recommendations37

yw372:Com  时间:2021-02-13  阅读:()
DISCOVERYANDANALYSISOFWEBUSAGEMININGMARATHEDAGADUMITHARAMR.
C.
PatelA.
C.
S.
College,Shirpur,Maharashtra,IndiaABSTRACTInthispaperwedescribesomeofthemostcommontypesofpatterndiscoveryandanalysistechniquesemployedintheWebusagemining.
InthispapermentionAssociationandClusterAnalysis.
AssociationRuleisafundamentalofDataminingtask.
Itsobjectivetofindallco-occurrencerelationshipcalled,Associationamongdataitem.
LetI={i1,i2,…,im}beasetofitems.
LetT=(t1,t2,…,tn)beasetoftransactions.
ClusteranalysisandvisitorssegmentationClusteringisadataminingtechniquethatgroupstogetherasetofitemshavingsimilarcharacteristics.
Intheusagedomain,therearetwokindsofinterestingclustersthatcanbediscovered:userclustersandpageclusters.
GoalDiscoveryandanalysisofwebusagepatternsusingAssociationanalysis.
DiscoveryandanalysisofwebusagepatternsusingClusterAnalysisandVisitorssegmentation.
KEYWORDS:AssociationAnalysis,ClusterAnalysisandVisitorsSegmentationINTRODUCTIONAssociationrulediscoveryandstatisticalcorrelationanalysiscanfindgroupsofitemsorpagesthatarecommonlyaccessedorpurchasedtogether.
AssociationbasedonApriorialgorithm.
Thisalgorithmfindsgroupsofitemusingsupportandconfidence.
Satisfyingauserspecifiedminimumsupportthreshold.
Suchgroupsofitemsarereferredtoasfrequentitemsets&frequentitemsetsgraph.
Logfilesgeneratedbywebserverscontainenormousamountsofwebusagedatathatispotentiallyvaluableforunderstandingthebehaviorofwebsitevisitors.
Clusteringofuserrecords(sessionsortransactions)isoneofthemostcommonlyusedanalysistasksinWebusageminingandWebanalytics.
Clusteringofuserstendstoestablishgroupsofusersexhibitingsimilarbrowsingpatterns.
Suchknowledgeisespeciallyusefulforinferringuserdemographicsinordertoperformmarketsegmentationine-commerceapplicationsorprovidepersonalizedWebcontenttotheuserswithsimilarinterests.
Furtheranalysisofusergroupsbasedontheirdemographicattributes(e.
g.
,age,gender,incomelevel,etc.
)mayleadtothediscoveryofvaluablebusinessintelligence.
Usage-basedclusteringhasalsobeenusedtocreateWeb-based"usercommunities"reflectingsimilarinterestsofgroupsofusers,andtolearnusermodelsthatcanbeusedtoprovidedynamicrecommendationsinWebpersonalizationapplications.
ASSOCIATIONRULESupport&ConfidenceTheSupportofrule,XYthepercentageoftransactioninTthatcontainsXUY.
nisthenumberoftransactioninT.
Supportisusefulmeasurementofitemsetoritems.
IfXistruethenchecksforY,ifXisfalsethennothingtobesayY.
InthefollowingexampleXunionYthencount.
InternationalJournalofComputerScienceEngineeringandInformationTechnologyResearch(IJCSEITR)ISSN2249-6831Vol.
3,Issue1,Mar2013,313-320TJPRCPvt.
Ltd.
314MaratheDagaduMitharame.
g.
(XUY).
CountSupportN(XUY).
CountConfidenceX.
CountUsingaboveexampleswecanaccepttheminsubandminconf.
Tocalculateminsubandminconfasfollows.
T1C++,JAVA,RUBYT2C++,ASPT3ASP,VBT4C++,JAVA,ASPT5C++,JAVA,PHP,ASP,RUBYT6JAVA,PHP,RUBYT7JAVA,RUBY,PHPJAVA,PHPRUBY[sup=3/7,conf=3/3]Inabove7transactionsJAVA,PHP&RUBYshow3/7times.
EveryitemchecksitemsettoeveryusingJoiningandPruningsteps.
Inwebusageminingsuchrulecanbeusetooptimizestructureofwebsite.
e.
g.
Language,/product/softwareRCPACSCOLLEGEWebsiteEXPERIMENT-FINDINGWEBUSAGEASSOCIATIONRULESInstances:14Attributes:5outlooktemperatureDiscoveryandAnalysisofWebUsageMining315humiditywindyplayIfchecksunny,falseyes[sub1/14conf1/1]Thepurposeofthisexperimentwastogivesomeinsightintotheusefulnessofassociationruleswhentheyareappliedtotheweblogdatasetofaneducationinstitutionandothers.
Weexpectedtofindrulesthatcorrelatetowebpagesthatcontaininformationaboutsunny,rainyortemperatureetc.
SupposethisistransactiontableandfindoutFrequentItemsetthen,T1C++,JAVA,RUBYT2C++,ASPT3ASP,VBT4C++,JAVA,ASPT5C++,JAVA,PHP,ASP,RUBYT6JAVA,PHP,RUBYT7JAVA,RUBY,PHPSize1Size2Size3Size4ItemSetSupp.
ItemSetSupp.
ItemSetSupp.
ItemSetSupp.
C++4C++,JAVA3C++,JAVA,RUBY2C++,JAVA,RUBY,ASP1JAVA5C++,RUBY2C++,JAVA,ASP2C++,JAVA,RUBY,PHP1RUBY4C++,ASP3JAVA,RUBY,ASP1ASP4C++,PHP1JAVA,RUBY,PHP3VB1JAVA,RUBY4RUBY,ASP,PHP1PHP3JAVA,ASP2JAVA,PHP3RUBY,ASP1RUBY,PHP3ASP,PHP1Figure1:WebTransactionsandResultingFrequentItemsets(Minsup=1)FindoutFrequentItemsetbyUsingJoiningandPruningMethodsofAssociationRuleFREQUENTITEMSETGRAPHFig.
2,findsitemsC++andRUBYascandidaterecommendations.
TherecommendationscoresofitemAandCare1,correspondingtotheconfidencesoftherules,JAVA,ASP->C++andJAVA,ASP->RUBY,respectively.
Aproblemwithusingasingleglobalminimumsupportthresholdinassociationruleminingisthatthediscoveredpatternswillnotinclude"rare"butimportantitemswhichmaynotoccurfrequentlyinthetransactiondata.
316MaratheDagaduMitharamC=C++J=JAVAA=ASPR=RUBYP=PHPFigure2:FrequentItemsetsCLUSTERANALYSISANDVISITORSSEGMENTATIONConceptandExampleClusteringofuserrecords(sessionsortransactions)isoneofthemostcommonlyusedanalysistasksinWebusageminingandWebanalytics.
Clusteringofuserstendstoestablishgroupsofusersexhibitingsimilarbrowsingpatterns.
Suchknowledgeisespeciallyusefulforinferringuserdemographicsinordertoperformmarketsegmentationine-commerceapplicationsorprovidepersonalizedWebcontenttotheuserswithsimilarinterests.
DiscoveryandAnalysisofWebUsageMining317HereweUsetheformulaof"WebDataMining"-Bingliubook.
Asanexample,considerthetransactiondatadepictedinsimplicityweassumethatfeature(pageview)weightsineachtransactionvectorarebinary(incontrasttoweightsbasedonafunctionofpageviewduration).
Weassumethatthedatahasalreadybeenclusteredusingastandardclusteringalgorithmsuchask-means,resultinginthreeclustersofusertransactions.
Itshowstheaggregateprofilecorrespondingtocluster1.
Asindicatedbythepageviewweights,pageviewsBandFarethemostsignificantpagescharacterizingthecommoninterestsofusersinthissegment.
PageviewC,however,onlyappearsinonetransactionandmightberemovedgivenafilteringthresholdgreaterthan0.
25.
Suchpatternsareusefulforcharacterizinguserorcustomersegments.
Thisexample,forinstance,indicatesthattheresultingusersegmentisclearlyinterestedinitemsBandFandtoalesserdegreeinitemA.
GivenanewuserwhoshowsinterestinitemsAandB,thispatternmaybeusedtoinferthattheusermightbelongtothissegmentand,therefore,wemightrecommenditemFtothatuser.
ExperimentandResultsInthisexperimentwedefinetable"weather"anddefinefields.
318MaratheDagaduMitharamOutputUsingClusterinWeka===Runinformation===Scheme:weka.
clusterers.
HierarchicalClusterer-N2-LSINGLE-P-A"weka.
core.
EuclideanDistance-Rfirst-last"Relation:weatherInstances:13Attributes:5outlooktemperaturehumiditywindyIgnoredplayTestmode:Classestoclustersevaluationontrainingdata===Modelandevaluationontrainingset===Cluster0((((((1.
0:0.
18505,1.
0:0.
18505):0.
05959,1.
0:0.
24464):0.
7557,(1.
0:0.
16832,(1.
0:0.
08235,1.
0:0.
08235):0.
08597):0.
83201):0.
00109,((0.
0:0.
22986,0.
0:0.
22986):0.
77157,0.
0:1.
00142):0):0.
00106,(0.
0:0.
21648,0.
0:0.
21648):0.
78601):0.
00135,1.
0:1.
00384)ClusteredInstances012(92%)11(8%)Classattribute:playClassestoClusters:01<--assignedtocluster71|yes50|noCluster0<--yesCluster1<--NoclassIncorrectlyclusteredinstances:6.
046.
1538%DiscoveryandAnalysisofWebUsageMining319VisualizationsofPatternsCONCLUSIONSUsagepatternsdiscoveredthroughWebusageminingareeffectiveincapturingitem-to-itemanduser-to-userrelationshipsandsimilaritiesatthelevelofusersessions.
Thispaperhasattemptedtoforthepurposeofwebusagemining.
TheproposedmethodsweresuccessfullytestedonthedatasetordatabasesusingassociationruleandclusteranalysismethodusingWekaTool.
Ourexperimentsconfirmedthatoneofthemajorissuesinassociationruleandclusterfindingistheexistenceoftoomanyrulesandgroups,allofwhichsatisfydefinedconstraints.
REFERENCES1.
Webdatamining–BingLiu320MaratheDagaduMitharam2.
PPTforWebusagemining-BingLiu3.
Srivastava,J.
,Cooley,R.
,Deshpande,M.
,Tan,P.
N.
(2000).
WebUsageMining:DiscoveryandApplicationsofUsagePatternsfromWebData.
ACMSIGKDD,Jan2000.
4.
JaideepSrivastavaPaper5.
WCA.
Webcharacterizationterminology&definitions.
6.
http://www.
w3.
org/1999/05/WCA-terms/.
Vigenteal19/11/2005

wordpress简洁英文主题 wordpress简洁通用型高级外贸主题

wordpress简洁英文主题,wordpress简洁通用大气的网站风格设计 + 更适于欧美国外用户操作体验,完善的外贸企业建站功能模块 + 更好的移动设备特色模块支持,更高效实用的后台自定义设置 + 标准高效的代码程序功能结构,更利于Goolge等国际搜索引擎的SEO搜索优化和站点收录排名。点击进入:wordpress简洁通用型高级外贸主题主题价格:¥3980 特 惠 价:¥1280安装环境:运...

物语云-VPS-美国洛杉矶VPS无限流量云windows大带宽100M不限流量 26/月起

物语云计算怎么样?物语云计算(MonogatariCloud)是一家成立于2016年的老牌国人商家,主营国内游戏高防独服业务,拥有多家机房资源,产品质量过硬,颇有一定口碑。本次带来的是特惠活动为美国洛杉矶Cera机房的不限流量大带宽VPS,去程直连回程4837,支持免费安装Windows系统。值得注意的是,物语云采用的虚拟化技术为Hyper-v,因此并不会超售超开。一、物语云官网点击此处进入物语云...

ftlcloud9元/月,美国云服务器,1G内存/1核/20g硬盘/10M带宽不限/10G防御

ftlcloud(超云)目前正在搞暑假促销,美国圣何塞数据中心的云服务器低至9元/月,系统盘与数据盘分离,支持Windows和Linux,免费防御CC攻击,自带10Gbps的DDoS防御。FTL-超云服务器的主要特色:稳定、安全、弹性、高性能的云端计算服务,快速部署,并且可根据业务需要扩展计算能力,按需付费,节约成本,提高资源的有效利用率。活动地址:https://www.ftlcloud.com...

yw372:Com为你推荐
中国企业在线有什么B2B网站可以做国外的?多给些。。回答的好追加重庆杨家坪猪肉摊主杀人昨天重庆九龙坡出了严重交通事故吗360arp防火墙在哪360ARP防火墙哪里下载?ipad代理ipad在哪里买是正品?爱优网为什么优酷土豆等视频网站那么多人上传视频zhuo爱timi什么意思400电话查询400电话号码可以查询归属地吗?办理400电话是不是很贵?dedecms采集织梦后台怎么采集图片dz论坛DZ论坛Discuz论坛如何DIY门户首页和论坛首页网站流量统计代码网站访问量统计代码 不要http://www.51.la/这样挂在别的网站下的 需要自己可以单独建个网页的那种, 谢谢
新网域名 过期域名 黑龙江域名注册 草根过期域名 息壤备案 godaddy主机 网络星期一 火车票抢票攻略 mysql主机 java空间 本网站服务器在美国 服务器维护方案 共享主机 空间合租 外贸空间 阿里云官方网站 云营销系统 免费ftp 秒杀品 restart 更多