portabilitylinuxcp

linuxcp  时间:2021-04-10  阅读:()
ArstlookatscalableI/OinLinuxcommandsKenMatney1,ShaneCanon1,andSarpOral1CenterforComputationalSciencesOakRidgeNationalLaboratoryOakRidge,TN,37831Abstract.
Datacreatedfromandusedbyterascaleandpetascaleapplicationscontinuestoincrease,butourabilitytohandleandmanagetheselesisstilllimitedbythecapabilitiesofthestandardserializedLinuxcommandset.
ThispaperintroducestheCenterforComputationalSciences(NCCS)atOakRidgeNationalLaboratory(ORNL)eortstowardsprovidingparallelizedandmoreecientversionsofthecommonlyusedLinuxcommands.
Thedesignandimplementationdetailsaswellasperformanceanalysisofanin-housedevelopeddistributedparallelizedversionofthecptool,spdcpispresented.
Testsshowthatourspdcputilitycanachieve73timesmoreperformancethanitsserializedcounterpart.
Inaddition,weintroducecurrentworktoextendthisapproachtoothertools.
1IntroductionUsersofHPCsystemswithparallellesystemsstillrelyonlegacyserialtoolstoperformmanyday-to-dayoperations.
ParallellesystemssuchasLustreandGPFSaretodaycapableofdeliveringhundredsofGigabytespersecond(GB/s)inaggregatebandwidth,butstandardserial-basedLinuxutilitiescannotharnessthiscapability.
Forexample,makingabackupcopyofcheckpointles,compressingoutput,orcreatingatarleofresultstypicallyiscarriedoutwithstandardLinuxtools.
Consequently,usersarelimitedtotheperformancethatcanbesustainedbyasinglenodeforthesetasks.
Thus,theuserisnotabletotakeadvantageoftheextensivecapabilitiesoftheparallellesystem.
TheCenterforComputationalSciencesatOakRidgeNationalLaboratoryhasbegunworkingontoolstoaddressthisissues.
Inthispaperwewilldescribetheapproachusedindevelopingthesetoolsandpresentsomeearlyperformanceresults.
Wewillalsodiscussworkinprogressandfutureplans.
2MotivationTheNationalCenterforComputationalSciences(NCCS)atOakRidgeNationalLaboratoryoperatesanumberofthemostpowerfulcomputersystemsusedforopenresearch[1][2].
Theagshipsystem,Jaguar,isaCrayXT4withover20,000coresand40TBofmemory.
Itisconguredwithaparallellesystemwithnearly1PBofdiskcapacityandover40GB/soflesystembandwidth.
ThesystemusestheLustrelesystem[3].
TheLustrelesystemaggregatesdistributedstorageunitsintoonelogicallesystem.
Filesarestripedtransparentlybythelesystemacrossmultiplestoragetargetstoaggregatebothcapacityandbandwidth.
Asaresult,userscanachievehighthroughputtostorageforcriticalI/Ooperationssuchaswritingorreadingacheckpointle.
ApplicationssuchastheGryokineticTokamakCode(GTC)havedemonstratedover10GB/sofaggregatebandwidth.
However,manydaytodayoperationsfailtoachieveevenasmallfractionofthiscapabilitybecausetheunderlyingutilitiessuchascp,bzip2,andtarmustbeconnedtoasinglenode.
Afullystripedle(asinglelestripedacrossallstoragetargets)canbewrittenatover20GB/sonaJaguarlesystem.
However,usingcptocopythislebetweentwolocalLustrelesystemsmightonlysustain200MB/s.
Asaresult,whileitmighthavetakenaround50secondstocreatea1TBcheckpointle,itwouldtakemorethan80minutestomakeacopyofthele.
Theuserwouldlikelyencountersimilarproblemswhencompressinganduncompressingles,creatingatarle,orotheroperationsthatrelyonserial-basedtools.
Fromdiscussionswithourusers,ithasbecomeevidentthatthesebottlenecksinday-to-dayoperationsarethesourceofsomeveryrealbarrierstoproductivityandthattherewasaclearandgrowingneedforparallelversionsofthesecommontools.
Furthermore,ifageneralizedframeworkcouldbecreatedforparallelizingmanyofthesecommontasks,itcouldbeextendedtootherusecases.
Fortunately,manyofthesetoolslendthemselvestoparallelizationwithveryclearwaystodecomposethetheinputdomain.
Wechosetofocusonthoseutilitiesthatwouldquicklyprovidethemostbenettoourusercommunity.
23ApproachTherearesomelimitingfactorsinparallelizingLinuxcommands.
First,thesourcedatamustberandomlyaccessible.
Datafromacheckpointleinalesystemisanexample,whiledatafromasocketorpipeisnot.
Second,thedatasetmustresideonmultipleindependentphysicaldevices.
SinceperformanceimprovementisbasedonparallelI/O,accessingmultipleindependentphysicaldevicesconcurrentlyincreasestheachievableaggregatebandwidth.
Therearetwotypesofparallelizationthatcanbeexploited.
First,thereistheparallelismassociatedwithprocessingmultiplelessimultaneously.
Second,thereistheparallelismassociatedwithusingmultipleprocessorstomapcooperativelythedataofasinglele.
Obviously,thegainfromtheuseofthelatterisdependentonhowwellthelehasbeendistributedacrossmultipleserversandiftheworkcanbeeasilydecomposed.
Anothercriticalfactortoperformanceisthesizeofthedatabuersthatareemployed.
Likemostlesystems,parallellesystemspreferlargebuers.
Forexample,Lustrelesystemachievesbestperformancewith1MBbuers.
Parallellesystemsaretypicallymoresensitivetobuersizessincetheselesystemsrelyonnetworkstotransportdatafromthestorageserverstotheclients.
Furthermore,byterangelockingistypicallyusedtoinsureconsistency.
Largerbuersrequirelessoverheadinmanagingtheselocks,resultinginbetterperformance.
Sincethedetailsofhowtodecomposetheworkdependsonthespeciccommandtargeted,eachcommandhastobeexaminedindividually.
However,thebasisofalgorithmsforperformingI/Oinparallelremainsthesame.
Inaddition,amethodforcommunicatingbetweenthevariousparticipatingprocessorsmustbeestablished.
Whilesystemspeciclow-levelprotocolssuchasPortalsonaCrayXTorVerbsonanInniBandclustermightprovidethebestperformance,theylackportability.
Therefore,MPIisusedtoensureportabilitywhilesacricingsomedegreeofperformance.
Ourparallelizedutilitiescaneasilybeportedandcompiledformostparallelsystems.
WhileaLustrelesystemwasusedinthedevelopmentandtestingoftheinitialimplementation,thesetechniquescanbeappliedtootherparallellesystems.
Incertaincases,Lustre-speciccallstoquerythelayoutofthedataareusedtoimproveeciency.
However,goodperformanceandeciencycanstillbeachievedwithouttheseLustrespeciccalls.
LustreisaPOSIXcompliant,object-basedlesystemcomposedofthreecomponents:MetaDataServerAsingleMetaDataServer(MDS)perlesystemthatstoresandmanagesLustrelemetadata,suchaslenames,directories,permissions,stripingpattern,andlelayout.
ObjectStorageTargetOneormoreObjectStorageTargets(OSTs)areblockdevicesthatactuallystoretheledata.
OSTsaremanagedbytheObjectStorageServers(OSSs).
AtanygivencongurationtherecanbeoneormoreOSTscontrolledbyagivenOSS.
ClientClient(s)accessandusethedata.
LustreprovidesallclientswithstandardPOSIXsemanticsandconcurrentreadandwriteaccesstothelesinthelesystem.
Currently,Lustreusesanenhanchedversionofext3lesystemonMDSandOSTstostoreLustreledata.
LustreachieveshighreadandwriteperformancebydistributingtheledataovermultipleOSTs.
Thisisknownasstriping.
ThenumberofOSTsthataleisstripedacrossisknownasstripecount.
Withstriping,themaximumlesizeisnotlimitedbythesizeofasingleblockdevice,andtheaggregateI/ObandwidthscaleswiththenumberofOSSs.
AmoredetaileddescriptionofLustrelesystemisbeyondthescopeofthisdocument.
Interestedreadersareencouragedtoread[3].
TheLinuxcputilitywasselectedasthersttoolforparallelization,asitisacommonlyusedfunction,andthedecompositionissimplesincethemappingofinputdatatooutputdataisdirect.
Consequently,therearealmostnodependenciesbetweentheindividualthreadscarryingoutthecopy.
Theparallelversionofcpistermedspdcpforstreamingparalleldistributedcp.
Currently,spdcponlyworksonLustrelesystem,butourfutureplansinvolveextendingittootherlesystems,suchasGPFS.
Weareintheprocessofpubliclyreleasingthespdcpsourcecodeunderanopensourcelicense.
34PrototypeforaParallelDistributedCopyInpreparingtheprototype,therearetwopossiblewaysinwhichtoproceed.
TherstistotakethesourceforGNUcpandmodifyit.
Thesecondistowritethefunctionfromscratch.
Itisunlikelythatapatchtoreworkcpcouldmakeitintothemainstreamgiventheamountofchangesthatareneededtoparallelizeit.
Thereforewechosetoimplementanewcopycommandstartingfromscratch.
However,wetriedtopreservemanyofthecommand-lineoptionsandgeneralbehaviourofcp.
Theoveralldesignconsistsofseveralcomponents.
AdiagramofthecomponentsisshowninFig.
1.
Thebasecomponentisthe"launchprocess"whichinvokestheMPI-basedcomponents.
InadditiontolaunchingtheMPIjob,italsoperformsanumberofotheroperations,asdescribedbelow.
The"rank0process"intheMPIjobisdesignatedasamaster.
Itisresponsibleformanagingthework.
Anumberofslaveprocessesareresponsibleforcopyingtheledatafromsourcetotarget.
Howthisworkisdistributedacrosstheslavenodesisdescribedbelow.
Thereareanumberofdesignconsiderationstobemade.
First,theprototypeneedstobeawareoftheparallelcharacteristicsofsourcele(s).
Itneedstobeabletoacquiretheseattributesforsourcele(s)andsettheseontargetle(s).
Next,itneedstobeawareoftheavailableresources.
Thatistosay,iftheLinuxcommandisnotrunwithinthecontextofabatchjob,itneedstospawnabatchjobandrequestappropriateresources.
Anotherdesignchoicewastodecidehowmeta-dataoperationswouldbedecomposed.
Currently,LustreemploysasingleMetadataServer(MDS)foralesystem.
Consequently,havingmultipleclientsinteractwiththeMDSmaynotimproveperformanceandmayevenreduceit.
Therefore,theprototypeperformsmanyofthemeta-dataspecictasksinthelaunchprocess.
Forexample,theLinuxcommandthatlaunchestheMPIjob,performsthesearchforsourcele(s),acquiresbothLinuxmeta-dataandLustremeta-dataforthese,andsendsallofthisinformationtoMPImasterviaapipe.
Furthermore,thisprocesscreatesthetargetdirectoryhierarchybeforesendingthelistoflestotheMPIbasedcomponents.
Thisavoidsduplicationofeortandraceconditions,e.
g.
,multipleprocessesrequestingcreationofthesametargetdirectory.
Finally,thelaunchprocesshandlescorrectlysettingtimestampsontargetdirectorieswhenneeded.
Theadvantagetothisstrategymaynotbeobvious.
Sincethelaunchprocesshasalreadyhastraversedthesourcehierarchy,itonlyneedstoretainalistofthedirectoriesandtheirmeta-data.
ThelaunchprocessmustallowtheMPIjobtocompletesothatitcanensureanyupdatestotheaccesstimearenotoverwrittenbyanyoftheslaveprocesses.
Theprototypeemploysavariablestrategyfordecomposingworktodeterminethenumberofclientstoemployincopyingeachle.
Itmakesthisdeterminationbasedonaperformancepredictionmodelofthedataset.
ForsmalllesorleswithonlyasingleLustrestripe,theentireoperationiscarriedoutbyasingleslavenode.
Forlesthataredistributedovermultiplestripes,theworkisdistributedacrossasubsetofprocesses.
Themasterprocesswaitsuntiltheappropriatenumberofslaveprocessesareavailableandthenschedulesthecopyoperationacrossthesubset.
A"teamleader"isselectedwithinthesubset.
TheteamleaderensuresthatthetargetlehasbeencreatedwiththeappropriateLustremeta-dataparameters,suchasthestripecountandstripewidth.
Ifthetypicallemeta-data(modicationdate,etc.
)istobeanexactcopyoftheoriginal,thenalloftheteammembersreporttotheteamleaderthattheyhavecompletedalloftheirI/Orequests.
Otherwise,theteammembersreportdirectlybacktothemasternodefortheirnextassignment.
Likewise,aftertheteammembersreportbacktotheirteamleaderforcompletionnotication,theyawaitfurtherinstructionsfromthemasternode.
Theteamleaderreportstothemasternodetoindicatethatthecopyhascompletedandtheteammembersarearereadyforthenextassignment.
ThetechniquesdescribedaboveallowtheloadonthetargetOSTstobemanaged.
Byinstructingtheprototypecommandtouseonlyaspeciednumberofprocessorsfortheparallelpart,inconjunctionwithspecifyingthebuerwidth,wecanensurethattheidealnumberofclientsareparticipatinginthecopyoperationforagivenle.
ContentioncanstillarisefromothercopythreadshavingstripesthatoverlaponthesameOST.
However,preventingthiswouldincreasethecomplexityandlikelyprovideonlymarginalimprovementsinperformance.
Theprototypeimplementationofspdcpstrivestomimicthestandardcpcommandthatusersarefamiliarwith.
Theintentistocreateadropinreplacementforcpthatuserscaneasilyemployintheirexistingscripts.
4Fig.
1.
Diagramofthecomponentsusedintheparalleldistributedcopy.
Allcomputenodesaccessthelesystem.
ThenumberofteammembersusedforasourceinputledependsonthesourceleLustrestripepattern.
However,someadditionalcommand-lineoptionshavebeenaddedtocontrolaspectsoftheparallelexecutionoftheutility.
Forexample,thereareoptionstocontrolthenumberoftasksandbuersizes.
Furthermore,sinceourenvironmentrequiressubmittingabatchjobtorunaparalleljob,theutilitycantransparentlysubmititselftothebatchqueue.
Consequentlythereareoptionsrelatedtothebatchsubmissionaswell.
AsampleexecutionisshowninFig.
2.
5PerformanceAseriesofperformancemeasurementswerecarriedoutonspdcptool.
Threereferencedatasetswerecreatedinordertomeasuretheperformanceofthespdcptool.
Therstdataset(workload1)consistedof2400les,eachofsize100MB.
Thisisrepresentativeoflestypicallycreatedbyamodelingapplicationwhichlaterareanalyzedorvisualized.
Theseconddataset(workload2)consistedof10les,eachofsize24000MB.
Thisisrepresentativeofacheckpointwhichisdonetoasharedle.
Thethirddataset(workload3)consistedof1200lesofsize100MBand5lesofsize24,000MB.
Thiswasdonetodemonstratetheabilitytoecientlycopyanon-uniformdataset.
TheLinuxcpcommandwasusedtoestablishbaselineperformance.
Then,weevaluatedtheperformanceatvariousscalesinordertounderstandthescalingbehaviorfortheprototype.
Thesemeasurementswereperformedona3500socketCrayXT3systemagainstitslocalLustrelesystem.
TheLustrelesystemconsistedof80OSTsservedby20ObjectStorageServers(OSSs).
Thebackendstoragewasprovidedby10coupletsofDDN8500[10].
ThislesystemhasbeenmeasuredusingtheIOR[11]benchmarktosustainover10GB/sonale-per-processrun.
5spdcp-s16-r/source/directory//target/directory/spdcp-hUsage:spdcp[options]SRCDESTorspdcp[options]SRC.
.
.
DIRECTORYCopyfileSRCtofileDESTorlistoffilesSRC.
.
.
todirectoryDIRECTORY,replicatingLustrestripeinformationwherepossible.
CopyisperformedinparallelbydistributedclientsusingMPImessagepassingforsynchronizationandcontrol.
Whencomputenoderesourcesareaccessibleonlyinbatchmode,commandwillstagejobandretaincontroluntiljobfinishes.
Thefollowingoptionsoffercontrolovercommand:-hPrintthismessage(disablescopy)-VPrintcommandandagentversions(disablescopy)-dUsedummyform(disablescopy,printstargets)-vIncreaseverbositylevel(maximum2)-pPreservemode,ownership,andtimestamps-r,-RCopyrecursively-cReduceOSTcountatdestinationtosourceusage-nDonotoffsetinitialOSTatdestination-b{F}IncreaseI/OrequestsizebyafactorofF-s{M}EmployMparallelclients-A{P}Ifspawningbatchjob,chargeruntoproject,P-w{T}Ifspawningbatchjob,limitwalltimetoTseconds-q{Q}Ifspawningbatchjob,directtobatchqueue,QFig.
2.
Sampleexecutionofspdcp(Top).
Thetotalnumberofclientsrequestedisidentiedbythe-sswitch.
Notethat,thisnumberalsoincludesthe"master(orrank0)node.
"Thespdcphelpmenu(Bottom).
AscanbeseeninFig.
3,spdcpachievesgoodparallelspeedup.
ThedataexhibitacertainamountofvariationbecausetheywereobtainedduringthecourseofnormalproductionoperationoftheCrayXT3.
ItshouldbenotedthatthestockLinuxcputilityachieved324MB/s,126MB/s,and177MB/sforworkload1,workload2,andworkload3,respectively.
Intermsofpeakperformance,ascanbeseeninFig.
3,theworkload2achievesthebestperformancewithspdcp,ataround9300MB/s.
Thisisa73xperformanceincreasecomparedtotheLinuxcputility.
Thepeakperformanceis7300MB/sforworkload1.
Thisis22xspeedupcomparedtotheLinuxcputility.
Forworkload3thepeakisatapproximately9100MB/s;a51xspeedupovertheLinuxcputility.
Also,ascanbeseeninFigure3,thepeakperformanceisobtainedat160to256clients.
However,fromapracticalpointofview,thescalingofperformancelevelsoataround100clients.
ThismakessensegiventhatthenumberofclientsandOSTsareroughlyequivalent.
Consequently,theOSTshavenearlyreachedtheirpeakbandwidth.
Thisisfurtherdemonstratedbythefactthattheaggregatebandwidthis73%to93%ofthepeakbandwidthasmeasuredbyIOR.
6On-goingworkTheparallelimplementationofthecopyutilityisjusttherststepinabroaderinitiativetocreateasuiteofparallelizedtools.
Towardsthisend,wehavestartedtocreateaframeworktogeneralizetheapproachesused61001000100001101001000AggregateBandwidth(MB/s)NumberofClientsWorkload1Workload2Workload3Fig.
3.
spdcpperformanceforclientsupto512.
Theworkload1iscomposedoflargeles,workload2iscomposedofsmallles,andworkload3isamixoflargeandsmallles.
ThestockLinuxcputilityachieved324MB/s,126MB/s,and177MB/sforworkload1,workload2,andworkload3,respectively(notshownonthegure).
inspdcpsothattheycaneasilybeappliedtoothercommonutilities.
Thespdcputilitydoesnotcurrentlyusetheframework,butmaybere-implementedusingtheframeworkinthenearfuture.
Thisframework,whichiscalledspdframe,hasalreadybeenusedforcompressionanddecompressionofbzip2les[12].
Thispresentsslightlymoredicultythanthecopytool,asthedecompositionfordecompressionismoredicult.
Preliminarytestsshowthatourbzip2implementationispromisingandunderrightcongurations(e.
g.
64processorswitha20MBle)itcanachieve15timesmoreperformanceforcompressioncomparedtoitsserializedversionon.
Futureworkwillfocusonapplyingtheframeworktotarandothercommonlebasedutilities.
Whilewearefocusingonapplyingtheframeworktocommontools,theframeworklendsitselftootherusesaswell.
Theframeworkprovidesaneasywayforuserstoapplyafunctionovermultiplelesinparallel.
So,forexample,ausercouldeasilyapplytheframeworktoperformaparallelgreponasetofles.
7RelatedworkIncreasingtheperformanceofcommonLinuxutilitiesgatheredsomeattentionfromtheresearchcommunityovertheyears.
WilliamGroppandEwingLusk[4]haverstrealizedthelimitationsoflegacyserialUNIXutilitiesinparallelenvironments.
TheyintroducedseveralparallelversionsofcommonlyusedUNIXutilitieswithparallelrshastheunderlyingparallelsynchronizationandcommunicationmechanism.
Asafollowuptotheirwork,EmilOng,EwingLusk,andWilliamGroppdevelopedtheMPI-basedversionoftheirparallelizedUNIXutilities[5].
However,thereisacleardistinctionbetweenourgoalandtheirs.
ThetargetforGroppandLuskwasincreaseeciencybyexecutingthesamecommandwiththesameargumentlistandparametersinparallelovermultipleindependentnodeswithindependentoperatingsystemsandlesystems.
Inmanyaspects,theyhaveimplementedSIMD-likeversionsofthecommonUNIXtools.
However,ourapproachdepartsfromtheirsasourgoalwastoincreasetheeciencyofasingleexecutionagivenLinuxutilitybyparallelizinganddistributingitsworkloadovermultipleworker/computenodes,allsharingacommonlesystem,butindependentOSes.
JeGilchristandAysegulCuhadar[7]introducedtwoparallelizedversionsofBWT-basedbzip2nblock-sortinglecompressor,namelypbzip2andmpibzip2.
Thepbzip2isathread-parallelversionofbzip2foruse7onsharedmemorymachines.
Itproducescompatiblebutlargerarchivescomparedtotheoriginalbzip2.
Thempibzip2isanMPI-basedparallelimplementationofthebzip2block-sortinglecompressorforclusters.
Thebzip2smpprogramisanotherparallelizedversionofthebzip2compressor[8].
ItisspecicallytargetedforSMPsystems.
Itisverycache-dependantanddoesnotperformwellwithhyperthreadedsystems.
Itissimilartopbzip2innature,butunlikepbzip2,bzip2smpsupportscompressionfromstdin.
ConclusionIncreasingparallelisminlesystemspavethewayforprocessinglargerdatasetsinshortertimes.
However,whilecapabilitiesforgeneratinglargerdatasetsareconstantlyincreasing,ourtoolsforhandlingandmanagingsuchles,stillremainserialandlimitedinperformance.
TheCenterforComputationalSciences(NCCS)atOakRidgeNationalLaboratory(ORNL)hasstartedaninitiativeforprovidinghigh-performance,parallelversionsofcommonlyusedLinuxcommands.
Thecpcommandwasourstartingpoint.
WehavedevelopedandimplementedaMPI-basedbatch-processingcapableparallelversionofthestandardcpcommand.
Testsshowthat,ourversioncanachieve73timesmoreperformanceoveritsstandardserializedcounterpart.
Also,thispaperintroducesoureortstowardsdevelopingaparallelizeddistributedversionofthebzip2command.
Theimplementationfollowsaframework,whichifsuccessful,willbeusedfordevelopingandparallelizingotherLinuxcommands.
AcknowledgmentsTheauthorswouldliketothankthestaandcolleagueswhohavecontributedmaterialtothispaper.
ResearchsponsoredbytheMathematical,Information,andComputationalSciencesDivision,OceofAd-vancedScienticComputingResearch,U.
S.
DepartmentofEnergy,underContractNo.
DE-AC05-00OR22725withUT-Battelle,LLC.
AbouttheAuthorsKenMatneyisaresearcherintheTechnologyIntegrationGroupwhichispartoftheNationalCenterforCom-putationalSciencesatOakRidgeNationalLab.
HecanbereachedbyE-Mail:matneykdsr@ornl.
gov.
ShaneCanonistheGroupLeaderforTechnologyIntegrationTeam.
HecanbereachedbyE-Mail:canonrs@ornl.
gov.
SarpOralisaresearcherintheTechnologyIntegrationGroupwhichispartoftheNationalCenterforCom-putationalSciencesatOakRidgeNationalLab.
HecanbereachedbyE-Mail:oralhs@ornl.
gov.
References1.
NationalCenterforComputationalSciences.
WebPagehttp://nccs.
gov.
2.
Top500Supercomputersites-November2007list.
WebPagehttp://www.
top500.
org/list/2007/11.
3.
ClusterFileSystems,Inc.
Lustremanual.
Webpage.
http://www.
lustre.
org/manual.
html.
4.
WilliamGroppandEwingL.
Lusk.
ScalableUnixtoolsonparallelprocessorsInProceedingsoftheScalableHigh-PerformanceComputingConference,pp.
56-62,1994.
5.
EmilOng,EwingL.
Lusk,andWilliamGropp.
ScalableUnixCommandsforParallelProcessors:AHigh-PerformanceImplementationInProceedingsofthe8thEuropeanPVM/MPIUsers'GroupMeetingonRecentAdvancesinParallelVirtualMachineandMessagePassing,pp.
410-418,2001.
6.
M.
BurrowsandD.
J.
Wheeler.
Ablock-sortinglosslessdatacompressionalgorithmTechnicalReport124,DigitalSystemsResearchCenter,1994.
7.
JeGilchristandAysegulCuhadar.
ParallelLosslessDataCompressionBasedontheBurrows-WheelerTransformIn21stInternationalConferenceonAdvancedNetworkingandApplications(AINA'07),pp.
877-884,2007.
8.
WebPagehttp://bzip2smp.
sourceforge.
net/9.
R.
S.
CanonandH.
SarpOral.
ACenter-wideFileSystemusingLustre.
InCUGProceedings,2006.
10.
DataDirectNetworks.
WebPagehttp://datadirectnetworks.
com/11.
HedgesetalParallellesystemtestingforthelunaticfringe:thecareandfeedingofrestlessI/OpowerusersInIEEEMassStorageSystemsandTechnologiesProceedings,200512.
JulianSeward.
Thebzip2andlibbzip2ocialhomepage.
WebPagehttp://sources.
redhat.
com/bzip2

华纳云E5处理器16G内存100Mbps688元/月

近日华纳云商家正式上线了美国服务器产品,这次美国机房上线的产品包括美国云服务器、美国独立服务器、美国高防御服务器以及美国高防云服务器等产品,新产品上线华纳云推出了史上优惠力度最高的特价优惠活动,美国云服务器低至3折,1核心1G内存5Mbps带宽低至24元/月,20G ddos高防御服务器低至688元/月,年付周期再送2个月、两年送4个月、三年送6个月,终身续费同价,有需要的朋友可以关注一下。华纳云...

极光KVM(限时16元),洛杉矶三网CN2,cera机房,香港cn2

极光KVM创立于2018年,主要经营美国洛杉矶CN2机房、CeRaNetworks机房、中国香港CeraNetworks机房、香港CMI机房等产品。其中,洛杉矶提供CN2 GIA、CN2 GT以及常规BGP直连线路接入。从名字也可以看到,VPS产品全部是基于KVM架构的。极光KVM也有明确的更换IP政策,下单时选择“IP保险计划”多支付10块钱,可以在服务周期内免费更换一次IP,当然也可以不选择,...

LightNode(7.71美元),免认证高质量香港CN2 GIA

LightNode是一家位于香港的VPS服务商.提供基于KVM虚拟化技术的VPS.在提供全球常见节点的同时,还具备东南亚地区、中国香港等边缘节点.满足开发者建站,游戏应用,外贸电商等应用场景的需求。新用户注册充值就送,最高可获得20美元的奖励金!成为LightNode的注册用户后,还可以获得属于自己的邀请链接。通过你的邀请链接带来的注册用户,你将直接获得该用户的消费的10%返佣,永久有效!平台目前...

linuxcp为你推荐
比肩工场比肩接踵的意思rawtoolsRAW是什么衣服牌子同一服务器网站服务器建设:一个服务器有多个网站该如何设置?www.e12.com.cn上海高中除了四大名校,接下来哪所高中最好?顺便讲下它的各方面情况se95se.comwww.sea8.com这个网站是用什么做的 需要多少钱www.se222se.comhttp://www.qqvip222.com/lcoc.topoffsettop和scrolltop的区别www.kaspersky.com.cn现在网上又有病毒了?yinrentangweichentang万艾可正品的作用真的不错吗33tutu.com33gan.com改成什么了
域名主机空间 私服服务器租用 免费vps 赵容 堪萨斯服务器 息壤主机 idc评测网 国外网站代理服务器 腾讯云分析 idc是什么 免费防火墙 免费吧 nerds 免费申请个人网站 联通网站 服务器是干什么用的 海外空间 带宽租赁 vul 阿里云邮箱登陆地址 更多