achievemkxk.com

mkxk.com  时间:2021-04-10  阅读:()
Gaoetal.
AdvancesinDierenceEquations(2019)2019:380https://doi.
org/10.
1186/s13662-019-2298-7RESEARCHOpenAccessVariance-constrainedresilientH∞stateestimationfortime-varyingneuralnetworkswithrandomlyvaryingnonlinearitiesandmissingmeasurementsYanGao1,2,JunHu1,2,3*,DongyanChen1,2andJunhuaDu4*Correspondence:hujun2013@gmail.
com1SchoolofScience,HarbinUniversityofScienceandTechnology,Harbin,ChinaFulllistofauthorinformationisavailableattheendofthearticleAbstractThispaperaddressestheresilientH∞stateestimationproblemundervarianceconstraintfordiscreteuncertaintime-varyingrecurrentneuralnetworkswithrandomlyvaryingnonlinearitiesandmissingmeasurements.
ThephenomenaofmissingmeasurementsandrandomlyvaryingnonlinearitiesaredescribedbyintroducingsomeBernoullidistributedrandomvariables,inwhichtheoccurrenceprobabilitiesareknownapriori.
Besides,themultiplicativenoiseisemployedtocharacterizetheestimatorgainperturbation.
Ourmainpurposeistodesignatime-varyingstateestimatorsuchthat,forallmissingmeasurements,randomlyvaryingnonlinearitiesandestimatorgainperturbation,boththeestimationerrorvarianceconstraintandtheprescribedH∞performancerequirementaremetsimultaneouslybyprovidingsomesucientcriteria.
Finally,thefeasibilityoftheproposedvariance-constrainedresilientH∞stateestimationmethodisveriedbysomesimulations.
Keywords:Time-varyingneuralnetworks;Resilientstateestimation;Randomlyvaryingnonlinearities;Missingmeasurements;H∞performance;Varianceconstraint1IntroductionInthepasttwodecades,thepopularizationoftheInternethasgreatlychangedourwayoflifethroughtherapidcommunicationways[1–3].
Accordingly,manyscholarshavewit-nessedsuccessfulapplicationsofrecurrentneuralnetworks(RNNs)inwideeldsinclud-ingpatternrecognition,imageprocessing,associatememoryandoptimizationdomains[4–6].
Nevertheless,itshouldbenotedthatthenonlinearitiesarecommonlyinherentcharacteristicsbetweenneurons,whichindeedaecttheunderstandingandanalysisoftheneuralnetworks(NNs).
Thus,someecientmethodshavebeengiventoanalyzedif-ferentNNs.
Forexample,aneectivenite-timesynchronizationcriterionhasbeenpro-posedin[7]forcoupledstochasticNNs,whereboththeMarkovianswitchingparametersandsaturationhavebeenaddressed.
Moreover,someusefulstateestimationalgorithmshavebeengivenin[8]fordelayedNNstoguaranteetheH∞aswellaspassivityandin[9]forbidirectionalassociativeNNssubjecttomixedtime-delays.
DuringtheanalysisandimplementationofthemethodsrelatedtoRNNs,itshouldbenoticedthattheneuronTheAuthor(s)2019.
ThisarticleisdistributedunderthetermsoftheCreativeCommonsAttribution4.
0InternationalLicense(http://creativecommons.
org/licenses/by/4.
0/),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,pro-videdyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.
Gaoetal.
AdvancesinDierenceEquations(2019)2019:380Page2of23statesmaynotalwaysavailableinreality,sothereisaneedtoestimatethembyutilizingeectiveestimationmethods[10–12].
Untilnow,manyresultshavebeenpublishedwithrespecttothestateestimationproblemofdierenttypesofdynamicalnetworks[13–16].
Nevertheless,itisworthmentioningthatmuchpublishedliteratureisonlyapplicabletotime-invariantcase,whichmightleadtocertainapplicationlimitations.
Hence,moreandmoreresearchershavepaidattentionontheanalysisofthestateestimationproblemfortime-varyingsystemandproposedavarietyofmethodstoanalyzethebehaviorsofdy-namicssystems,seee.
g.
[17–20]andthereferencestherein.
Tobespecic,anevent-basedjointinputandstateestimationstrategyhavebeenpresentedin[19]toensurethattheco-varianceoftheestimationerrorhasanupperboundatanytimefortheaddressedlineardiscretetime-varyingsystems.
Accordingly,thereexistthedemandsonthedevelopmentofecientanalysismethodsfortime-varyingRNNs.
Duringthenetworkcommunicationsortransmissions,theperfectmeasurementscannotbealwaysavailable,thusincreasingresearcheorthasbeenmadeonthestateestima-tionproblemsagainstthemissingmeasurements[20–22].
Themissingmeasurementsareinevitableprimarilyduetothesignalinterferenceduringthetransmissionincludinglim-itedcommunicationchannels,noiseinterferencesandsoforth.
Forexample,thestudyofmissingmeasurementshasbeenconductedintheareasofprincipalcomponentanalysisandpartialleastsquaresmodels[23].
Actually,itiswellrecognizedthattheexistenceofthemissingmeasurementswouldleadtopoorsystemperformancefortheaddressedNNs[24,25].
Accordingly,alargenumberofresultshavebeengiventodealwiththestatees-timationproblemfordynamicsnetworkssubjecttomissingmeasurements[26–29].
Forexample,in[27,28],theH∞stateestimationdesignstrategieshavebeenproposedfordiscretedelayedneuralnetworks,wheretheimpactsfromthemultiplemissingmeasure-mentshavebeendiscussed.
Nevertheless,fewresultshavebeenreportedtohandletheproblemofstateestimationfortime-varyingdynamicsnetworkswithmissingmeasure-ments[20,30].
Recently,anewoptimalstateestimationalgorithmhasbeendevelopedin[20]fortime-varyingcomplexnetworks,wheretheimpactsfromboththestochasticcouplingandthemissingmeasurementswithintheframeworkofuncertainoccurrenceprobabilitieshavebeenaddressed.
However,itisworthwhiletonoticethatfewscholarshavestudiedthestateestimationproblemoftime-varyingneuralnetworkswithmissingmeasurements,whichconstitutesoneofresearchmotivations.
Recently,thephenomenaofrandomlyvaryingnonlinearitieshavebeenmodeledanddiscussedinvariouselds[31,32].
Theexistenceofrandomlyvaryingnonlinearitieshasbroughtmoreinuencesinphysics,engineering,informationscienceandotherelds,andhencethedynamicssystemanalysisproblemswithrandomlyvaryingnonlinearitieshavealreadyreceivedincreasinginterest[33–35].
Forexample,thestateestimationalgorithmindistributedwayhasbeenestablishedin[33]foraclassofdiscretesystemsoversensornetworkswithincompletemeasurementsandrandomlyvaryingnonlinearities,andtheprobability-dependentH∞synchronizationconditionhasbeenpresentedin[35]fordy-namicsnetworksbydesigningnewcontrolmethod.
Duringtheimplementationprocess,thepresentedestimationmethodwouldbefragile/non-resilientduetovariousreasons,suchasthenumericalroundingerror,nite-wordlengtheectsandanalog-to-digitalcon-versionaccuracy[36,37].
Accordingly,thenon-fragile/resilientestimationschemeshavewideapplicationeldsasinwaterqualityprocessing[38]andsynchronousgenerators[39].
In[40,41],thenon-fragileH∞stateestimationalgorithmshavebeengivenfordynamicalGaoetal.
AdvancesinDierenceEquations(2019)2019:380Page3of23systemswithMarkovswitchingeects,wherethepossibleestimatorparametervariationshavebeenmodeledanddiscussed.
TheresilientH∞lteringmethodshavebeengivenin[42]forswitcheddelayedneuralnetworkswithensurednite-timecriterionandin[43]fortime-varyingdynamicssystemsthroughsensornetworkswithcommunicationpro-tocols.
However,fewresilientH∞estimationmethodscanbeavailablefortime-varyingRNNs.
Ontheotherhand,fromtheengineering-orientedviewpointonthestateestima-tionproblems,itisofgreatpracticalsignicancetoensuretheestimationperformancehasacertainupperboundofrelatedtotheestimatederrorcovariance[44].
Unliketotheminimalestimationoferrorcovariance,thevariance-constrainedstateestimationstrat-egycouldprovidealooserevaluationbyintroducingaspecicupperboundconstraint,whichcanreecttheadmissibleaccuracyoftheproposedestimationmethods.
Veryre-cently,anewvariance-constrainedlteringalgorithmwithdistributedfeaturehasbeenestablishedin[45]fortime-varyingsensornetworkssubjecttodeceptionattacksandstateestimationscheme;see[46]fortime-varyingcomplexnetworkstoattenuatetheimpactsinducedbyrandomlyvaryingtopologies.
Assuch,wemaketherstattempttohandletheH∞resilientestimationproblemundervarianceconstraintfortime-varyingRNNswithrandomlyvaryingnonlinearitiesandmissingmeasurements.
Inspiredbytheabovediscussions,weaimtodesigntheresilientH∞stateestimationap-proachfortheaddresseddiscretetime-varyingRNNssubjecttomissingmeasurementsandrandomlyvaryingnonlinearitiesunderthevarianceconstraint.
Inparticular,theesti-matorgainperturbationisconsideredbyemployingtheGaussianwhitenoise.
Byresortingtothematrixtheoryandstochasticanalysistechnique,anewnonlineartime-varyingstateestimationmethodisproposed,whichcanensuretheerrorvarianceboundednessandprescribedH∞performancerequirementssimultaneously.
Fromanengineeringview-point,theproposedrecursivestateestimationschemehasatime-varyingfeatureappli-cableforhandlingtheestimationproblemsofneuralnetworks,whichissuitablefortheonlineestimationapplications.
Moreover,somesucientconditionscharacterizedbythematrixinequalitiesaregiventoensuretwomixedperformanceindies,whichcanbetterachievesatisfactorydisturbanceattenuationlevelandtheestimationcovarianceperfor-mance,thusperformingwideapplicationdomains.
Themajorfeaturesofthepapercanbesummarizedasfollows:(1)theH∞stateestimationproblemundervarianceconstraintis,forthersttime,investigatedforaclassofdiscretetime-varyingRNNssubjecttomiss-ingmeasurementsandrandomlyvaryingnonlinearities;(2)anewprobability-dependenttime-varyingstateestimationalgorithmisproposed,whichcanbeimplementedintermsofthesolutionstocertainmatrixinequalities;(3)theimpactscausedbythemissingmea-surementsandrandomlyvaryingnonlinearitiesontotwoestimationperformanceindicesarediscussedandexaminedsimultaneously;and(4)theproposedestimationalgorithmhastime-varyingcharacteristicapplicableforonlineapplications,whichperformsnewadvantagescomparedwiththeexistingestimationresultsfortime-invariantneuralnet-works.
Notations.
Thesymbolsusedthroughoutthepaperarefairlystandard.
RrdenotestherdimensionalEuclideanspace.
N+standsforthesetsofpositiveintegers.
ForthematrixAandthevectorx,ATandxTrepresentsthetransposeAandx,respectively.
TheidentitymatrixisdenotedbyIandthezeromatrixisdenotedby0.
E{x}meansthemathematicalexpectationofx.
X>0meansthatXisapositive-denitesymmetricmatrix.
Insymmetricblockmatrices,weuseanasterisktorepresentatermthatisinducedbysymmetry,andGaoetal.
AdvancesinDierenceEquations(2019)2019:380Page4of23diag{.
.
.
}standsforablock-diagonalmatrix.
Itisassumedthatthematriceshavecompat-ibledimensionsifitisnotexplicitlyspecied.
2ProblemformulationandpreliminariesInthispaper,weconsiderthen-neuronstime-varyingneuralnetworkgivenbyxk+1=(Ak+Ak)xk+αkB1kf(xk)+(1–αk)B2kg(xk)+Ckv1k,yk=λkDkxk+v2k,(1)zk=Mkxk,wherexk=[x1,kx2,k.
.
.
xn,k]T∈Rnrepresentsthestatevectorofneuralnetwork,yk∈Rmdenotesthemeasurementoutput,zk∈Rrstandsforthecontrolledoutput,Ak=diag{a1,k,a2,k,.
.
.
,an,k}isthestatecoecientmatrix,Ck,DkandMkareknownrealma-triceswithappropriatedimensions,v1k∈Rnwandv2k∈RmareGaussianwhitenoiseswithzeromeanvaluesandcovariancesV1>0andV2>0,respectively.
B1k=[b1ij(k)]n*nandB2k=[b2ij(k)]n*naretheconnectionweightmatrices.
f(xk)=[f1(x1,k).
.
.
fn(xn,k)]Tandg(xk)=[g1(x1,k).
.
.
gn(xn,k)]Taretheneuronactivationfunctions.
Akdescribesthepa-rameteruncertaintysatisfyingAk=HkFkNk,(2)whereHkandNkareappropriatelydimensionalknownmatrices,theunknownmatrixFksatisesFTkFk≤I,k∈N+.
(3)TheBernoullidistributedrandomvariablesαkandλkareutilizedtodescribethephe-nomenaofrandomlyvaryingnonlinearitiesandmissingmeasurements,respectively,andsatisfyProb{αk=1}=E{αk}=α,Prob{αk=0}=1–α,Prob{λk=1}=E{λk}=λ,Prob{λk=0}=1–λ,whereα∈[0,1]andλ∈[0,1]areknownconstants.
Assumption1Fortheactivationfunctionsf(·)andg(·)withf(0)=g(0)=0,thereexistfourscalarsλ–i,λ+i,σ–iandσ+isatisfyingthefollowingconditions:λ–i≤fi(s1)–fi(s2)s1–s2≤λ+i,σ–i≤gi(s1)–gi(s2)s1–s2≤σ+i,s1,s2∈R,s1=s2.
(4)Gaoetal.
AdvancesinDierenceEquations(2019)2019:380Page5of23Inordertoestimatethestatesofneurons,thefollowingtime-varyingnonlinearstateestimatorisconstructed:xk+1=Akxk+αB1kf(xk)+(1–α)B2kg(xk)+(Kk+δkKk)(yk–λDkxk),zk=Mkxk,(5)wherexkistheestimationofneuronstatexk,Kkisaknownrealmatrixwithappropriatedimension,δkiszeromeanGaussianwhitenoisewithunitycovariance.
Kkistheestimatorgainmatrixtobedeterminedlater.
Inthesequel,supposethatαk,λk,v1k,v2kandδkaremutuallyindependent.
Remark1Duringtheimplementationprocess,thestateestimationperformanceoftheneuralnetworksisusuallyaectedbythenumericalroundingerror,nite-wordlengtheectsandanalog-to-digitalconversionaccuracy,whichinevitablyleadtothepossibledeviationsoftheestimationvaluesprovidedbythestateestimator.
Thus,thepresentedestimationmethodmightbeafragile/non-resilientone.
Therefore,weaimtotakethees-timatorgainperturbationsintoaccountduringtheestimatordesignwithhopetoprovidearesilienttime-varyingstateestimatorwithadmissibleadjustmentability.
Accordingly,theestimatorgainperturbationsaremodeledbyazeromeanGaussianwhitenoiseδkandthenominalmatrixKk,wherethechangesofthewhitenoiseδkareutilizedtocharacter-izetheadmissibleerrorsoftheestimatorgain.
Assuch,aresilientstateestimationschemeunderprescribedperformanceindicesisexpectedtobegivenlaterfortheaddressedtime-varyingRNNs.
Lettheestimationerrorbeek=xk–xkandthecontrolledoutputestimationerrorbezk=zk–zk.
Thentheestimationerrordynamicscanbeobtainedfrom(1)and(5)asfollows:ek+1=Ak–(Kk+δkKk)λDkek+Akxk+αkB1kf(xk)+αB1kf(ek)–αkB2kg(xk)+(1–α)B2kg(ek)–(Kk+δkKk)(λkDkxk+v2k)+Ckv1k,zk=Mkek,(6)withf(ek)=f(xk)–f(xk),g(ek)=g(xk)–g(xk),αk=αk–αandλk=λk–λ.
Tosimplifythenotation,wecandeneηk=xTkeTkT,vk=vT1kvT2kT,f(ηk)=fT(xk)fT(ek)T,g(ηk)=gT(xk)gT(ek)T.
Considering(1),(6)andtheabovenotations,wecaneasilyderivethefollowingaugmentedsystem:ηk+1=(Ak+λkD1k+λkδkD2k+δkA2k)ηk+(B1k+αkBk)f(ηk)+(B2k–αkˇBk)g(ηk)+(C1k+δkC2k)vk,zk=Mkηk,(7)Gaoetal.
AdvancesinDierenceEquations(2019)2019:380Page6of23whereAk=Ak+Ak0AkAk–λKkDk,D1k=00–KkDk0,D2k=00–KkDk0,A2k=000–λKkDk,B1k=αB1k00αB1k,Bk=B1k0B1k0,B2k=(1–α)B2k00(1–α)B2k,ˇBk=B2k0B2k0,C1k=Ck0Ck–Kk,C2k=000–Kk,Mk=0Mk.
Next,weintroducethecovariancematrixXkdescribedbyXk=EηkηTk=ExkekxkekT.
(8)Themainpurposeofthispaperistodesignatime-varyingnonlinearstateestimator(5)suchthatthefollowingtworequirementsareachievedsimultaneously.
(R1)Letthescalarγ>0,thepositive-denitematricesWandWφbegiven.
Fortheinitialstateη0,theestimationerrorzksatisesthefollowingconstraint:J1:=EN–1k=0zk2–γ2vk2W–γ2EηT0Wφη00suchthatQ+RRT+–1HTH0,α∈[0,1]andλ∈[0,1],matricesW>0andWφ>0,stateestimatorgainmatrixKkin(5)aregiven.
IfQ0≤γ2Wφandthereexistsaseriesofpositive-denitereal-valuematrices{Qk}1≤k≤N+1satisfyingthefollowingrecursivematrixinequality:Φ=Φ11Λ21+ATkQk+1B1kΣ22+ATkQk+1B2k0Φ22Φ230Φ330Φ440andtheinitialconditionQ0≤γ2Wφ,itfollowsthatJ10,wecanobtainEAkηkfT(ηk)BT1k+B1kf(ηk)ηTkATk≤Eε1AkηkηTkATk+ε–11B1kf(ηk)fT(ηk)BT1k,Gaoetal.
AdvancesinDierenceEquations(2019)2019:380Page12of23EAkηkgT(ηk)BT2k+B2kg(ηk)ηTkATk≤Eε2AkηkηTkATk+ε–12B2kg(ηk)gT(ηk)BT2k,EB1kf(ηk)gT(ηk)BT2k+B2kg(ηk)fT(ηk)BT1k≤Eε3B1kf(ηk)fT(ηk)BT1k+ε–13B2kg(ηk)gT(ηk)BT2k,E–α(1–α)Bkf(ηk)gT(ηk)ˇBTk–α(1–α)ˇBkg(ηk)fT(ηk)BTk≤Eε4α(1–α)Bkf(ηk)fT(ηk)BTk+ε–14α(1–α)ˇBkg(ηk)gT(ηk)ˇBTk,whereεi(i=1,2,3,4)arepositivescalars.
ThenitisstraightforwardtoseethatXk+1≤E(1+ε1+ε2)AkηkηTkATk+λ(1–λ)D1kηkηTkDT1k+λ(1–λ)D2kηk*ηTkDT2k+A2kηkηTkAT2k+1+ε–11+ε3B1kf(ηk)fT(ηk)BT1k+α(1–α)1+ε–14ˇBkg(ηk)gT(ηk)ˇBTk+α(1–α)(1+ε4)Bkf(ηk)fT(ηk)BTk+1+ε–12+ε–13B2kg(ηk)gT(ηk)BT2k+C1kVCT1k+C2kVCT2k.
Furthermore,itfollowsfromLemma3thatEf(ηk)fT(ηk)≤EY1ηk2=EY1ηTkηk,Eg(ηk)gT(ηk)≤EY2ηk2=EY2ηTkηk,whereY1andY2aredenedin(22).
Thus,onehasXk+1≤E(1+ε1+ε2)AkηkηTkATk+λ(1–λ)D1kηkηTkDT1k+λ(1–λ)D2kηkηTkDT2k+A2kηkηTkAT2k+1+ε–11+ε3B1kY1ηTkηkBT1k+α(1–α)1+ε–14ˇBkY2ηTkηkˇBTk+α(1–α)(1+ε4)BkY1ηTkηk*BTk+1+ε–12+ε–13B2kY2ηTkηkBT2k+C1kVCT1k+C2kVCT2k.
(23)Accordingtothefeatureofthetrace,wecanobtainEηTkηk=EtrηkηTk=tr(Xk).
(24)Combining(23)with(24)resultsinXk+1≤(1+ε1+ε2)AkXkATk+λ(1–λ)D1kXkDT1k+λ(1–λ)D2kXkDT2k+A2kXkAT2k+1+ε–11+ε3tr(Xk)B1kY1BT1k+α(1–α)1+ε–14*tr(Xk)ˇBkY2ˇBTk+α(1–α)(1+ε4)tr(Xk)BkY1BTk+1+ε–12+ε–13tr(Xk)B2kY2BT2k+C1kVCT1k+C2kVCT2k=Ψ(Xk).
NotingthatG0≥X0andlettingGk≥Xk,wecanderivethefollowinginequality:Ψ(Gk)≥Ψ(Xk)≥Xk+1.
(25)Gaoetal.
AdvancesinDierenceEquations(2019)2019:380Page13of23Then,from(21)and(25),wearriveatGk+1≥Ψ(Gk)≥Ψ(Xk)≥Xk+1.
(26)Therefore,theproofiscomplete.
Basedontheabovetheorems,asucientconditioncanbepresentedtoguaranteethespeciedH∞performanceandestimationerrorvarianceconstraintbysolvingtherecur-sivematrixinequalities.
Theorem3Considerthetime-varyingRNNs(1)andsupposethattheestimatorgainma-trixKkisgiven.
Forgivenscalarsγ>0,α∈[0,1]andλ∈[0,1],positive-denitematricesW>0andWφ>0,undertheinitialconditionsQ0≤γ2WφandG0=X0,iftherearetwoseriesofpositive-denitereal-valuedmatrices{Qk}1≤k≤N+1and{Gk}1≤k≤N+1satisfyingthefollowingmatrixinequalities:Ξ11Ξ12Ξ13Ξ140Ξ22000Ξ330Ξ35Ξ440Ξ550,thescalarsα∈[0,1]andλ∈[0,1],thepositive-denitematricesW>0andWφ=Wφ1Wφ2WTφ2Wφ4>0andasetofpre-denedvarianceupperboundmatrices{Ψk}0≤k≤N+1,undertheinitialconditionsL0–γ2Wφ1Wφ2WTφ2Z0–γ2Wφ4≤0,Ee0eT0=G2,0≤Ψ0,(29)Gaoetal.
AdvancesinDierenceEquations(2019)2019:380Page15of23ifthereexistseriesofpositive-denitematrices{Lk}1≤k≤N+1,{Zk}1≤k≤N+1,{G1k}1≤k≤N+1and{G2k}1≤k≤N+1,positivescalars{1,k}0≤k≤N+1and{2,k}0≤k≤N+1,matrices{Kk}0≤k≤N+1and{G3k}1≤k≤N+1withappropriatedimensionssatisfyingthefollowingrecursivematrixinequalities:Θ11Θ12Θ13Θ1400Θ22000WTkΘ330Θ35YTkΘ4400Θ5501,kI<0,(30)Π11Π12Π13Π140Π2200XTkΠ3300Π4402,kI<0,(31)G2,k+1–Ψk+1≤0,(32)whereΘ11=–Γ1Λ1–Γ3Σ1+1,kNkNTk–Lk00–Γ2Λ1–Γ4Σ1–Zk,Θ12=αATkLk+1B1k+Γ1Λ20(1–α)ATkLk+1B2k+Γ3Σ200Ω50Ω6,Θ13=0ATkLk+100–2DTkKTkZk+100Ω700,Θ14=0–2DTkKTkZk+1000000–λDTkKTkZk+1MTk,Θ22=Ω80–α(1–α)BT1kZk+1B2k0–Γ2+α2BT1kZk+1B1k0Ω3Ω90Ω4,Θ33=diag–γ2W,–Lk+1,–Zk+1,–Lk+1,–Zk+1,Θ35=CTkLk+1CTkZk+1000–KTkZk+10–KTkZk+1000000000000,Θ44=diag{–Lk+1,–Zk+1,–Lk+1,–Zk+1,–I},Θ55=diag{–Lk+1,–Zk+1,–Lk+1,–Zk+1},Gaoetal.
AdvancesinDierenceEquations(2019)2019:380Page16of23Π11=Ω10Ω11Ω12,Π12=4AkG1k4AkGT3k4(Ak–λKkDk)G3k4(Ak–λKkDk)G2k,Π13=0000–2KkDkG1k–2KkDkGT3k–2KkDkG1k–2KkDkGT3k,Π14=00CkV1000–λKkDkG3k–λKkDkG2kCkV1–KkV20–KkV2,Π22=–G1k–GT3k–G2k,Π33=diag{Π22,Π22},Π44=diag{Π22,–V1,–V2,–V1,–V2},Ω3=α(1–α)BT1kZk+1B2k,Ω4=–Γ4+(1–α)2BT2kZk+1B2k,Ω5=αATk–λDTkKTkZk+1B1k+Γ2Λ2,Ω6=(1–α)ATk–λDTkKTkZk+1B2k+Γ4Σ2,Ω7=ATkZk+1–λDTkKTkZk+1,Ω8=–Γ1+αBT1kLk+1B1k+α(1–α)BT1kZk+1B1k,Ω9=–Γ3+(1–α)BT2kLk+1B2k+α(1–α)BT2kZk+1B2k,Ω10=–G1,k+1+α25tr(Gk)B1kY1BT1k+1tr(Gk)B1kY1BT1k+(1–α)23*tr(Gk)B2kY2BT2k+6tr(Gk)B2kY2BT2k+2,kHTkHk,Ω11=–GT3,k+1+1tr(Gk)B1kY1BT1k+6tr(Gk)B2kY2BT2k+2,kHTkHk,Ω12=–G2,k+1+α25tr(Gk)B1kY1BT1k+1tr(Gk)B1kY1BT1k+(1–α)23*tr(Gk)B2kY2BT2k+6tr(Gk)B2kY2BT2k+2,kHTkHk,Wk=αHTkLk+1B1kαHTkZk+1B1k(1–α)HTkLk+1B2k(1–α)HTkZk+1B2k,Yk=0HTkLk+1HTkZk+100,NTk=Nk0,Xk=4NkG1k4NkGT3k,FTk=HTkHTk,thenwecanconcludethattheestimatordesignproblemissolvable.
Gaoetal.
AdvancesinDierenceEquations(2019)2019:380Page17of23ProofFirstly,thematricesQkandGkaredecomposedasfollows:Qk=Lk0Zk,Gk=G1kGT3kG2k.
Secondly,inordertodealwithparameteruncertainty,werewrite(27)asfollows:Ξ11Ξ012Ξ013Ξ140Ξ22000Ξ330Ξ35Ξ440Ξ55+NkFkHk+HTkFTkNTk<0,whereΞ012=αATkLk+1B1k+Γ1Λ20(1–α)ATkLk+1B2k+Γ3Σ200Ω50Ω6,Ξ013=0ATkLk+100–2DTkKTkZk+100Ω700,NTk=NTk0000,Hk=0WkYk00.
Subsequently,itfollowsfromLemma2thatΞ11Ξ012Ξ013Ξ140Ξ22000Ξ330Ξ35Ξ440Ξ55+1,kNkNTk+–11,kHTkHk<0.
Similarly,(28)canberewrittenas–Gk+1Υ012Υ13Υ14–Gk00Υ330Υ44+NkFkHk+HTkFTkNTk<0,whereΥ012=4AkG1k4AkGT3k4(Ak–λKkDk)G3k4(Ak–λKkDk)G2k,NTk=FTk000,Hk=0Xk00.
Gaoetal.
AdvancesinDierenceEquations(2019)2019:380Page18of23ThenitfollowsfromLemma2that–Gk+1Υ012Υ13Υ14–Gk00Υ330Υ44+2,kNkNTk+–12,kHTkHk<0.
Now,itshouldbenotedthat(30)implies(27).
Similarly,wecanseethat(31)leadsto(28).
Assuch,boththeestimationerrorcovarianceconstraintandH∞performancerequire-mentofsystem(7)areensured.
TheproofofTheorem4iscomplete.
Remark5Uptonow,wehavediscussedthevariance-constrainedresilientH∞statees-timationproblemforaclassoftime-varyingRNNswithrandomlyvaryingnonlinearitiesandmissingmeasurements.
Byapplyingtherecursivematrixinequalitytechnique,somecriteriahavebeenestablishedtoguaranteetheprescribedH∞performanceandtheesti-mationerrorcovarianceconstraintsfortheaddressedestimationproblemoftime-varyingneuralnetworkswithinthenite-horizonframework.
Itshouldbenoticedthatthepro-posedestimationapproachhasthefollowingthreeadvantages:(i)thedisturbanceeectscanbeeectivelyattenuatedbytheH∞performanceindexovernitehorizon;(ii)theprescribedupperboundoftheestimationerrorcovariancecanbeguaranteedbyveri-fyingcertainmatrixinequalities;and(iii)thenewlydesignedstateestimationapproachcanbeappliedtotheonlinecalculationsandimplementationsforsolvingtheestimationproblemsoftime-varyingRNNs,whichconstitutesanotherappealingfeature.
Remark6Infact,almostallexistingestimationschemescanbeappliedtotime-invariantNNsonly,butwehavemadeoneoftherstattemptstodiscussthecharacteristicsofthetime-varyingRNNsandaddresstwocombinedperformanceindicestomeetthepracti-calrequirements,whicharetheessentialsuperiorityoftheproposedresult.
Forexample,comparedwiththenon-fragile/resilientstateestimationmethodin[10],ourestimationschemehastheadvantagetorevealthewholeimpactsfrommissingmeasurementsandrandomlyvaryingnonlinearitiesontotheestimationalgorithmperformance,whichcanpresentanewtreatmentway.
Incontrasttotheresultsin[11,12],thesuperioritydeal-ingwiththetime-varyingcharacteristicscanbeobservedfromournewstateestimationscheme.
5AnillustrativeexampleInthissection,wegiveasimulationtoillustratethefeasibilityofproposedestimationapproachundervarianceconstraint.
Theparametersoftime-varyingRNNs(1)aregivenasfollows:Ak=–0.
500–0.
1sin(2k),B1k=–sin(2k)0.
5–0.
20.
5,Γ1=0.
9000.
9,B2k=–0.
27sin(k)0.
2–0.
1–0.
14,Ck=–0.
1–0.
3sin(2k)T,Γ2=1001,Dk=–0.
55sin(k)1.
5,Kk=–0.
27sin(2k)0.
15T,Γ3=1.
1001.
1,Gaoetal.
AdvancesinDierenceEquations(2019)2019:380Page19of23Table1ThevaluesofestimatorgainKkkKk1K1=[–0.
17010.
1102]T2K2=[–0.
14810.
2838]T3K3=[–0.
24380.
1024]T.
.
.
.
.
.
Γ4=1.
3001.
3,Hk=0.
10.
15T,Nk=0.
20.
1,Fk=sin(0.
6k),Mk=–0.
01–0.
12sin(k),λ=0.
34,α=0.
1,ρ=0.
5,ε1=0.
5,ε2=0.
3,ε3=0.
2,ε4=0.
1.
Moreover,theactivationfunctionscanbetakenasf(xk)=g(xk)=tanh(x1,k)tanh(0.
8x2,k)withxk=[x1,kx2,k]Tbeingtheneuronstatevectorofneuralnetwork.
Itiseasytoob-tainΛ0=diag{0.
1,0.
1},Λ1=diag{0.
2,0.
2},Λ2=diag{0.
9,0.
9},Σ0=diag{0.
2,0.
2},Σ1=diag{0.
3,0.
3}andΣ2=diag{0.
5,0.
5}.
Letthedisturbanceattenuationlevelbeγ=0.
9andN=94,weightedmatricesasW(1)=W(2)=1,upperboundmatricesas{Ψk}1≤k≤N=diag{0.
3,0.
3},andcovariancesasV1=V2=1.
Choosetheparameters'initialmatricessat-isfying(29).
Thenthematrixinequalities(30)–(32)inTheorem4canbesolved,andKkisdesignedasinTable1.
Supposetheinitialstatesasx0=[–1.
50.
3]Tandx0=[–1.
20.
3]T.
BasedonthestateestimationmethodinTheorem4,thesimulationresultscanbeshowninFigs.
1–4.
Fig-ures1–2plottheoutputzkanditsestimationzk,respectively.
Figure3depictstheoutputestimationerrorzk.
TheerrorvarianceupperboundandactualerrorvarianceareplottedinFig.
4,whichindeedillustratesthattheactualerrorvariancebelowtheerrorvarianceupperbound.
Fromthesimulations,wecanconcludethatthenewlypresentedvariance-constrainedresilientH∞estimationalgorithmisecient.
6ConclusionsInthispaper,wehavediscussedthevariance-constrainedresilientH∞stateestimationproblemforaclassoftime-varyingneuralnetworkswithrandomlyvaryingnonlinearitiesandmissingmeasurements.
TworandomvariablesthatobeyBernoullidistributionhavebeenadoptedtodescribethephenomenaofrandomlyvaryingnonlinearitiesandmiss-ingmeasurements.
Anewvariance-constrainedH∞stateestimationmethodhasbeendesignedbasedontheavailableinformation.
Byapplyingtherecursivematrixinequal-itytechnique,somecriteriahavebeenestablishedtoguaranteetheprescribedH∞per-formanceandtheestimationerrorcovarianceconstraintsfortheaddressedestimationproblemofthetime-varyingneuralnetworks.
Inaddition,thegainmatrixofstateesti-matorhasbeenobtainedbytestingthefeasibilityoftheconcernedrecursivematrixin-equalities.
Finally,thevalidityoftheproposedestimationmethodhasbeenveriedbyasimulationexample.
OurfutureresearchtopicsincludethestateestimationproblemsforGaoetal.
AdvancesinDierenceEquations(2019)2019:380Page20of23Figure1Thecontrolledoutputz1,kanditsestimationFigure2Thecontrolledoutputz2,kanditsestimationtime-varyingRNNswiththenite-timecriterionasin[36]andtheinaccuracyoccurrenceprobabilityasmentionedin[49].
Gaoetal.
AdvancesinDierenceEquations(2019)2019:380Page21of23Figure3TheoutputestimationerrorsFigure4TheupperboundoferrorvarianceandactualerrorvarianceFundingThisworkwassupportedinpartbytheOutstandingYouthScienceFoundationofHeilongjiangProvinceofChinaundergrantJC2018001,theNationalNaturalScienceFoundationofChinaunderGrant61673141,theFokYingTungEducationFoundationofChinaunderGrant151004,theNaturalScienceFoundationofHeilongjiangProvinceofChinaundergrantA2018007,theFundamentalResearchFundsinHeilongjiangProvincialUniversitiesofChinaunderGrant135209250,theEducationalResearchProjectofQiqiharUniversityofChinaunderGrant2017028,andtheAlexandervonHumboldtFoundationofGermany.
Gaoetal.
AdvancesinDierenceEquations(2019)2019:380Page22of23AvailabilityofdataandmaterialsNotapplicable.
CompetinginterestsAllauthorsdeclaredthattheyhavenocompetinginterests.
ConsentforpublicationBothauthorsreadandapprovedthenalversionofthepaper.
Authors'contributionsTheauthorscontributedequallytothispaper.
Theauthorsreadandapprovedthenalversionofthesubmission.
Authordetails1SchoolofScience,HarbinUniversityofScienceandTechnology,Harbin,China.
2HeilongjiangProvincialKeyLaboratoryofOptimizationControlandIntelligentAnalysisforComplexSystems,HarbinUniversityofScienceandTechnology,Harbin,China.
3SchoolofEngineering,UniversityofSouthWales,Pontypridd,UK.
4QiqiharCollegeofScience,QiqiharUniversity,Qiqihar,China.
Publisher'sNoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaliations.
Received:18April2019Accepted:16August2019References1.
Zhang,X.
,Han,Q.
,Yu,X.
:Surveyonrecentadvancesinnetworkedcontrolsystems.
IEEETrans.
Ind.
Inform.
12(5),1740–1752(2016)2.
Zhang,H.
,Hu,J.
,Liu,H.
,Yu,X.
,Liu,F.
:Recursivestateestimationfortime-varyingcomplexnetworkssubjecttomissingmeasurementsandstochasticinnercouplingunderrandomaccessprotocol.
Neurocomputing346,48–57(2019)3.
Selvaraj,P.
,Sakthivel,R.
,Ahn,C.
K.
:Observer-basedsynchronizationofcomplexdynamicalnetworksunderactuatorsaturationandprobabilisticfaults.
IEEETrans.
Syst.
ManCybern.
Syst.
49(7),1516–1526(2019)4.
Zheng,M.
,Tang,W.
,Zhao,X.
:Hyperparameteroptimizationofneuralnetwork-drivenspatialmodelsacceleratedusingcyber-enabledhigh-performancecomputing.
Int.
J.
Geogr.
Inf.
Sci.
33(2),314–345(2019)5.
Maharajan,C.
,Raja,R.
,Cao,J.
,Ravi,G.
,Rajchakit,G.
:GlobalexponentialstabilityofMarkovianjumpingstochasticimpulsiveuncertainBAMneuralnetworkswithleakage,mixedtimedelays,andalpha-inverseHolderactivationfunctions.
Adv.
Dier.
Equ.
2018,ArticleID113(2018).
https://doi.
org/10.
1186/s13662-018-1553-76.
Manivannan,R.
,Samidurai,R.
,Cao,J.
,Alsaedi,A.
,Alsaadi,F.
E.
:Delay-dependentstabilitycriteriaforneutral-typeneuralnetworkswithintervaltime-varyingdelaysignalsundertheeectsofleakagedelay.
Adv.
Dier.
Equ.
2018,ArticleID53(2018).
https://doi.
org/10.
1186/s13662-018-1509-y7.
Selvaraj,P.
,Sakthivel,R.
,Kwon,O.
M.
:Finite-timesynchronizationofstochasticcoupledneuralnetworkssubjecttoMarkovianswitchingandinputsaturation.
NeuralNetw.
105,154–165(2018)8.
Sakthivel,R.
,Anbuvithya,R.
,Mathiyalagan,K.
,Prakash,P.
:CombinedH∞andpassivitystateestimationofmemristiveneuralnetworkswithrandomgainuctuations.
Neurocomputing168,1111–1120(2015)9.
Sakthivel,R.
,Vadivel,P.
,Mathiyalagan,K.
,Arunkumar,A.
,Sivachitra,M.
:Designofstateestimatorforbidirectionalassociativememoryneuralnetworkswithleakagedelays.
Inf.
Sci.
296,263–274(2015)10.
Li,R.
,Gao,X.
,Cao,J.
:Non-fragilestateestimationfordelayedfractional-ordermemristiveneuralnetworks.
Appl.
Math.
Comput.
340,221–233(2019)11.
Guo,R.
,Zhang,Z.
,Gao,M.
:Stateestimationforcomplex-valuedmemristiveneuralnetworkswithtime-varyingdelays.
Adv.
Dier.
Equ.
2018,ArticleID118(2018).
https://doi.
org/10.
1186/s13662-018-1575-112.
Liu,Y.
,Wang,Z.
,Liu,X.
:Stateestimationfordiscrete-timeneuralnetworkswithMarkov-mode-dependentlowerandupperboundsonthedistributeddelays.
NeuralProcess.
Lett.
36(1),1–19(2012)13.
Hu,J.
,Wang,Z.
,Alsaadi,F.
E.
,Hayat,T.
:Event-basedlteringfortime-varyingnonlinearsystemssubjecttomultiplemissingmeasurementswithuncertainmissingprobabilities.
Inf.
Fusion38,74–83(2017)14.
Bao,H.
,Cao,J.
,Kurths,J.
:Stateestimationoffractional-orderdelayedmemristiveneuralnetworks.
NonlinearDyn.
94(2),1215–1225(2018)15.
Hu,J.
,Wang,Z.
,Gao,H.
:Jointstateandfaultestimationforuncertaintime-varyingnonlinearsystemswithrandomlyoccurringfaultsandsensorsaturations.
Automatica97,150–160(2018)16.
Kang,W.
,Zhong,S.
,Cheng,J.
:H∞stateestimationfordiscrete-timeneuralnetworkswithtime-varyinganddistributeddelays.
Adv.
Dier.
Equ.
2015,ArticleID263(2015).
https://doi.
org/10.
1186/s13662-015-0603-717.
Bernat,J.
:Multiobserverstructureforrapidstateestimationinlineartimevaryingsystems.
Int.
J.
Control.
Autom.
Syst.
16(4),1746–1755(2018)18.
Dong,H.
,Bu,X.
,Hou,N.
,Liu,Y.
,Alsaadi,F.
E.
,Hayat,T.
:Event-triggereddistributedstateestimationforaclassoftime-varyingsystemsoversensornetworkswithredundantchannels.
Inf.
Fusion36,243–250(2017)19.
Hu,L.
,Wang,Z.
,Han,Q.
,Liu,X.
:Event-basedinputandstateestimationforlineardiscretetime-varyingsystems.
Int.
J.
Control91(1),101–113(2018)20.
Zhang,H.
,Hu,J.
,Zou,L.
,Yu,X.
,Wu,Z.
:Event-basedstateestimationfortime-varyingstochasticcouplingnetworkswithmissingmeasurementsunderuncertainoccurrenceprobabilities.
Int.
J.
Gen.
Syst.
47(5),422–437(2018)21.
Jia,C.
,Hu,J.
:Variance-constrainedlteringfornonlinearsystemswithrandomlyoccurringquantizedmeasurements:recursiveschemeandboundednessanalysis.
Adv.
Dier.
Equ.
2019,ArticleID53(2019).
https://doi.
org/10.
1186/s13662-019-2000-022.
Duan,H.
,Peng,T.
:Finite-timereliablelteringforT-Sfuzzystochasticjumpingneuralnetworksunderunreliablecommunicationlinks.
Adv.
Dier.
Equ.
2017,ArticleID54(2017).
https://doi.
org/10.
1186/s13662-017-1108-3Gaoetal.
AdvancesinDierenceEquations(2019)2019:380Page23of2323.
Nelson,P.
R.
C.
,MacGregor,J.
F.
,Taylor,P.
A.
:TheimpactofmissingmeasurementsonPCAandPLSpredictionandmonitoringapplications.
Chemom.
Intell.
Lab.
Syst.
80(1),1–12(2006)24.
Che,Y.
,Shu,H.
,Liu,Y.
:Exponentialmean-squareH∞lteringforarbitrarilyswitchedneuralnetworkswithmissingmeasurements.
Neurocomputing193,227–234(2016)25.
Tsai,L.
T.
,Yang,C.
-C.
:Improvingmeasurementinvarianceassessmentsinsurveyresearchwithmissingdatabynovelarticialneuralnetworks.
ExpertSyst.
Appl.
39(12),10456–10464(2012)26.
Song,Y.
,Hu,J.
,Chen,D.
,Liu,Y.
,Alsaadi,F.
E.
,Sun,G.
:Aresilienceapproachtostateestimationfordiscreteneuralnetworkssubjecttomultiplemissingmeasurementsandmixedtime-delays.
Neurocomputing272,74–83(2018)27.
Liu,M.
,Chen,H.
:H∞stateestimationfordiscrete-timedelayedsystemsoftheneuralnetworktypewithmultiplemissingmeasurements.
IEEETrans.
NeuralNetw.
Learn.
Syst.
26(12),2987–2998(2015)28.
Rakkiyappan,R.
,Sasirekha,R.
,Zhu,Y.
,Zhang,L.
:H∞stateestimatordesignfordiscrete-timeswitchedneuralnetworkswithmultiplemissingmeasurementsandsojournprobabilities.
J.
FranklinInst.
353(6),1358–1385(2016)29.
Liang,J.
,Wang,Z.
,Liu,X.
:Stateestimationforcoupleduncertainstochasticnetworkswithmissingmeasurementsandtime-varyingdelays:thediscrete-timecase.
IEEETrans.
NeuralNetw.
20(5),781–793(2009)30.
Liu,H.
,Wang,Z.
,Shen,B.
,Liu,X.
:Event-triggeredH∞stateestimationfordelayedstochasticmemristiveneuralnetworkswithmissingmeasurements:thediscretetimecase.
IEEETrans.
NeuralNetw.
Learn.
Syst.
29(8),3726–3737(2018)31.
Ding,D.
,Wang,Z.
,Shen,B.
,Dong,H.
:H∞stateestimationwithfadingmeasurements,randomlyvaryingnonlinearitiesandprobabilisticdistributeddelays.
Int.
J.
RobustNonlinearControl25(13),2180–2195(2015)32.
Zhang,P.
,Hu,J.
,Liu,H.
,Zhang,C.
:Slidingmodecontrolfornetworkedsystemswithrandomlyvaryingnonlinearitiesandstochasticcommunicationdelaysunderuncertainoccurrenceprobabilities.
Neurocomputing320,1–11(2018)33.
Liang,J.
,Wang,Z.
,Liu,X.
:Distributedstateestimationfordiscrete-timesensornetworkswithrandomlyvaryingnonlinearitiesandmissingmeasurements.
IEEETrans.
NeuralNetw.
22(3),486–496(2011)34.
Dong,H.
,Wang,Z.
,Gao,H.
:FaultdetectionforMarkovianjumpsystemswithsensorsaturationsandrandomlyvaryingnonlinearities.
IEEETrans.
CircuitsSyst.
I,Regul.
Pap.
59(10),2354–2362(2012)35.
Wang,L.
,Wei,G.
,Li,W.
:Probability-dependentH∞synchronizationcontrolfordynamicalnetworkswithrandomlyvaryingnonlinearities.
Neurocomputing133,369–376(2014)36.
Sakthivel,R.
,Sakthivel,R.
,Kaviarasan,B.
,Wang,C.
,Ma,Y.
K.
:Finite-timenonfragilesynchronizationofstochasticcomplexdynamicalnetworkswithsemi-Markovswitchingoutercoupling.
Complexity2018,ArticleID8546304(2018).
https://doi.
org/10.
1155/2018/854630437.
Sakthivel,R.
,Nithya,V.
,Ma,Y.
K.
,Wang,C.
:Finite-timenonfragiledissipativelterdesignforwirelessnetworkedsystemswithsensorfailures.
Complexity2018,ArticleID7482015(2018).
https://doi.
org/10.
1155/2018/748201538.
Wang,D.
,Shi,P.
,Wang,W.
,Karimi,H.
R.
:Non-fragileH∞controlforswitchedstochasticdelaysystemswithapplicationtowaterqualityprocess.
Int.
J.
RobustNonlinearControl24(11),1677–1693(2014)39.
Pourgholi,M.
,Majd,V.
J.
:Anewnon-fragileH∞proportional-integralltered-erroradaptiveobserverforaclassofnon-linearsystemsanditsapplicationtosynchronousgenerators.
Proc.
Inst.
Mech.
Eng.
225(1),99–112(2011)40.
Wu,Z.
,Xu,Z.
,Shi,P.
,Chen,M.
Z.
,Su,H.
:Nonfragilestateestimationofquantizedcomplexnetworkswithswitchingtopologies.
IEEETrans.
NeuralNetw.
Learn.
Syst.
29(10),5111–5121(2018)41.
Shen,H.
,Wang,T.
,Chen,M.
,Lu,J.
:NonfragilemixedstateestimationforrepeatedscalarnonlinearsystemswithMarkovjumpingparametersandredundantchannels.
NonlinearDyn.
91(1),641–654(2018)42.
Xie,W.
,Zhu,H.
,Cheng,J.
,Zhong,S.
,Shi,K.
:Finite-timeasynchronousH∞resilientlteringforswitcheddelayedneuralnetworkswithmemoryunidealmeasurements.
Inf.
Sci.
487,156–175(2019)43.
Sheng,L.
,Niu,Y.
,Gao,M.
:Distributedresilientlteringfortime-varyingsystemsoversensornetworkssubjecttoround-robin/stochasticprotocol.
ISATrans.
87,55–67(2019)44.
Dong,H.
,Wang,Z.
,Ho,D.
W.
,Gao,H.
:Variance-constrainedH∞lteringforaclassofnonlineartime-varyingsystemswithmultiplemissingmeasurements:thenite-horizoncase.
IEEETrans.
SignalProcess.
58(5),2534–2543(2010)45.
Ma,L.
,Wang,Z.
,Han,Q.
L.
,Lam,H.
K.
:Variance-constraineddistributedlteringfortime-varyingsystemswithmultiplicativenoisesanddeceptionattacksoversensornetworks.
IEEESens.
J.
17(7),2279–2288(2017)46.
Dong,H.
,Hou,N.
,Wang,Z.
,Ren,W.
:Variance-constrainedstateestimationforcomplexnetworkswithrandomlyvaryingtopologies.
IEEETrans.
NeuralNetw.
Learn.
Syst.
29(7),2757–2768(2018)47.
Li,I.
H.
,Wang,W.
Y.
,Su,S.
F.
,Lee,Y.
S.
:Amergedfuzzyneuralnetworkanditsapplicationsinbatterystate-of-chargeestimation.
IEEETrans.
EnergyConvers.
22(3),697–708(2007)48.
Hu,J.
,Zhang,H.
,Yu,X.
,Liu,H.
,Chen,D.
:Designofsliding-mode-basedcontrolfornonlinearsystemswithmixed-delaysandpacketlossesunderuncertainmissingprobability.
IEEETrans.
Syst.
ManCybern.
Syst.
(2019).
https://doi.
org/10.
1109/TSMC.
2019.
291951349.
Hu,J.
,Zhang,P.
,Kao,Y.
,Liu,H.
,Chen,D.
:SlidingmodecontrolforMarkovianjumprepeatedscalarnonlinearsystemswithpacketdropouts:theuncertainoccurrenceprobabilitiescase.
Appl.
Math.
Comput.
(2019)https://doi.
org/10.
1016/j.
amc.
2019.
124574

Hostodo:$34.99/年KVM-2.5GB/25G NVMe/8TB/3个数据中心

Hostodo在九月份又发布了两款特别套餐,开设在美国拉斯维加斯、迈阿密和斯波坎机房,基于KVM架构,采用NVMe SSD高性能磁盘,最低1.5GB内存8TB月流量套餐年付34.99美元起。Hostodo是一家成立于2014年的国外VPS主机商,主打低价VPS套餐且年付为主,基于OpenVZ和KVM架构,美国三个地区机房,支持支付宝或者PayPal、加密货币等付款。下面列出这两款主机配置信息。CP...

提速啦 韩国服务器 E3 16G 3IP 450元/月 韩国站群服务器 E3 16G 253IP 1100元/月

提速啦(www.tisula.com)是赣州王成璟网络科技有限公司旗下云服务器品牌,目前拥有在籍员工40人左右,社保在籍员工30人+,是正规的国内拥有IDC ICP ISP CDN 云牌照资质商家,2018-2021年连续4年获得CTG机房顶级金牌代理商荣誉 2021年赣州市于都县创业大赛三等奖,2020年于都电子商务示范企业,2021年于都县电子商务融合推广大使。资源优势介绍:Ceranetwo...

特网云-新上线香港五区补货资源充足限时抢 虚拟主机6折,低至38元!

官方网站:点击访问特网云官网活动方案:===========================香港云限时购==============================支持Linux和Windows操作系统,配置都是可以自选的,非常的灵活,宽带充足新老客户活动期间新购活动款产品都可以享受续费折扣(只限在活动期间购买活动款产品才可享受续费折扣 优惠码:AADE01),购买折扣与续费折扣不叠加,都是在原价...

mkxk.com为你推荐
Baby被问婚变绯闻黄晓明baby一起出来带娃,想要打破离婚传闻?百度关键词价格查询在百度设置关键字是怎么收费的www.kkk.comwww.kkk103.com网站产品质量有保证吗陈嘉垣陈浩民狼吻陈嘉恒是什么时候的事巫正刚阿迪三叶草彩虹板鞋的鞋带怎么穿?详细点,最后有图解。高分求www.haole012.com阜阳有什么好的正规的招聘网站?mole.61.com摩尔庄园的米米号和密码我都忘了 只记得注册的邮箱 怎么办-_-百度指数词百度指数是指,词不管通过什么样的搜索引擎进行搜索,都会被算成百度指数吗?partnersonline国外外贸平台有哪些?hao.rising.cn电脑每次开机的时候,都会弹出“http://hao.rising.cn/?b=34” 但是这个时
m3型虚拟主机 河北服务器租用 息壤主机 vultr美国与日本 韩国空间 koss mysql主机 绍兴高防 100m免费空间 帽子云 seednet 最好的免费空间 php空间购买 美国网站服务器 空间技术网 idc查询 银盘服务 cloudlink 跟踪路由命令 1元域名 更多