recommendations37
yw372:Com 时间:2021-02-13 阅读:(
)
DISCOVERYANDANALYSISOFWEBUSAGEMININGMARATHEDAGADUMITHARAMR.
C.
PatelA.
C.
S.
College,Shirpur,Maharashtra,IndiaABSTRACTInthispaperwedescribesomeofthemostcommontypesofpatterndiscoveryandanalysistechniquesemployedintheWebusagemining.
InthispapermentionAssociationandClusterAnalysis.
AssociationRuleisafundamentalofDataminingtask.
Itsobjectivetofindallco-occurrencerelationshipcalled,Associationamongdataitem.
LetI={i1,i2,…,im}beasetofitems.
LetT=(t1,t2,…,tn)beasetoftransactions.
ClusteranalysisandvisitorssegmentationClusteringisadataminingtechniquethatgroupstogetherasetofitemshavingsimilarcharacteristics.
Intheusagedomain,therearetwokindsofinterestingclustersthatcanbediscovered:userclustersandpageclusters.
GoalDiscoveryandanalysisofwebusagepatternsusingAssociationanalysis.
DiscoveryandanalysisofwebusagepatternsusingClusterAnalysisandVisitorssegmentation.
KEYWORDS:AssociationAnalysis,ClusterAnalysisandVisitorsSegmentationINTRODUCTIONAssociationrulediscoveryandstatisticalcorrelationanalysiscanfindgroupsofitemsorpagesthatarecommonlyaccessedorpurchasedtogether.
AssociationbasedonApriorialgorithm.
Thisalgorithmfindsgroupsofitemusingsupportandconfidence.
Satisfyingauserspecifiedminimumsupportthreshold.
Suchgroupsofitemsarereferredtoasfrequentitemsets&frequentitemsetsgraph.
Logfilesgeneratedbywebserverscontainenormousamountsofwebusagedatathatispotentiallyvaluableforunderstandingthebehaviorofwebsitevisitors.
Clusteringofuserrecords(sessionsortransactions)isoneofthemostcommonlyusedanalysistasksinWebusageminingandWebanalytics.
Clusteringofuserstendstoestablishgroupsofusersexhibitingsimilarbrowsingpatterns.
Suchknowledgeisespeciallyusefulforinferringuserdemographicsinordertoperformmarketsegmentationine-commerceapplicationsorprovidepersonalizedWebcontenttotheuserswithsimilarinterests.
Furtheranalysisofusergroupsbasedontheirdemographicattributes(e.
g.
,age,gender,incomelevel,etc.
)mayleadtothediscoveryofvaluablebusinessintelligence.
Usage-basedclusteringhasalsobeenusedtocreateWeb-based"usercommunities"reflectingsimilarinterestsofgroupsofusers,andtolearnusermodelsthatcanbeusedtoprovidedynamicrecommendationsinWebpersonalizationapplications.
ASSOCIATIONRULESupport&ConfidenceTheSupportofrule,XYthepercentageoftransactioninTthatcontainsXUY.
nisthenumberoftransactioninT.
Supportisusefulmeasurementofitemsetoritems.
IfXistruethenchecksforY,ifXisfalsethennothingtobesayY.
InthefollowingexampleXunionYthencount.
InternationalJournalofComputerScienceEngineeringandInformationTechnologyResearch(IJCSEITR)ISSN2249-6831Vol.
3,Issue1,Mar2013,313-320TJPRCPvt.
Ltd.
314MaratheDagaduMitharame.
g.
(XUY).
CountSupportN(XUY).
CountConfidenceX.
CountUsingaboveexampleswecanaccepttheminsubandminconf.
Tocalculateminsubandminconfasfollows.
T1C++,JAVA,RUBYT2C++,ASPT3ASP,VBT4C++,JAVA,ASPT5C++,JAVA,PHP,ASP,RUBYT6JAVA,PHP,RUBYT7JAVA,RUBY,PHPJAVA,PHPRUBY[sup=3/7,conf=3/3]Inabove7transactionsJAVA,PHP&RUBYshow3/7times.
EveryitemchecksitemsettoeveryusingJoiningandPruningsteps.
Inwebusageminingsuchrulecanbeusetooptimizestructureofwebsite.
e.
g.
Language,/product/softwareRCPACSCOLLEGEWebsiteEXPERIMENT-FINDINGWEBUSAGEASSOCIATIONRULESInstances:14Attributes:5outlooktemperatureDiscoveryandAnalysisofWebUsageMining315humiditywindyplayIfchecksunny,falseyes[sub1/14conf1/1]Thepurposeofthisexperimentwastogivesomeinsightintotheusefulnessofassociationruleswhentheyareappliedtotheweblogdatasetofaneducationinstitutionandothers.
Weexpectedtofindrulesthatcorrelatetowebpagesthatcontaininformationaboutsunny,rainyortemperatureetc.
SupposethisistransactiontableandfindoutFrequentItemsetthen,T1C++,JAVA,RUBYT2C++,ASPT3ASP,VBT4C++,JAVA,ASPT5C++,JAVA,PHP,ASP,RUBYT6JAVA,PHP,RUBYT7JAVA,RUBY,PHPSize1Size2Size3Size4ItemSetSupp.
ItemSetSupp.
ItemSetSupp.
ItemSetSupp.
C++4C++,JAVA3C++,JAVA,RUBY2C++,JAVA,RUBY,ASP1JAVA5C++,RUBY2C++,JAVA,ASP2C++,JAVA,RUBY,PHP1RUBY4C++,ASP3JAVA,RUBY,ASP1ASP4C++,PHP1JAVA,RUBY,PHP3VB1JAVA,RUBY4RUBY,ASP,PHP1PHP3JAVA,ASP2JAVA,PHP3RUBY,ASP1RUBY,PHP3ASP,PHP1Figure1:WebTransactionsandResultingFrequentItemsets(Minsup=1)FindoutFrequentItemsetbyUsingJoiningandPruningMethodsofAssociationRuleFREQUENTITEMSETGRAPHFig.
2,findsitemsC++andRUBYascandidaterecommendations.
TherecommendationscoresofitemAandCare1,correspondingtotheconfidencesoftherules,JAVA,ASP->C++andJAVA,ASP->RUBY,respectively.
Aproblemwithusingasingleglobalminimumsupportthresholdinassociationruleminingisthatthediscoveredpatternswillnotinclude"rare"butimportantitemswhichmaynotoccurfrequentlyinthetransactiondata.
316MaratheDagaduMitharamC=C++J=JAVAA=ASPR=RUBYP=PHPFigure2:FrequentItemsetsCLUSTERANALYSISANDVISITORSSEGMENTATIONConceptandExampleClusteringofuserrecords(sessionsortransactions)isoneofthemostcommonlyusedanalysistasksinWebusageminingandWebanalytics.
Clusteringofuserstendstoestablishgroupsofusersexhibitingsimilarbrowsingpatterns.
Suchknowledgeisespeciallyusefulforinferringuserdemographicsinordertoperformmarketsegmentationine-commerceapplicationsorprovidepersonalizedWebcontenttotheuserswithsimilarinterests.
DiscoveryandAnalysisofWebUsageMining317HereweUsetheformulaof"WebDataMining"-Bingliubook.
Asanexample,considerthetransactiondatadepictedinsimplicityweassumethatfeature(pageview)weightsineachtransactionvectorarebinary(incontrasttoweightsbasedonafunctionofpageviewduration).
Weassumethatthedatahasalreadybeenclusteredusingastandardclusteringalgorithmsuchask-means,resultinginthreeclustersofusertransactions.
Itshowstheaggregateprofilecorrespondingtocluster1.
Asindicatedbythepageviewweights,pageviewsBandFarethemostsignificantpagescharacterizingthecommoninterestsofusersinthissegment.
PageviewC,however,onlyappearsinonetransactionandmightberemovedgivenafilteringthresholdgreaterthan0.
25.
Suchpatternsareusefulforcharacterizinguserorcustomersegments.
Thisexample,forinstance,indicatesthattheresultingusersegmentisclearlyinterestedinitemsBandFandtoalesserdegreeinitemA.
GivenanewuserwhoshowsinterestinitemsAandB,thispatternmaybeusedtoinferthattheusermightbelongtothissegmentand,therefore,wemightrecommenditemFtothatuser.
ExperimentandResultsInthisexperimentwedefinetable"weather"anddefinefields.
318MaratheDagaduMitharamOutputUsingClusterinWeka===Runinformation===Scheme:weka.
clusterers.
HierarchicalClusterer-N2-LSINGLE-P-A"weka.
core.
EuclideanDistance-Rfirst-last"Relation:weatherInstances:13Attributes:5outlooktemperaturehumiditywindyIgnoredplayTestmode:Classestoclustersevaluationontrainingdata===Modelandevaluationontrainingset===Cluster0((((((1.
0:0.
18505,1.
0:0.
18505):0.
05959,1.
0:0.
24464):0.
7557,(1.
0:0.
16832,(1.
0:0.
08235,1.
0:0.
08235):0.
08597):0.
83201):0.
00109,((0.
0:0.
22986,0.
0:0.
22986):0.
77157,0.
0:1.
00142):0):0.
00106,(0.
0:0.
21648,0.
0:0.
21648):0.
78601):0.
00135,1.
0:1.
00384)ClusteredInstances012(92%)11(8%)Classattribute:playClassestoClusters:01<--assignedtocluster71|yes50|noCluster0<--yesCluster1<--NoclassIncorrectlyclusteredinstances:6.
046.
1538%DiscoveryandAnalysisofWebUsageMining319VisualizationsofPatternsCONCLUSIONSUsagepatternsdiscoveredthroughWebusageminingareeffectiveincapturingitem-to-itemanduser-to-userrelationshipsandsimilaritiesatthelevelofusersessions.
Thispaperhasattemptedtoforthepurposeofwebusagemining.
TheproposedmethodsweresuccessfullytestedonthedatasetordatabasesusingassociationruleandclusteranalysismethodusingWekaTool.
Ourexperimentsconfirmedthatoneofthemajorissuesinassociationruleandclusterfindingistheexistenceoftoomanyrulesandgroups,allofwhichsatisfydefinedconstraints.
REFERENCES1.
Webdatamining–BingLiu320MaratheDagaduMitharam2.
PPTforWebusagemining-BingLiu3.
Srivastava,J.
,Cooley,R.
,Deshpande,M.
,Tan,P.
N.
(2000).
WebUsageMining:DiscoveryandApplicationsofUsagePatternsfromWebData.
ACMSIGKDD,Jan2000.
4.
JaideepSrivastavaPaper5.
WCA.
Webcharacterizationterminology&definitions.
6.
http://www.
w3.
org/1999/05/WCA-terms/.
Vigenteal19/11/2005
GigsGigsCloud商家在之前介绍的还是比较多的,因为之前我一直有几台机器在使用,只是最近几年网站都陆续转型删除掉不少的网站和闲置域名,包括今年也都减少网站开始转型自媒体方向。GigsGigsCloud 商家产品还是比较有特色的,有提供香港、新加坡等亚洲机房的云服务器、VPS和独立服务器等。第一、新春优惠活动优惠码:CNY2022-15OFF截止到正月初二,我们可以使用上述优惠码在购买指定G...
陆零网络是正规的IDC公司,我们采用优质硬件和网络,为客户提供高速、稳定的云计算服务。公司拥有一流的技术团队,提供7*24小时1对1售后服务,让您无后顾之忧。我们目前提供高防空间、云服务器、物理服务器,高防IP等众多产品,为您提供轻松上云、安全防护 为核心数据库、关键应用系统、高性能计算业务提供云端专用的高性能、安全隔离的物理集群。分钟级交付周期助你的企业获得实时的业务响应能力,助力核心业务飞速成...
官方网站:点击访问特网云官网活动方案:===========================香港云限时购==============================支持Linux和Windows操作系统,配置都是可以自选的,非常的灵活,宽带充足新老客户活动期间新购活动款产品都可以享受续费折扣(只限在活动期间购买活动款产品才可享受续费折扣 优惠码:AADE01),购买折扣与续费折扣不叠加,都是在原价...
yw372:Com为你推荐
!'UIDETO"UILDING3ECURE7EB!PPLICATIONS戏曲网易yeahcentos6.5如何安装linux centos6.5outlookexpress系统自带的outlook express有什么用?怎么用?支付宝是什么什么是支付宝? 请详细介绍.申请支付宝账户支付宝账户怎么申请?小型汽车网上自主编号申请成都新车上牌办理流程和办理条件是如何的玖融网泰和网理财可信吗,泰和网理财是不是骗人的啊????????即时通请问有没有人知道即时通是什么?怎样先可以开??123456hd手机卡上出现符号hd怎么取消
香港主机租用 国内vps 搬瓦工官网 iis安装教程 国外php空间 全站静态化 免空 seednet 卡巴斯基试用版 安徽双线服务器 万网主机管理 独享主机 畅行云 lamp是什么意思 阿里云邮箱个人版 带宽测试 睿云 asp空间 服务器托管价格 htaccess 更多