的是热刺2-1迎新年首胜

热刺2-1迎新年首胜  时间:2021-04-23  阅读:()
东北师范大学经济学院徐奇渊第二篇看懂回归估计输出结果——一回生二回熟上篇咱们开始用Eviews创建文件,并且做了一个简单的双变量回归线性回归,弄了个散点图,搞了个参数(iβ)估计,还看到了估计结果的2r值,后来又把残差iu)的图形整出来了.
一回生二回熟,今天我们打开Eviews就感觉好多了吧.
在进一步讲操作之前,我们稍微花点时间来看一个东西,这东西你已经看到过了.
还记得上一篇里面的图13吧,那是我们进行简单的回归后得到的"估计结果输出"(EstimationOutput).
下面我们主要的来看一下这个"估计结果输出"都告诉了我们哪些信息:首先,为方便阅读,把这个输出结果专门再给出来(原来结果是黑白,为了方便说明,我这里给的是彩色哈:)DependentVariable:YMethod:LeastSquaresDate:04/04/05Time:12:12Sample:19601972Includedobservations:13VariableCoefficientStd.
Errort-StatisticProb.
X-0.
2862120.
062885-4.
5513480.
0008C3.
3662580.
33108410.
167390.
0000R-squared0.
653158Meandependentvar1.
915385AdjustedR-squared0.
621627S.
D.
dependentvar0.
524160S.
E.
ofregression0.
322421Akaikeinfocriterion0.
714722Sumsquaredresid1.
143510Schwarzcriterion0.
801638Loglikelihood-2.
645696F-statistic20.
71477Durbin-Watsonstat0.
532092Prob(F-statistic)0.
000828表2-1:EstimationOutputof3.
18如上表所示,上面红色的五行说明的是这次回归的背景材料,中间黄的三行则是一些关于参数的估计结果,下面深绿色的是其他估计估计结果.
上面五行的意思一眼就能看懂,第一行告诉我们Y是因变量;第二行说明使用的是最小二乘法;第三行说的是这次结果产生的时间是2005年4月4日12点12分(那天中饭蛮晚才吃啊);第四行说样本数据是从1960年到1972年的;第五行是说被观察的样本个数为13.
东北师范大学经济学院徐奇渊中间黄色的参数估计:"variable"下面"X"和"C"分别是自变量和常数项,因为Eviews是不区分大小写的,所以我们原来输的可能是小写x,但输出结果都是大写;"Coefficient"下面的两上数分别是"X"和"C"的估计值;"Std.
Error"下面的两个数是它俩的标准差;"t-Statistic"是它俩估计值对应的t统计量;"Prob.
"是各个t统计量对应的P值.
下面深绿色的输出结果要好好说明一下,我们按照先左列后右列,自上而下的顺序来看:"R-squared":样本的可决系数,反映的是模型的拟合优度,一般在零到一之间.
这个当然越大越好,但是我们这里的"R-squared"只有0.
653158,不太理想HO,不过这也是意料之中.
当然,就算这个指标比较理想,比如说是0.
99,也不能说这个回归就是"好"的了,因为我们可能遇到"谬误回归"的情况①——这个后面我们会提到.
所以还要结合其他指标来分析输出结果.
"AdjustedR-squared"是根据样本数量和自由度调整后的样本可决系数,详细说明请见古扎拉蒂书7.
8的说明.
同样的,它的值越高,则模型的拟合效果越好.
调整后的R2一般比调整之前的要小些.
"S.
E.
ofregression"为回归标准误,是以其计算方法为()KTs′=εε这个值是越小越好的.
古扎拉地的书上(3.
3.
8)式就是上面公式的双变量情况(K=2).
"Sumsquaredresid"是残差平方和,其公式为SSE=2)(iiyy∑这个值也是越小越好.
"Loglikelihood"为对数似然比检验的值,其公式为:L=2log22log22nnnσπ这个值越大,说明模型越精确.
但是我们这个阶段一般用不着这个,因为Davidson和MacKinnon(1993)他们说了:"对于线性回归模型,不管它的误差是或不是正态分布的,都不需要过问LM,W和LR.
因为我们不能从这些统计量得到任何不为F检验所含有的信息".
LR就是对数似然比,F检验在下面就马上提到.
"Durbin-Watsonstat"为DW统计量,这个值反映的是序列自相关问题,它的值位于区间[0,4]之间,一般情况下.
越接近于2,越能说明不存在自相关问题,结果就越是理想.
而我们做的结果是0.
532092,存在着明显序列相关性.
①比如说两个小朋友同时出生,一个在上海,一个在乌鲁木齐,他俩什么关系也没有;但是以他俩各个年份的身高做一个双变量回归,我们会发现"R-squared"会是很高的.
东北师范大学经济学院徐奇渊碰到这种情况怎么处理以后再具体讲吧.
"Meandependentvar"和"S.
D.
Dependentvar"分别是因变量Y的均值、标准差.
这两个就不用再说了吧:是吧"Akaikeinfocriterion"是赤池信息准则(AIC),这个值也是越小越好.
具体是用于模型的选择.
"Schwarzcriterion"为施瓦茨准则,和赤池信息量一样,也是用于模型的选择,值也是越小越好.
对了,Schwarz准则是按照提出者名字命名的,还有一种叫法"BayesianCriterion"也就是贝叶斯准则或者叫"BIC"是按照其原理命名的.
一般如果备选模型的AIC值差不多,我们再看这个指标.
"F-statistic"是F检验统计量.
F检验的零假设(H0)是所有待估计参数同时为零,其值越大就说明零假设越不可能.
"Prob(F-statistic)"F检验的对应的概率,应该越小越好,我们这里的F检验还是蛮理想啊.
好了,终于写差不多了.
上次写第一篇中午饭吃地晚,这回是晚饭吃地晚了.

wordpress投资主题模版 白银黄金贵金属金融投资网站主题

wordpress投资主题模版是一套适合白银、黄金、贵金属投资网站主题模板,绿色大气金融投资类网站主题,专业高级自适应多设备企业CMS建站主题 完善的外贸企业建站功能模块 + 高效通用的后台自定义设置,简洁大气的网站风格设计 + 更利于SEO搜索优化和站点收录排名!点击进入:wordpress投资主题模版安装环境:运行环境:PHP 7.0+, MYSQL 5.6 ( 最低主机需求 )最新兼容:完美...

飞讯云E5-2678V3 64GB,湖北十堰100G高防物理机330元/月

飞讯云官网“飞讯云”是湖北飞讯网络有限公司旗下的云计算服务品牌,专注为个人开发者用户、中小型、大型企业用户提供一站式核心网络云端部署服务,促使用户云端部署化简为零,轻松快捷运用云计算。飞讯云是国内为数不多具有ISP/IDC双资质的专业云计算服务商,同时持有系统软件著作权证书、CNNIC地址分配联盟成员证书,通过了ISO27001信息安全管理体系国际认证、ISO9001质量保证体系国际认证。 《中华...

日本美国站群服务器raksmart站群新增,限量低至月1.99美元

RAKsmart 商家八月份的促销活动今天更新。基本上和上个月的产品套餐活动差不多的,不过也是有简单的微调。对于RAKsmart商家还是比较了解的,他们家产品虽然这两年增加多个机房,以及在VPS主机方案上有丰富的机房和调整到一些自营机房,他们家的策划能力还是有限,基本上每个月的套餐活动都差不多。RAKsmart 在八月份看到有新增香港高防服务器可选,最高100GB防御。同时原来上个月缺货的日本独立...

热刺2-1迎新年首胜为你推荐
操作httpinternalservererrorinternal server errorcentos6.5centos7和centos6.5的区别台北市cuteftppletecuteftp滴滴估值500亿滴滴拉屎 App 为何能估值 100 亿美金?是怎么计算出来的温州商标注册温州商标注册?3g手机有哪些电信3g手机有哪些?ie假死我的ie浏览器偶尔出现假死的情况 即打开浏览器时无法显示网页 点了关闭窗口也没反应,请问这是怎么回事啊图文模块图文模块的标题栏填什么啊?
美国免费虚拟主机 虚拟主机试用30天 国外vps 美国和欧洲vps google镜像 linode日本 tier 美国主机代购 表格样式 一点优惠网 国内加速器 美国十次啦服务器 微信收钱 韩国名字大全 怎么测试下载速度 metalink 电信主机 国外ip加速器 cloudlink 空间登入 更多