linksns

sns网站有哪些  时间:2021-02-12  阅读:()
VirtualNetworkEmbeddinginElasticOpticalDataCenterNetworkAidongSu1,a*andYongyiZhang1,b1DalianAirforceCommunicationNCOAcademy,P.
R.
Chinaasuaidong@126.
com,b80834567@qq.
comKeywords:VONembedding;cloudcomputing;elasticopticalnetwork;datacenterAbstract.
Theboominginternetservicesurgetheresearchonthecloudcomputingandthenetworkresourceutilization.
Thecombinationofelasticopticalnetworkanddatacentercansolvethenetworkresourcesdeficientproblemandthecomputingresourcesunbalancedproblem.
Virtualopticalnetworkembeddingprovidesthewayofresourcehigh-efficiency.
Inthispaper,weproposeanovelvirtualnetworksembeddingalgorithmorientingspectrumresource,andthesimulationresultsverifyitssuperiorityonincreasingspectrumresourceutilizationandreducingdemandblockingrate.
IntroductionWiththedevelopmentofInternet,bandwidthdemandisbooming.
Theconstructionofflexibleandlargecapacityopticalnetworkbecomesimportant[1].
WavelengthDivisionMultiplexing(WDM)opticalnetwork,allocatingnetworkresourceinaone-size-fits-allmanner,leadstoinefficientresourceutilizationandlowflexibility.
Byintroducingtheorthogonalfrequencydivisionmultiplexing(OFDM)andbreakingthroughthefixedbandwidthspacingrestrictionbetweenwavelengthtunnels,elasticopticalnetworkutilizesspectrumresourcesefficiently.
Meanwhile,withthewidespreaduseofcloudcomputingandvirtualizationtechnologyindatacenters(DC),thevirtualnetworkembedding(VNE)becomesachallengeintheclouddataDCnetworks(DCNs)[2-5].
Itenablestheco-existenceofmultiplevirtualnetworksonthesamesubstratenetworkbysharingtheavailableresources.
Thus,VNEinelasticopticalDCNsiswidespreadlyconcerned.
ThispaperfirstdescribesVNEprobleminelasticopticalDCNsandpresentsthecorrespondingmathematicalmodel.
Forstatictraffic,wedesignavirtualnetworkembeddingalgorithmbasedonthelayeredauxiliarygraphreferredtoasVNEorientingspectrumresource(VNE-OSR).
Theproposedalgorithmcanintegratefourdifferentserviceorderingstrategies.
Simulationresultsshowthat,intermsofimprovingnetworkresourceutilizationandreducingtheblockingrate,theproposedVNE-OSRalgorithmreflectsgoodperformances.
ElasticOpticalDataCenterNetworkVirtualizationFig.
1SchematicdiagramofvirtualnetworkembeddingOpticalDCNvirtualizationequatesthecombinationofthevirtualnodeembeddingandthevirtuallinkembedding,i.
e.
,themappingfromvirtualopticalnetwork(VON)tophysicalnetworks[6].
Thatincludes1)selectingappropriateservers(orDC)forthecomputingresourcerequestsofvirtualnodes,i.
e.
,themappingfromvirtualnodestosubstratecomputingelements,and2)allocatingappropriatefiberlinksandspectrumforvirtuallinks,i.
e.
themappingfromvirtuallinkstofiberlinks[7].
Concretely,asshowninFig.
1(a),thereare5serversand6fiberlinksinthesubstratenetworks.
Thereexist8spectrumslotsineachfiberlink,whichcanbeexpressedbyaneight-binary-array,where"1"denotesthisspectrumslothasbeenoccupied;otherwise,it's"0".
Thenumberbesideseachserver(orDC)indicatestheremaindercomputingresource.
AsshowninFig.
1(b),thearrivingVONneeds3virtualnodesof4computingresourcesand2virtuallinksof2continuousslots.
Fig.
1(c)showstheresultofVONembedding,i.
e.
,thevirtualnodesa,bandcaremappedaccordinglytoserversD,BandE,andthevirtuallinksabandacaremappedaccordinglytoDBandDE.
TheVNEintheelasticopticalDCNscanneatlydistributespectrumsaccordingtodemands,soitcanrisethespectrumresourceutilization,andmeanwhile,VNEmainlyorientsthescenewheretheDCNpower-systemfailsandthenrecoversgradually.
Inthissituation,thereexistmanyimproperserverssinceapowerfailureandscarceserver-computing-resourcewillleadtomanyblockedVONdemands,thusitisveryvaluabletoresearch.
ProblemDescriptionTheelasticopticalDCNshavetheabstractedsubstratetopology(,)sssGVE,wheresVrepresentsthesetofsubstratenodes,andsErepresentsthesetofbi-directionallinks(eachlinkisconsistoftworeversed-unidirectionalfibers).
EachsubstratenodesnV∈hasacertainamountofavailablecomputingresourcenc.
ThespectrumresourceineachfiberlinkseE∈isdividedintospectrumslotswiththesamebandwidth,andeachspectrumslotcorrespondswithanOFDMsub-carrier,i.
e.
eachfiberlinkconstitutesaseriesofcontinuoussub-carriers.
ThissituationcouldbeexpressedbyabinaryarrayebwithBelements,whereBrepresentsthemaximumsub-carrierquantityineachfiber.
EachVONrequestcouldbeindicatedbynon-directionalgraph(,)rrrGVE,andeachvirtualnoderjV∈hasitscomputingresourcerequestjm.
InthesameVON,anybandwidthsub-requestamongallvirtuallinksisequal,sothebandwidthrequestofeachvirtuallinkrkE∈isindicatedbyrn,i.
e.
,itisthecontinuoussub-carrieramountwhichneedbeassignedtothevirtuallink.
Eachfiberlinkhasthesamequantityofsub-carriers,andasmentionedabove,anyrequiredbandwidthineachvirtuallinkinthesameVONrequesthasthecoincidentamount.
ThecoreofVONproblemistomapaVONrequestintosubstratenetworks,i.
e.
themappingfromvirtualnodesintosubstratenodesandthemappingfromvirtuallinksintothefiberlinks.
ForthestaticVONembeddingproblem,giventhatalltherequestdemandswerenotblocked,thetargetoftheVONembeddingalgorithmisminimizingthemaximumsub-carrierserialnumberusedinallfiberlinks.
VirtualNetworkEmbeddingAlgorithmWeproposeanovelVNEalgorithmbasedonthelayeredauxiliarygraph(LAG)referredtoasVNEorientingspectrumresource(VNE-OSR)forstaticdemands,andittakestwophases:thecomputingresourceallocationforvirtualnodesandthebandwidthresourceallocationforvirtuallinks.
Thealgorithmcanallocateappropriatespectrumresourceaccordingtothedemandactualsize.
VNE-OSRfirsttriestoconstructaLAGaccordingtovirtuallinkbandwidthrequirementsofaVONandtheonline-servicebandwidth-conditionoffiberlinks.
IfaLAGisbuiltsuccessfully,weexecutethemappingofnodesandlinksonthisgraph;otherwise,weblockthedemand.
Table1showsthepseudo-codeofVNE-OSR.
Lines2-7expresstheprocessofconstructingaLAG,anddescribehowtotransportaVONdemandmappingfromsubstratenetworkstoacertainLAG.
Thealgorithmorderlycheckseachfiberwhetherrnavailablecontinuousspectrumslotsexit.
Ifthereexistsufficientspectrumslots,weinsertthefiberintotheLAGi,whereiisthestatingspectrumslotindex.
Whenallfibersarecheckedup,thealgorithmwillcheckinterconnectingelementsonLAGi,andformssomesub-graphs.
Andthenitsortsthesesub-graphsinthedescendingorderbasedonthenodenumber,where()subknodeGdenotesthenodenumberinsubkG.
rVdenotesthevirtualnodenumberinaembeddingrequestrV.
Lines8-11runthenodemappingandthelinkmapping.
Table1Pseudo-codeofVNE-OSRalgorithmVNE-OSRInput:SubstratenetworksG,aVONrequestrG;Output:NodemappingNM,linkmappingLM;1.
backupsGinstG;2.
for1i=to1rBn+do3.
restoresGtostG;4.
foreachconnectedcomponentinsGdo5.
subkG←selectaconnectedcomponentofsG;6.
removesubkGfromsG;7.
sort{,1.
.
.
1}subjGjk=basedon()subjnodeGindescendingorder;8.
for1j=to1kdo9.
applyNMLMalgorithmtoembedrGontosubjG;10.
markrGasblocked;11.
restoresGtostG;SimulationSimulationSetting.
WeadoptNSFNETasthetestingtopology.
Eachfiberlinkconsistsofapairofreversed-unidirectionalfibers.
Themaximumsub-carrierserialnumber(MSSN)occupiedinsubstratenetworksandthemeanblockingprobability(MBP)arethetestmerits.
MSSNiscalculatedbytheequation(1),wheresfisbinary,andifthesub-carrierisoccupied,1sf=;or,0sf=.
maxsMSSNsf=.
(1)ResultsandAnalysis.
Basedonthedifferentservicesequenceofdemands,wecombinetheproposedVONembeddingalgorithmwithfourdifferentorderingstrategies,thatis,firstfitbasedVNE-OSRalgorithm(VNE-FF),bandwidthfitbasedVNE-OSRalgorithm(VNE-BF),computingfitbasedVNE-OSRalgorithm(VNE-CF)andresourcefitbasedVNE-OSRalgorithm(VNE-RF).
Wedothissimulationfortwotargets:1)withefficientbandwidthresource,undertheconditionwherethesystemcanservealldemands,wecomparethefouralgorithmsbyMSSNsinfiberlinks;2)withlimitedbandwidthresource,wecompareMBPs.
Alldemandscanbeservedandthereareefficientcomputingandbandwidthresources.
Wesupposethereare300sub-carriersineachfiber,and300computingresourcecapacityineachphysicalnode(DC).
InFig2,inVONs,thebandwidthrequirementsofthevirtuallinksrangefrom2to4,andthedemandscoperangesfrom10to80.
Withtheincreasingdemands,theoccupiedMSSNsrise.
MSSNofVNE-FFisthehighestanditperformsworst.
Thus,forstaticdemands,thedemandservicesequencecaneffectMSSNs.
ComparedwithVNE-FF,otherthreealgorithmsperformbetter.
InFig.
3,wesupposethere50sub-carriersineachfiberand800computingresourcecapacityineachphysicalnode.
ForVONs,thebandwidthrequirementsofvirtuallinksrangefrom2to5andthedemandscoperangefrom20to200.
Whenthedemandsarelessthan60,allMBPsare0.
Withtheincreasingdemandscope,allMBPsrise.
That'sbecause,underthelimitedbandwidthresourceinfibers,thesmalldemandscopeleavesmorereminderbandwidthresource,whichcanservemoredemandsandreduceMBP,andwhereastheopposite.
Andthen,asshowninFig.
3,VNE-BFgainsthehighestMBPandperformsworst,inversely,VNE-CFperformsthebest.
That'sbecause,VNE-BFfollowsaserviceorderbasedonthebandwidthrequirementsequenceanditfirstlyservesthebiggestbandwidthrequirementdemand,leadingintothemoreoccupiedbandwidthresourceinfibers.
Thus,therestresourcecan'tserveallthesubsequentdemands.
Fig.
2ComparisonofMSSNswithdifferentdemandsamongVNE-FF,VNE-BF,VNE-CFandVNE-RFFig.
3ComparisonofMBPswithdifferentdemandsamongVNE-FF,VNE-BF,VNE-CFandVNE-RFConclusionItisvaluabletoresearchthevirtualopticalnetworkembeddingintodatacenternetworksorasingledatacenter.
ThispaperproposesaVNEalgorithmorientingspectrumresourcemaximumutilization.
Thesimulationresultstestifytheadvantageofouralgorithmintheresourceefficiency.
References[1]S.
Sakr,A.
Liu,D.
M.
Batista,etal.
"ASurveyofLargeScaleDataManagementApproachesinCloudEnvironments",IEEECommunicationsSurveys&Tutorials,2011,13(3):311-336.
[2]C.
Kachris,I.
Tomkos.
"ASurveyonOpticalInterconnectsforDataCentres",IEEECommunicationsSurveys&Tutorials,2012,14(4):1021-1036.
[3]M.
Jinno,H.
TakaraandB.
Kozicki.
"Conceptandenablingtechnologiesofspectrum-slicedelasticopticalpathnetwork(SLICE)",ACP,2009,pp.
1-2.
[4]M.
Jinno,H.
TakaraandB.
Kozicki.
"Spectrum-EfficientandScalableElasticOpticalPathNetwork:Architecture,Benefits,andEnablingTechnologies",IEEECommunicationsMagazine,2009,47(6):66-73.
[5]M.
Jinno,H.
TakaraandB.
Kozicki.
"Dynamicopticalmeshnetworks:drivers,challengesandsolutionsforthefuture",ECOC,2009,pp.
1-14.
[6]L.
Gong,Z.
Q.
Zhu.
"VirtualOpticalNetworkEmbedding(VONE)overElasticOpticalNetworks",JournalofLightwaveTechnology,2014,32(3):450-460.
[7]L.
K.
N.
Georgakilas,A.
Tzanakaki,M.
Anastasopoulos,etal.
"ConvergedOpticalNetworkandDataCenterVirtualInfrastructurePlanning",IEEE/OSAJournalofOpticalCommunicationsandNetworking,2012,4(9):681-691.

星梦云60元夏日促销,四川100G高防4H4G10M,西南高防月付特价

星梦云怎么样?星梦云好不好,资质齐全,IDC/ISP均有,从星梦云这边租的服务器均可以备案,属于一手资源,高防机柜、大带宽、高防IP业务,一手整C IP段,四川电信,星梦云专注四川高防服务器,成都服务器,雅安服务器 。官方网站:点击访问星梦云官网活动方案:1、成都电信年中活动机(封锁UDP,不可解封):机房CPU内存硬盘带宽IP防护流量原价活动价开通方式成都电信优化线路4vCPU4G40G+50...

半月湾($59.99/年),升级带宽至200M起步 三网CN2 GIA线路

在前面的文章中就有介绍到半月湾Half Moon Bay Cloud服务商有提供洛杉矶DC5数据中心云服务器,这个堪比我们可能熟悉的某服务商,如果我们有用过的话会发现这个服务商的价格比较贵,而且一直缺货。这里,于是半月湾服务商看到机会来了,于是有新增同机房的CN2 GIA优化线路。在之前的文章中介绍到Half Moon Bay Cloud DC5机房且进行过测评。这次的变化是从原来基础的年付49....

Hostodo(年付$34.99), 8TB月流量 3个机房可选

Hostodo 算是比较小众的海外主机商,这次九月份开学季有提供促销活动。不过如果我们有熟悉的朋友应该知道,这个服务商家也是比较时间久的,而且商家推进活动比较稳,每个月都有部分活动。目前有提供机房可选斯波坎、拉斯维加斯和迈阿密。从机房的地理位置和实际的速度,中文业务速度应该不是优化直连的,但是有需要海外业务的话一般有人选择。以前一直也持有他们家的年付12美元的机器,后来用不到就取消未续约。第一、开...

sns网站有哪些为你推荐
中国在线代理Soundcss诊断sns支持ipad建企业网站建一个企业网站需要多少钱?大概要多久做好?人人视频总部基地落户重庆迁户口入重庆flashfxp下载怎样用FlashFXP从服务器下载到电脑上?netshwinsockreset在cmd中输入netsh winsock reset显示系统找不到指定文件怎么办缤纷网缤纷的意思是什么瞄准的拼音碰的拼音是什么
台湾虚拟主机 美国服务器租用 免费域名解析 smartvps 新世界机房 主机评测 GGC 好看qq空间 免空 699美元 nerds umax120 台湾谷歌 跟踪路由命令 监控服务器 个人免费邮箱 浙江服务器 卡巴斯基试用版下载 深圳主机托管 双11促销 更多