Figureb2b程序
b2b程序 时间:2021-04-13 阅读:(
)
AHybridB2BAppRecommenderSystemAlexandruOprea1,ThomasHornung2,Cai-NicolasZiegler3,HolgerEggs1,andGeorgLausen21SAPCommercialPlatform,St.
Leon-Rot&SAPResearch,Darmstadt,Germany{alexandru.
dorin.
oprea,holger.
eggs}@sap.
com2InstituteofComputerScience,Albert-Ludwigs-Universit¨atFreiburg,Germany{hornungt,lausen}@informatik.
uni-freiburg.
de3AmericanExpress,PAYBACKGmbH,M¨unchen,Germanycai-nicolas.
ziegler@payback.
netAbstract.
RecommendersystemsareintegraltoB2Ce-commerce,withlittleusesofarinB2B.
WepresentaliverecommendersystemthatoperatesinadomainwhereusersarecompaniesandtheproductsbeingrecommendedB2Bapps.
Besidesoperatinginanentirenewdomain,theSAPStorerecommenderisbasedonaweightedhybriddesign,makinguseofanovelcondence-basedweightingschemeforcombiningratings.
Evaluationshaveshownthatoursystemperformssignicantlybetterthanatop-sellerrecommenderbenchmark.
1IntroductionandMotivationTheSAPStorecaterstoSMEcompaniesthataimtodrivetheirbusinessviaB2Bapps,e.
g.
,forcustomerrelationmanagementorcompliance.
Manyoftheseappsaregearedtowardsspecicindustriesandtheirneeds.
Asthenumberofpartnersproducingthemisgrowing,soisthenumberofappsinthestoreitselfandthusthecomplexityfortheuser(whorepresentsacompany)toactuallyndwhatheislookingfor.
Toactivelyhelptheuser,weproposeahybridrecommendersystemthataddressesexactlytheneedsofthisspecicB2Bscenario.
Thesystemputstousebothknowledge-based,collaborative,andcontent-basedsub-recommenders.
Moreover,wepresentanovelhybridweightingscheme[1]thatincorporatescon-dencescoringforthepredictionsproduced,sothatsub-recommenderscontributeforrecommendationsaccordingtotheircondenceweight.
Thesystemisliveandcanbeusedbylogged-inusers1.
Wehaveconductedempiricalevaluationsviahold-outtestingthatshowthattherecommenderout-performsthenon-personalizedtop-sellerrecommender.
2RecommenderSystemArchitectureThearchitectureoftherecommenderisdepictedinFigure1.
Overall,wehavethreedierentinformationsourcesforgeneratingnewrecommendations:the1Seehttp://store.
sap.
comF.
Daniel,P.
Dolog,andQ.
Li(Eds.
):ICWE2013,LNCS7977,pp.
490–493,2013.
cSpringer-VerlagBerlinHeidelberg2013AHybridB2BAppRecommenderSystem491Knowledge-basedFilter(KBF)UserProfilesAppProfilesTRXDataUser-ItemCFItem-ItemCFContent-basedAugmentationContent-basedAugmentationItem-ItemMatrixUser-UserMatrixWeightedMeanRecommendationList12a2b34Fig.
1.
SAPStorerecommendersystemarchitectureuserproles(e.
g.
,companysize,industry,country),theappproles(e.
g,sup-portedindustries,businessareas),andthetransactionalcustomerdata(e.
g.
,salesorders,downloads).
Initially,theknowledge-basedcomponentltersthelistofrelevantappsbyasetofplausibilityrulesresultinginanunsortedsetofcandidateapps(1).
Thesearefedtoanitem-item(2a)anduser-itemcollaborativelter(CF),see(2b)[2].
Todealwiththecold-startproblemincaseswhereonlysparseratingsareavailableforapps,acontent-basedaugmentationschemecomputessimilaritiesbasedonthecosinesimilaritymeasure[3]betweenpropertiesoftheapps.
Forusersthatarenewtothesystem,thesimilaritycanbedeterminedbycomparingtheirprolestootherusersbasedontheircosinesimilarity.
Thisway,thetwomatriceswillcontainmeaningfulentriesforallusersandappsknowntothesystem,andrecommendationsgetmorepersonalizedoncemorecontextdataisavailable.
ThescoresofthetwoCFalgorithmsarecombinedbyaweightedmean(cf.
Section2.
1),andasortedtop-krecommendationlistisreturned.
Thecalculationofthematricesisdoneo-lineasthecomputationisquadraticinthenumberofusersorapps,respectively.
2.
1WeightingbyCondenceScoresThescoreofarecommendedappisbasedonaweightedmeanoftheconstituentitem-itemanduser-itemscores.
Eachofthesegivesanestimateofhowmuchausermightlikeanapp;e.
g.
,Eq.
1showshowapredictionscorefortheitem-itemcaseisdeterminedforappamforuseru:Theratingsru(b)ofuforappsb∈Ru492A.
Opreaetal.
hehasalreadyratedareweightedbytheirsimilaritytoam,denoteds(b,am),asanindicatorifthisappmightberelevantfortheuser2.
pi(u,am)=b∈Rus(am,b)·ru(b)b∈Rus(am,b)(1)Now,foreachrecommenderscoreacondencescoreiscalculated,denotedciandcurespectively,whichisbasedonthenumberofsupportingitemsorusersofeachprediction.
Theseweightsareusedtodeterminetheoverallscorep:p(u,am)=ci·pi(u,am)+cu·pu(u,am)ci+cu(2)Thecondencescorecuforthepredictionpu(u,am)tellsushowreliableapre-dictionis.
Itgrowswithagrowingnumberofsupportingdatapoints:Foreachuserui,wecalculatethez-scoreofhissimilaritywithourcurrentuseru.
Wenowsumthesez-scoresimilaritiesforallkusersinuseru'sneighborhood[2].
Thesumisdividedbykandtheresultingvaluegivesustheaveragenormal-izedsimilarityofalltheuserswhoseratingshavebeentakenintoaccountforpu(u,am).
Thesameisdonefortheitem-basedcase.
Sincewearemakinguseofstandardz-scores,thelinearcombinationshowninEq.
2basedonthetwocondenceweightsissound.
Thecondenceschemerepre-sentsapowerfulmeanstoadjustthehybridrecommender'sweightingaccordingtothepredictedreliabilityofeachofthetwosub-recommenders.
3PerformanceEvaluationInordertotesttheperformanceofthepresentedhybridrecommenderusingournovelcondence-basedweightingscheme,weconductedanempiricalevaluationwithreal-worlddataof5,233users(e.
g.
,companiesregisteredforandusingtheSAPStore)havingpurchasedorexpressedinterestin615appsolutions.
ThefrequencydistributioninFig.
2(a)showsleadsperapp,i.
e.
,howmanycompanieshavepurchasedorexpressedinterestineachapp,sortedindescendingorder.
Thelog-logplottedgraphexhibitsapower-lawdistribution,soasmallnumberofappsattractsahighnumberofleads.
ThisisconrmedbyFig.
2(b),showingthatthetop-5appsaccumulate29%ofallleads,andtop-100capture90%.
Wethusconjecturethatanon-personalizedtop-sellerrecommender,whichonlyrecommendsthetop-Nmostpopularapps,willperformverywell.
Weadoptedahold-outcross-validationapproachfortesting,whereoneratingrvofauseriswithheldandallothersareusedtodenehisproleandcalcu-latepredictions,aimingtorecommendexactlyrv.
Forbaselining,wecomparedourrecommender'sperformancewiththatofthetop-sellerrecommender.
Theevaluationtaskforeachofthetworecommenderswastoproducealistoftop-Nrecommendationsandcountinhowmanycasestheproducedlistcontainedrv.
TheevaluationisshowninTab.
1.
Allresultsexhibitstatisticalsignicanceatthepη(a)йййййййййййη(b)Fig.
2.
Log-logfrequencydistributionofleadsperapp(a)andcumulativeshareofleadsbynumberofapps(b)Table1.
PerformancebenchmarkresultsTop-1Top-3Top-5Top-10Hybridrecommender10.
9%24.
4%33.
5%51.
2%Top-seller6.
6%18.
9%27.
6%43.
4%4ConclusionandOutlookWehavepresentedourrecommenderforthenewdomainofB2Bapps,makinguseofanovelhybridweightedschemebasedoncondencescoring.
OurrstevaluationshaveshownverypromisingresultsandthesystemhasgoneliveintooperationaluseatSAP.
Inthefuture,wewanttotunetherecommendingalgorithmsfurtherandaimatdoingthematrixcalculationsinreal-time,usingHANA[4],SAP'snewhigh-performancein-memorydatabase.
References1.
Burke,R.
:HybridWebRecommenderSystems.
In:Brusilovsky,P.
,Kobsa,A.
,Nejdl,W.
(eds.
)AdaptiveWeb2007.
LNCS,vol.
4321,pp.
377–408.
Springer,Heidelberg(2007)2.
Adomavicius,G.
,Tuzhilin,A.
:TowardtheNextGenerationofRecommenderSys-tems:ASurveyoftheState-of-the-ArtandPossibleExtensions.
IEEETrans.
Knowl.
DataEng.
17(6),734–749(2005)3.
Baeza-Yates,R.
A.
,Ribeiro-Neto,B.
A.
:ModernInformationRetrieval-TheCon-ceptsandTechnologyBehindSearch,2ndedn.
PearsonEducationLtd.
,Harlow(2011)4.
F¨arber,F.
,May,N.
,Lehner,W.
,Groe,P.
,M¨uller,I.
,Rauhe,H.
,Dees,J.
:TheSAPHANADatabase–AnArchitectureOverview.
IEEEDataEng.
Bull.
35(1),28–33(2012)
Moack怎么样?Moack(蘑菇主机)是一家成立于2016年的商家,据说是国人和韩国合资开办的主机商家,目前主要销售独立服务器,机房位于韩国MOACK机房,网络接入了kt/lg/kinx三条线路,目前到中国大陆的速度非常好,国内Ping值平均在45MS左右,而且商家的套餐比较便宜,针对国人有很多活动。不过目前如果购买机器如需现场处理,由于COVID-19越来越严重,MOACK办公楼里的人也被感染...
捷锐数据官网商家介绍捷锐数据怎么样?捷锐数据好不好?捷锐数据是成立于2018年一家国人IDC商家,早期其主营虚拟主机CDN,现在主要有香港云服、国内物理机、腾讯轻量云代理、阿里轻量云代理,自营香港为CN2+BGP线路,采用KVM虚拟化而且单IP提供10G流量清洗并且免费配备天机盾可达到屏蔽UDP以及无视CC效果。这次捷锐数据给大家带来的活动是香港云促销,总共放量40台点击进入捷锐数据官网优惠活动内...
ucloud6.18推出全球大促活动,针对新老用户(个人/企业)提供云服务器促销产品,其中最低配快杰云服务器月付5元起,中国香港快杰型云服务器月付13元起,最高可购3年,有AMD/Intel系列。当然这都是针对新用户的优惠。注意,UCloud全球有31个数据中心,29条专线,覆盖五大洲,基本上你想要的都能找到。注意:以上ucloud 618优惠都是新用户专享,老用户就随便看看!点击进入:uclou...
b2b程序为你推荐
摄动163建企业网站建一个企业网站需要多少钱?大概要多久做好?cuteftpCuteFTP的主要功能是什么?www.topit.mehttp://www.topit.me/ 中自己上传的照片如何删除我要购买|我要查询|我要开户tplink01cuteftp资费标准联通所有套餐介绍徐州商标徐州松木家具前十名香盛圆排第几我爱试用网我发现我对性爱这个话题好敏感!来吧看谁能把我下面说湿了?要200以上的才好评啊!帝国cms教程如何使用帝国CMS模板
香港ufo fdcservers 256m内存 私人服务器 美国仿牌空间 国外空间服务商 鲜果阅读 http500内部服务器错误 ev证书 架设服务器 网站木马检测工具 linux使用教程 卡巴斯基是免费的吗 中国电信宽带测速器 华为云服务登录 域名与空间 1元域名 百度云加速 德隆中文网 中国域名 更多