瑞士)占据第六的位置.
美国能源部橡树岭国家实验室(ORNL)的最大系统Titan现在位列第七.
前十中,第一的Summit、第三的Sierra及第五的ABCI系统均使用NVIDIAVoltaGPU实现其性能.
第六的PizDaint和第七的Titan系统则使用其他的NVIDIAGPU进行加速计算.
38目前超级计算机厂商排名前五的分别是联想、惠普、浪潮、Cray和曙光,中国占三家,美国占两家;市场份额依次为23.
8%、15.
8%、13.
6%、11.
2%、11%.
尽管中国在拥有超级计算机的数量上占优势,但目前全球速度最快的超级计算机为美国所拥有.
在美国橡树岭国家实验室的Summit超级计算机发布后,美国劳伦斯利弗莫尔国家实验室的Sierra和日本的ABCI(AIBridgingCloudInfrastructure)也紧随其后.
目前,研究人员已经开始着手解决下一代计算机的挑战——研制E级超级计算机(1Eflops=1018flops,百亿亿级)的超级计算机,中国、欧盟、日本在超级计算机领域的持续发力,或许也会对Summit榜首的宝座构成威胁.
此前凭借"神威·太湖之光",中国已经两度拿下国际高性能计算应用领域的最高奖项"戈登·贝尔"奖.
超级计算机市场竞争进入了白热化的阶段.

39trend趋势篇5405.
趋势篇图21超级计算机相关研究近期热点关键词及其走势AMiner通过挖掘1980-2017年间超级计算机领域论文信息,计算出超级计算机近期热点.
图中每个彩色分支表示一个关键词领域,其宽度表示该关键词的研究热度,各关键词在每一年份(纵轴)的位置是按照这一时间点上所有关键词的热度高低进行排序.
分析发现:80年代到90年代中后期,超级计算机相关研究中热度较高的关键词为"并行处理(parallelprocessing)"、"高性能计算(highperformancecomputing)"等技术基础;1996年到2004年期间,评价类关键词如基准问题测试(instructionsets)、热度提高等部分后续研究热点陆续出现;2004年以来,超级计算机整体热度大幅提升,其中能源效率(energyefficient)、程序设计模型(programmingmodel)、图形处理器(graphicsprocessingunits)等应用类方向成为研究重点.
根据专家提供的资料和相关新闻报道,未来超级计算的发展趋势包括但不止于以下几点:(1)速度大幅提升当前,世界TOP500的超级计算机,基本都可以达到P级(1Pflops=1015flops)运算速度,各个国家正在E级超级计算机的研制中激烈竞争.
未来超级计算机研究不仅要在高性能计算系统、网络架构、系统软件、应用支撑等关键技术上取得突破,更要面临生态环境、可靠性、应用编程、多领域应用融合等多方面的挑战.
根据历年来超级计算机速度提升情况,TOP500组织预计E级(1Eflops=1018flops)超级计算机将有望于2020年出现12.
美国"国家战略计算项目(NSCI)"计划在2023年底将开发完成2套E级超级计算机系统.
(2)与AI、VP融合随着全球移动互联网、物联网等快速发展,人类可获取利用的数据正以爆炸式的状态增长,预计2020年全球数据量将超过4万亿GB,这些海量的大数据通过最新的深度学习技术将为人类社会创造难以估量的价值.
在新的技术阶段,高性能计算云计算与大数据相互融12https://www.
top500.
org/statistics/perfdevel/41合的趋势会更加明显,并将在人工智能、虚拟现实、高性能数据分析等新领域得到更广泛的应用.
面向应用优化的高性能计算系统研发、智能化的系统管理调度等将成为发展趋势.

(3)量子计算机2017年年底,IBM宣布成功建成并测试全球首台50个量子比特的量子计算原型机,一度被媒体认为秒杀当时最快超级计算机"神威·太湖之光".
量子计算机(QuantumComputer)是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置,当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机.
从可计算的问题来看,量子计算机擅长解决几类传统计算机难以解决问题,从计算的效率上,由于量子力学叠加性的存在,目前某些已知的量子算法在处理问题时速度要快于传统的通用计算机.

目前量子计算机还处于发展的初级阶段,但其研制吸引了多家重要的互联网厂商.

(4)生物计算机生物计算机也称仿生计算机,主要原材料是生物工程技术产生的蛋白质分子,并以此作为生物芯片来替代半导体硅片,利用有机化合物存储数据,具有生物体的一些特点,如能发挥生物本身的调节机能,自动修复芯片上发生的故障,还能模仿人脑的机制等.
生物计算机的运算速度要比当今最新一代计算机快10万倍,它具有很强的抗电磁干扰能力,并能彻底消除电路间的干扰,能量消耗仅相当于普通计算机的十亿分之一,且具有巨大的存储能力.

量子计算机和生物计算机既是超级计算机的竞争对手,也是重要的融合发展方向.

参考文献[1]GrahamS,SnirM,PattersonC.
GettingUptoSpeed:TheFutureofSupercomputing[J]NationalAcademiesPressWashingtonDc,2004[2]国家超级计算机天津中心HPC应用领域http://www.
nscc-tj.
gov.
cn[3]湖南大学国家超级计算机长沙中心应用领域http://nscc.
hnu.
edu.
cn/info/1071/1093.
htm[4]国家超级计算无锡中心.
http://www.
nsccwx.
cn/introduction.
phpword=introduction&i=34[5]李硕,唐胜男高性能计算机体系结构综述[J]北京邮电大学网络与交换技术国家重点实验室[6]葛蔚,郭力,李静海,陈左宁,胡苏太,刘鑫[J]关于超级计算发展战略方向的思考中国科学院院刊,2016[7]顾蓓蓓,迟学斌,武虹,赵青[J]国内大型超算中心系统及应用发展态势比较分析,2017[8]钱德沛国家高性能计算发展状况[J]科研信息化研究与发展,2014[9]赵毅,朱鹏,迟学斌,牛铁,曹宗雁浅析高性能计算应用的需求与发展[J]计算机研究与发展,2007[10]迟学斌,朱鹏,武虹等世界各地超级计算中心的发展概况[J]中国计算机学会通讯,2008[11]陈左宁进入新时代的超级计算机[J]九三论坛,2017[12]www.
top500.
org版权声明AMiner研究报告版权为AMiner团队独家所有,拥有唯一著作权.
AMiner咨询产品是AMiner团队的研究与统计成果,其性质是供用户内部参考的资料.
AMiner研究报告提供给订阅用户使用,仅限于用户内部使用.
未获得AMiner团队授权,任何人和单位不得以任何方式在任何媒体上(包括互联网)公开发布、复制,且不得以任何方式将研究报告的内容提供给其他单位或个人使用.
如引用、刊发,需注明出处为"AMiner.
org",且不得对本报告进行有悖原意的删节与修改.
AMiner研究报告是基于AMiner团队及其研究员认可的研究资料,所有资料源自AMiner后台程序对大数据的自动分析得到,本研究报告仅作为参考,AMiner团队不保证所分析得到的准确性和完整性,也不承担任何投资者因使用本产品与服务而产生的任何责任.

ProfitServer$34.56/年,西班牙vps、荷兰vps、德国vps/不限制流量/支持自定义ISO

profitserver怎么样?profitserver是一家成立于2003的主机商家,是ITC控股的一个部门,主要经营的产品域名、SSL证书、虚拟主机、VPS和独立服务器,机房有俄罗斯、新加坡、荷兰、美国、保加利亚,VPS采用的是KVM虚拟架构,硬盘采用纯SSD,而且最大的优势是不限制流量,大公司运营,机器比较稳定,数据中心众多。此次ProfitServer正在对德国VPS(法兰克福)、西班牙v...

Hostodo独立日提供四款特价年付VPS套餐 最低年付$13.99

前天,还有在"Hostodo商家提供两款大流量美国VPS主机 可选拉斯维加斯和迈阿密"文章中提到有提供两款流量较大的套餐,这里今天看到有发布四款庆祝独立日的七月份的活动,最低年付VPS主机13.99美元,如果有需要年付便宜VPS主机的可以选择商家。目前,Hostodo机房可选拉斯维加斯和迈阿密两个数据中心,且都是基于KVM虚拟+NVMe整列,年付送DirectAdmin授权,需要发工单申请。(如何...

百纵科技:美国独立服务器租用/高配置;E52670/32G内存/512G SSD/4IP/50M带宽,999元/月

百纵科技怎么样?百纵科技国人商家,ISP ICP 电信增值许可证的正规公司,近期上线美国C3机房洛杉矶独立服务器,大带宽/高配置多ip站群服务器。百纵科技拥有专业技术售后团队,机器支持自动化,自助安装系统 重启,开机交付时间 30分钟内交付!美国洛杉矶高防服务器配置特点: 硬件配置高 线路稳定 洛杉矶C3机房等级T4 平价销售,支持免费测试,美国独服适合做站,满意付款。点击进入:百纵科技官方网站地...

iexplore.exe应用程序错误为你推荐
下图搜狗浏览器2巧摄专业版使用指南支付applesolutionssb敬请参阅最后一页特别声明支持ipadoutput_buffering飞飞的官方网站是啥重庆网通重庆联通现在有哪些资费???windows键是哪个Win键是什么?iexplore.exe应用程序错误iexplore.exe - 应用程序错误怎么办阿??????
老域名失效请用户记下 中文域名查询 贝锐花生壳域名 sugarhosts 韩国加速器 godaddy优惠码 godaddy域名优惠码 免费网页空间 双12 环聊 重庆电信服务器托管 路由跟踪 国外在线代理服务器 php服务器 主机返佣 xuni 深圳主机托管 服务器防御 alexa世界排名 web服务器 更多