VirtualNetworkEmbeddinginElasticOpticalDataCenterNetworkAidongSu1,a*andYongyiZhang1,b1DalianAirforceCommunicationNCOAcademy,P.
R.
Chinaasuaidong@126.
com,b80834567@qq.
comKeywords:VONembedding;cloudcomputing;elasticopticalnetwork;datacenterAbstract.
Theboominginternetservicesurgetheresearchonthecloudcomputingandthenetworkresourceutilization.
Thecombinationofelasticopticalnetworkanddatacentercansolvethenetworkresourcesdeficientproblemandthecomputingresourcesunbalancedproblem.
Virtualopticalnetworkembeddingprovidesthewayofresourcehigh-efficiency.
Inthispaper,weproposeanovelvirtualnetworksembeddingalgorithmorientingspectrumresource,andthesimulationresultsverifyitssuperiorityonincreasingspectrumresourceutilizationandreducingdemandblockingrate.
IntroductionWiththedevelopmentofInternet,bandwidthdemandisbooming.
Theconstructionofflexibleandlargecapacityopticalnetworkbecomesimportant[1].
WavelengthDivisionMultiplexing(WDM)opticalnetwork,allocatingnetworkresourceinaone-size-fits-allmanner,leadstoinefficientresourceutilizationandlowflexibility.
Byintroducingtheorthogonalfrequencydivisionmultiplexing(OFDM)andbreakingthroughthefixedbandwidthspacingrestrictionbetweenwavelengthtunnels,elasticopticalnetworkutilizesspectrumresourcesefficiently.
Meanwhile,withthewidespreaduseofcloudcomputingandvirtualizationtechnologyindatacenters(DC),thevirtualnetworkembedding(VNE)becomesachallengeintheclouddataDCnetworks(DCNs)[2-5].
Itenablestheco-existenceofmultiplevirtualnetworksonthesamesubstratenetworkbysharingtheavailableresources.
Thus,VNEinelasticopticalDCNsiswidespreadlyconcerned.
ThispaperfirstdescribesVNEprobleminelasticopticalDCNsandpresentsthecorrespondingmathematicalmodel.
Forstatictraffic,wedesignavirtualnetworkembeddingalgorithmbasedonthelayeredauxiliarygraphreferredtoasVNEorientingspectrumresource(VNE-OSR).
Theproposedalgorithmcanintegratefourdifferentserviceorderingstrategies.
Simulationresultsshowthat,intermsofimprovingnetworkresourceutilizationandreducingtheblockingrate,theproposedVNE-OSRalgorithmreflectsgoodperformances.
ElasticOpticalDataCenterNetworkVirtualizationFig.
1SchematicdiagramofvirtualnetworkembeddingOpticalDCNvirtualizationequatesthecombinationofthevirtualnodeembeddingandthevirtuallinkembedding,i.
e.
,themappingfromvirtualopticalnetwork(VON)tophysicalnetworks[6].
Thatincludes1)selectingappropriateservers(orDC)forthecomputingresourcerequestsofvirtualnodes,i.
e.
,themappingfromvirtualnodestosubstratecomputingelements,and2)allocatingappropriatefiberlinksandspectrumforvirtuallinks,i.
e.
themappingfromvirtuallinkstofiberlinks[7].
Concretely,asshowninFig.
1(a),thereare5serversand6fiberlinksinthesubstratenetworks.
Thereexist8spectrumslotsineachfiberlink,whichcanbeexpressedbyaneight-binary-array,where"1"denotesthisspectrumslothasbeenoccupied;otherwise,it's"0".
Thenumberbesideseachserver(orDC)indicatestheremaindercomputingresource.
AsshowninFig.
1(b),thearrivingVONneeds3virtualnodesof4computingresourcesand2virtuallinksof2continuousslots.
Fig.
1(c)showstheresultofVONembedding,i.
e.
,thevirtualnodesa,bandcaremappedaccordinglytoserversD,BandE,andthevirtuallinksabandacaremappedaccordinglytoDBandDE.
TheVNEintheelasticopticalDCNscanneatlydistributespectrumsaccordingtodemands,soitcanrisethespectrumresourceutilization,andmeanwhile,VNEmainlyorientsthescenewheretheDCNpower-systemfailsandthenrecoversgradually.
Inthissituation,thereexistmanyimproperserverssinceapowerfailureandscarceserver-computing-resourcewillleadtomanyblockedVONdemands,thusitisveryvaluabletoresearch.
ProblemDescriptionTheelasticopticalDCNshavetheabstractedsubstratetopology(,)sssGVE,wheresVrepresentsthesetofsubstratenodes,andsErepresentsthesetofbi-directionallinks(eachlinkisconsistoftworeversed-unidirectionalfibers).
EachsubstratenodesnV∈hasacertainamountofavailablecomputingresourcenc.
ThespectrumresourceineachfiberlinkseE∈isdividedintospectrumslotswiththesamebandwidth,andeachspectrumslotcorrespondswithanOFDMsub-carrier,i.
e.
eachfiberlinkconstitutesaseriesofcontinuoussub-carriers.
ThissituationcouldbeexpressedbyabinaryarrayebwithBelements,whereBrepresentsthemaximumsub-carrierquantityineachfiber.
EachVONrequestcouldbeindicatedbynon-directionalgraph(,)rrrGVE,andeachvirtualnoderjV∈hasitscomputingresourcerequestjm.
InthesameVON,anybandwidthsub-requestamongallvirtuallinksisequal,sothebandwidthrequestofeachvirtuallinkrkE∈isindicatedbyrn,i.
e.
,itisthecontinuoussub-carrieramountwhichneedbeassignedtothevirtuallink.
Eachfiberlinkhasthesamequantityofsub-carriers,andasmentionedabove,anyrequiredbandwidthineachvirtuallinkinthesameVONrequesthasthecoincidentamount.
ThecoreofVONproblemistomapaVONrequestintosubstratenetworks,i.
e.
themappingfromvirtualnodesintosubstratenodesandthemappingfromvirtuallinksintothefiberlinks.
ForthestaticVONembeddingproblem,giventhatalltherequestdemandswerenotblocked,thetargetoftheVONembeddingalgorithmisminimizingthemaximumsub-carrierserialnumberusedinallfiberlinks.
VirtualNetworkEmbeddingAlgorithmWeproposeanovelVNEalgorithmbasedonthelayeredauxiliarygraph(LAG)referredtoasVNEorientingspectrumresource(VNE-OSR)forstaticdemands,andittakestwophases:thecomputingresourceallocationforvirtualnodesandthebandwidthresourceallocationforvirtuallinks.
Thealgorithmcanallocateappropriatespectrumresourceaccordingtothedemandactualsize.
VNE-OSRfirsttriestoconstructaLAGaccordingtovirtuallinkbandwidthrequirementsofaVONandtheonline-servicebandwidth-conditionoffiberlinks.
IfaLAGisbuiltsuccessfully,weexecutethemappingofnodesandlinksonthisgraph;otherwise,weblockthedemand.
Table1showsthepseudo-codeofVNE-OSR.
Lines2-7expresstheprocessofconstructingaLAG,anddescribehowtotransportaVONdemandmappingfromsubstratenetworkstoacertainLAG.
Thealgorithmorderlycheckseachfiberwhetherrnavailablecontinuousspectrumslotsexit.
Ifthereexistsufficientspectrumslots,weinsertthefiberintotheLAGi,whereiisthestatingspectrumslotindex.
Whenallfibersarecheckedup,thealgorithmwillcheckinterconnectingelementsonLAGi,andformssomesub-graphs.
Andthenitsortsthesesub-graphsinthedescendingorderbasedonthenodenumber,where()subknodeGdenotesthenodenumberinsubkG.
rVdenotesthevirtualnodenumberinaembeddingrequestrV.
Lines8-11runthenodemappingandthelinkmapping.
Table1Pseudo-codeofVNE-OSRalgorithmVNE-OSRInput:SubstratenetworksG,aVONrequestrG;Output:NodemappingNM,linkmappingLM;1.
backupsGinstG;2.
for1i=to1rBn+do3.
restoresGtostG;4.
foreachconnectedcomponentinsGdo5.
subkG←selectaconnectedcomponentofsG;6.
removesubkGfromsG;7.
sort{,1.
.
.
1}subjGjk=basedon()subjnodeGindescendingorder;8.
for1j=to1kdo9.
applyNMLMalgorithmtoembedrGontosubjG;10.
markrGasblocked;11.
restoresGtostG;SimulationSimulationSetting.
WeadoptNSFNETasthetestingtopology.
Eachfiberlinkconsistsofapairofreversed-unidirectionalfibers.
Themaximumsub-carrierserialnumber(MSSN)occupiedinsubstratenetworksandthemeanblockingprobability(MBP)arethetestmerits.
MSSNiscalculatedbytheequation(1),wheresfisbinary,andifthesub-carrierisoccupied,1sf=;or,0sf=.
maxsMSSNsf=.
(1)ResultsandAnalysis.
Basedonthedifferentservicesequenceofdemands,wecombinetheproposedVONembeddingalgorithmwithfourdifferentorderingstrategies,thatis,firstfitbasedVNE-OSRalgorithm(VNE-FF),bandwidthfitbasedVNE-OSRalgorithm(VNE-BF),computingfitbasedVNE-OSRalgorithm(VNE-CF)andresourcefitbasedVNE-OSRalgorithm(VNE-RF).
Wedothissimulationfortwotargets:1)withefficientbandwidthresource,undertheconditionwherethesystemcanservealldemands,wecomparethefouralgorithmsbyMSSNsinfiberlinks;2)withlimitedbandwidthresource,wecompareMBPs.
Alldemandscanbeservedandthereareefficientcomputingandbandwidthresources.
Wesupposethereare300sub-carriersineachfiber,and300computingresourcecapacityineachphysicalnode(DC).
InFig2,inVONs,thebandwidthrequirementsofthevirtuallinksrangefrom2to4,andthedemandscoperangesfrom10to80.
Withtheincreasingdemands,theoccupiedMSSNsrise.
MSSNofVNE-FFisthehighestanditperformsworst.
Thus,forstaticdemands,thedemandservicesequencecaneffectMSSNs.
ComparedwithVNE-FF,otherthreealgorithmsperformbetter.
InFig.
3,wesupposethere50sub-carriersineachfiberand800computingresourcecapacityineachphysicalnode.
ForVONs,thebandwidthrequirementsofvirtuallinksrangefrom2to5andthedemandscoperangefrom20to200.
Whenthedemandsarelessthan60,allMBPsare0.
Withtheincreasingdemandscope,allMBPsrise.
That'sbecause,underthelimitedbandwidthresourceinfibers,thesmalldemandscopeleavesmorereminderbandwidthresource,whichcanservemoredemandsandreduceMBP,andwhereastheopposite.
Andthen,asshowninFig.
3,VNE-BFgainsthehighestMBPandperformsworst,inversely,VNE-CFperformsthebest.
That'sbecause,VNE-BFfollowsaserviceorderbasedonthebandwidthrequirementsequenceanditfirstlyservesthebiggestbandwidthrequirementdemand,leadingintothemoreoccupiedbandwidthresourceinfibers.
Thus,therestresourcecan'tserveallthesubsequentdemands.
Fig.
2ComparisonofMSSNswithdifferentdemandsamongVNE-FF,VNE-BF,VNE-CFandVNE-RFFig.
3ComparisonofMBPswithdifferentdemandsamongVNE-FF,VNE-BF,VNE-CFandVNE-RFConclusionItisvaluabletoresearchthevirtualopticalnetworkembeddingintodatacenternetworksorasingledatacenter.
ThispaperproposesaVNEalgorithmorientingspectrumresourcemaximumutilization.
Thesimulationresultstestifytheadvantageofouralgorithmintheresourceefficiency.
References[1]S.
Sakr,A.
Liu,D.
M.
Batista,etal.
"ASurveyofLargeScaleDataManagementApproachesinCloudEnvironments",IEEECommunicationsSurveys&Tutorials,2011,13(3):311-336.
[2]C.
Kachris,I.
Tomkos.
"ASurveyonOpticalInterconnectsforDataCentres",IEEECommunicationsSurveys&Tutorials,2012,14(4):1021-1036.
[3]M.
Jinno,H.
TakaraandB.
Kozicki.
"Conceptandenablingtechnologiesofspectrum-slicedelasticopticalpathnetwork(SLICE)",ACP,2009,pp.
1-2.
[4]M.
Jinno,H.
TakaraandB.
Kozicki.
"Spectrum-EfficientandScalableElasticOpticalPathNetwork:Architecture,Benefits,andEnablingTechnologies",IEEECommunicationsMagazine,2009,47(6):66-73.
[5]M.
Jinno,H.
TakaraandB.
Kozicki.
"Dynamicopticalmeshnetworks:drivers,challengesandsolutionsforthefuture",ECOC,2009,pp.
1-14.
[6]L.
Gong,Z.
Q.
Zhu.
"VirtualOpticalNetworkEmbedding(VONE)overElasticOpticalNetworks",JournalofLightwaveTechnology,2014,32(3):450-460.
[7]L.
K.
N.
Georgakilas,A.
Tzanakaki,M.
Anastasopoulos,etal.
"ConvergedOpticalNetworkandDataCenterVirtualInfrastructurePlanning",IEEE/OSAJournalofOpticalCommunicationsandNetworking,2012,4(9):681-691.
wordpress外贸集团企业主题,wordpress通用跨屏外贸企业响应式布局设计,内置更完善的外贸企业网站优化推广功能,完善的企业产品营销展示 + 高效后台自定义设置。wordpress高级推广外贸主题,采用标准的HTML5+CSS3语言开发,兼容当下的各种主流浏览器,根据用户行为以及设备环境(系统平台、屏幕尺寸、屏幕定向等)进行自适应显示; 完美实现一套主题程序支持全部终端设备,保证网站在各...
百驰云成立于2017年,是一家新国人IDC商家,且正规持证IDC/ISP/CDN,商家主要提供数据中心基础服务、互联网业务解决方案,及专属服务器租用、云服务器、云虚拟主机、专属服务器托管、带宽租用等产品和服务。百驰云提供源自大陆、香港、韩国和美国等地骨干级机房优质资源,包括BGP国际多线网络,CN2点对点直连带宽以及国际顶尖品牌硬件。专注为个人开发者用户,中小型,大型企业用户提供一站式核心网络云端...
近期RAKsmart上线云服务器Cloud Server产品,KVM架构1核1G内存40G硬盘1M带宽基础配置7.59美元/月!RAKsmart云服务器Cloud Server位于美国硅谷机房,下单可选DIY各项配置,VPC网络/经典网络,大陆优化/精品网线路,1-1000Mbps带宽,支持Linux或者Windows操作系统,提供Snap和Backup。RAKsmart机房是一家成立于2012年...
sns网站有哪些为你推荐
phpcms模板phpcms为什么PHPCMS就是不能出一套好看的默认模板新iphone也将禁售苹果ID换了个新的怎么还是停用重庆电信断网这几天为什么重庆电信的网络总是这么不稳定360arp防火墙在哪360ARP防火墙哪里下载?netshwinsockreset在cmd中输入netsh winsock reset显示系统找不到指定文件怎么办360防火墙在哪里怎么查找到360防火墙在自己电脑里的位置?并且关闭掉degradeios厦门三五互联科技股份有限公司厦门三五互联怎么样?123456hd手机卡上出现符号hd怎么取消美国独立美国是什么时候独立的?
最便宜的vps themeforest 512m内存 丹弗 godaddy域名证书 howfile php空间推荐 服务器干什么用的 上海联通宽带测速 常州联通宽带 江苏双线服务器 最漂亮的qq空间 cloudlink 带宽租赁 国外在线代理服务器 中国linux 腾讯网盘 宿迁服务器 apnic 深圳主机托管 更多