recommendations37
yw372:Com 时间:2021-02-13 阅读:(
)
DISCOVERYANDANALYSISOFWEBUSAGEMININGMARATHEDAGADUMITHARAMR.
C.
PatelA.
C.
S.
College,Shirpur,Maharashtra,IndiaABSTRACTInthispaperwedescribesomeofthemostcommontypesofpatterndiscoveryandanalysistechniquesemployedintheWebusagemining.
InthispapermentionAssociationandClusterAnalysis.
AssociationRuleisafundamentalofDataminingtask.
Itsobjectivetofindallco-occurrencerelationshipcalled,Associationamongdataitem.
LetI={i1,i2,…,im}beasetofitems.
LetT=(t1,t2,…,tn)beasetoftransactions.
ClusteranalysisandvisitorssegmentationClusteringisadataminingtechniquethatgroupstogetherasetofitemshavingsimilarcharacteristics.
Intheusagedomain,therearetwokindsofinterestingclustersthatcanbediscovered:userclustersandpageclusters.
GoalDiscoveryandanalysisofwebusagepatternsusingAssociationanalysis.
DiscoveryandanalysisofwebusagepatternsusingClusterAnalysisandVisitorssegmentation.
KEYWORDS:AssociationAnalysis,ClusterAnalysisandVisitorsSegmentationINTRODUCTIONAssociationrulediscoveryandstatisticalcorrelationanalysiscanfindgroupsofitemsorpagesthatarecommonlyaccessedorpurchasedtogether.
AssociationbasedonApriorialgorithm.
Thisalgorithmfindsgroupsofitemusingsupportandconfidence.
Satisfyingauserspecifiedminimumsupportthreshold.
Suchgroupsofitemsarereferredtoasfrequentitemsets&frequentitemsetsgraph.
Logfilesgeneratedbywebserverscontainenormousamountsofwebusagedatathatispotentiallyvaluableforunderstandingthebehaviorofwebsitevisitors.
Clusteringofuserrecords(sessionsortransactions)isoneofthemostcommonlyusedanalysistasksinWebusageminingandWebanalytics.
Clusteringofuserstendstoestablishgroupsofusersexhibitingsimilarbrowsingpatterns.
Suchknowledgeisespeciallyusefulforinferringuserdemographicsinordertoperformmarketsegmentationine-commerceapplicationsorprovidepersonalizedWebcontenttotheuserswithsimilarinterests.
Furtheranalysisofusergroupsbasedontheirdemographicattributes(e.
g.
,age,gender,incomelevel,etc.
)mayleadtothediscoveryofvaluablebusinessintelligence.
Usage-basedclusteringhasalsobeenusedtocreateWeb-based"usercommunities"reflectingsimilarinterestsofgroupsofusers,andtolearnusermodelsthatcanbeusedtoprovidedynamicrecommendationsinWebpersonalizationapplications.
ASSOCIATIONRULESupport&ConfidenceTheSupportofrule,XYthepercentageoftransactioninTthatcontainsXUY.
nisthenumberoftransactioninT.
Supportisusefulmeasurementofitemsetoritems.
IfXistruethenchecksforY,ifXisfalsethennothingtobesayY.
InthefollowingexampleXunionYthencount.
InternationalJournalofComputerScienceEngineeringandInformationTechnologyResearch(IJCSEITR)ISSN2249-6831Vol.
3,Issue1,Mar2013,313-320TJPRCPvt.
Ltd.
314MaratheDagaduMitharame.
g.
(XUY).
CountSupportN(XUY).
CountConfidenceX.
CountUsingaboveexampleswecanaccepttheminsubandminconf.
Tocalculateminsubandminconfasfollows.
T1C++,JAVA,RUBYT2C++,ASPT3ASP,VBT4C++,JAVA,ASPT5C++,JAVA,PHP,ASP,RUBYT6JAVA,PHP,RUBYT7JAVA,RUBY,PHPJAVA,PHPRUBY[sup=3/7,conf=3/3]Inabove7transactionsJAVA,PHP&RUBYshow3/7times.
EveryitemchecksitemsettoeveryusingJoiningandPruningsteps.
Inwebusageminingsuchrulecanbeusetooptimizestructureofwebsite.
e.
g.
Language,/product/softwareRCPACSCOLLEGEWebsiteEXPERIMENT-FINDINGWEBUSAGEASSOCIATIONRULESInstances:14Attributes:5outlooktemperatureDiscoveryandAnalysisofWebUsageMining315humiditywindyplayIfchecksunny,falseyes[sub1/14conf1/1]Thepurposeofthisexperimentwastogivesomeinsightintotheusefulnessofassociationruleswhentheyareappliedtotheweblogdatasetofaneducationinstitutionandothers.
Weexpectedtofindrulesthatcorrelatetowebpagesthatcontaininformationaboutsunny,rainyortemperatureetc.
SupposethisistransactiontableandfindoutFrequentItemsetthen,T1C++,JAVA,RUBYT2C++,ASPT3ASP,VBT4C++,JAVA,ASPT5C++,JAVA,PHP,ASP,RUBYT6JAVA,PHP,RUBYT7JAVA,RUBY,PHPSize1Size2Size3Size4ItemSetSupp.
ItemSetSupp.
ItemSetSupp.
ItemSetSupp.
C++4C++,JAVA3C++,JAVA,RUBY2C++,JAVA,RUBY,ASP1JAVA5C++,RUBY2C++,JAVA,ASP2C++,JAVA,RUBY,PHP1RUBY4C++,ASP3JAVA,RUBY,ASP1ASP4C++,PHP1JAVA,RUBY,PHP3VB1JAVA,RUBY4RUBY,ASP,PHP1PHP3JAVA,ASP2JAVA,PHP3RUBY,ASP1RUBY,PHP3ASP,PHP1Figure1:WebTransactionsandResultingFrequentItemsets(Minsup=1)FindoutFrequentItemsetbyUsingJoiningandPruningMethodsofAssociationRuleFREQUENTITEMSETGRAPHFig.
2,findsitemsC++andRUBYascandidaterecommendations.
TherecommendationscoresofitemAandCare1,correspondingtotheconfidencesoftherules,JAVA,ASP->C++andJAVA,ASP->RUBY,respectively.
Aproblemwithusingasingleglobalminimumsupportthresholdinassociationruleminingisthatthediscoveredpatternswillnotinclude"rare"butimportantitemswhichmaynotoccurfrequentlyinthetransactiondata.
316MaratheDagaduMitharamC=C++J=JAVAA=ASPR=RUBYP=PHPFigure2:FrequentItemsetsCLUSTERANALYSISANDVISITORSSEGMENTATIONConceptandExampleClusteringofuserrecords(sessionsortransactions)isoneofthemostcommonlyusedanalysistasksinWebusageminingandWebanalytics.
Clusteringofuserstendstoestablishgroupsofusersexhibitingsimilarbrowsingpatterns.
Suchknowledgeisespeciallyusefulforinferringuserdemographicsinordertoperformmarketsegmentationine-commerceapplicationsorprovidepersonalizedWebcontenttotheuserswithsimilarinterests.
DiscoveryandAnalysisofWebUsageMining317HereweUsetheformulaof"WebDataMining"-Bingliubook.
Asanexample,considerthetransactiondatadepictedinsimplicityweassumethatfeature(pageview)weightsineachtransactionvectorarebinary(incontrasttoweightsbasedonafunctionofpageviewduration).
Weassumethatthedatahasalreadybeenclusteredusingastandardclusteringalgorithmsuchask-means,resultinginthreeclustersofusertransactions.
Itshowstheaggregateprofilecorrespondingtocluster1.
Asindicatedbythepageviewweights,pageviewsBandFarethemostsignificantpagescharacterizingthecommoninterestsofusersinthissegment.
PageviewC,however,onlyappearsinonetransactionandmightberemovedgivenafilteringthresholdgreaterthan0.
25.
Suchpatternsareusefulforcharacterizinguserorcustomersegments.
Thisexample,forinstance,indicatesthattheresultingusersegmentisclearlyinterestedinitemsBandFandtoalesserdegreeinitemA.
GivenanewuserwhoshowsinterestinitemsAandB,thispatternmaybeusedtoinferthattheusermightbelongtothissegmentand,therefore,wemightrecommenditemFtothatuser.
ExperimentandResultsInthisexperimentwedefinetable"weather"anddefinefields.
318MaratheDagaduMitharamOutputUsingClusterinWeka===Runinformation===Scheme:weka.
clusterers.
HierarchicalClusterer-N2-LSINGLE-P-A"weka.
core.
EuclideanDistance-Rfirst-last"Relation:weatherInstances:13Attributes:5outlooktemperaturehumiditywindyIgnoredplayTestmode:Classestoclustersevaluationontrainingdata===Modelandevaluationontrainingset===Cluster0((((((1.
0:0.
18505,1.
0:0.
18505):0.
05959,1.
0:0.
24464):0.
7557,(1.
0:0.
16832,(1.
0:0.
08235,1.
0:0.
08235):0.
08597):0.
83201):0.
00109,((0.
0:0.
22986,0.
0:0.
22986):0.
77157,0.
0:1.
00142):0):0.
00106,(0.
0:0.
21648,0.
0:0.
21648):0.
78601):0.
00135,1.
0:1.
00384)ClusteredInstances012(92%)11(8%)Classattribute:playClassestoClusters:01<--assignedtocluster71|yes50|noCluster0<--yesCluster1<--NoclassIncorrectlyclusteredinstances:6.
046.
1538%DiscoveryandAnalysisofWebUsageMining319VisualizationsofPatternsCONCLUSIONSUsagepatternsdiscoveredthroughWebusageminingareeffectiveincapturingitem-to-itemanduser-to-userrelationshipsandsimilaritiesatthelevelofusersessions.
Thispaperhasattemptedtoforthepurposeofwebusagemining.
TheproposedmethodsweresuccessfullytestedonthedatasetordatabasesusingassociationruleandclusteranalysismethodusingWekaTool.
Ourexperimentsconfirmedthatoneofthemajorissuesinassociationruleandclusterfindingistheexistenceoftoomanyrulesandgroups,allofwhichsatisfydefinedconstraints.
REFERENCES1.
Webdatamining–BingLiu320MaratheDagaduMitharam2.
PPTforWebusagemining-BingLiu3.
Srivastava,J.
,Cooley,R.
,Deshpande,M.
,Tan,P.
N.
(2000).
WebUsageMining:DiscoveryandApplicationsofUsagePatternsfromWebData.
ACMSIGKDD,Jan2000.
4.
JaideepSrivastavaPaper5.
WCA.
Webcharacterizationterminology&definitions.
6.
http://www.
w3.
org/1999/05/WCA-terms/.
Vigenteal19/11/2005
npidc全称No Problem Network Co.,Limited(冇問題(香港)科技有限公司,今年4月注册的)正在搞云服务器和独立服务器促销,数据中心有香港、美国、韩国,走CN2+BGP线路无视高峰堵塞,而且不限制流量,支持自定义内存、CPU、硬盘、带宽等,采用金盾+天机+傲盾防御系统拦截CC攻击,非常适合建站等用途。活动链接:https://www.npidc.com/act.html...
柚子互联官网商家介绍柚子互联(www.19vps.cn)本次给大家带来了盛夏促销活动,本次推出的活动是湖北十堰高防产品,这次老板也人狠话不多丢了一个6.5折优惠券而且还是续费同价,稳撸。喜欢的朋友可以看看下面的活动详情介绍,自从站长这么久以来柚子互联从19年开始算是老商家了。六五折优惠码:6kfUGl07活动截止时间:2021年9月30日客服QQ:207781983本次仅推荐部分套餐,更多套餐可进...
触摸云触摸云(cmzi.com),国人商家,有IDC/ISP正规资质,主营香港线路VPS、物理机等产品。本次为大家带上的是美国高防2区的套餐。去程普通线路,回程cn2 gia,均衡防御速度与防御,防御值为200G,无视UDP攻击,可选择性是否开启CC防御策略,超过峰值黑洞1-2小时。最低套餐20M起,多数套餐为50M,适合有防御型建站需求使用。美国高防2区 弹性云[大宽带]· 配置:1-16核· ...
yw372:Com为你推荐
支持ipadphpadmin下载免费MP3下载http404未找到为什么网站上传,打开看不到,显示HTTP 404 - 未找到文件申请400电话400电话如何办理?工具条工具栏不见了怎么办如何发帖子怎么发帖啊什么是seoSEO网站优化是什么啊?kingcmsKingcms 怎么解决会员登录页面的问题艾泰科技艾泰840E 性能怎么样 有没有什么缺点 用过的朋友请回答商务软件电子商务平台有哪些
免费域名跳转 68.168.16.150 免费个人博客 好看的桌面背景图片 panel1 工信部icp备案号 工作站服务器 流量计费 福建铁通 跟踪路由命令 双线asp空间 河南移动梦网 上海电信测速 东莞主机托管 万网空间 域名和主机 阿里云邮箱申请 卡巴斯基试用版下载 国外代理服务器 博客域名 更多