portabilitylinuxcp

linuxcp  时间:2021-04-10  阅读:()
ArstlookatscalableI/OinLinuxcommandsKenMatney1,ShaneCanon1,andSarpOral1CenterforComputationalSciencesOakRidgeNationalLaboratoryOakRidge,TN,37831Abstract.
Datacreatedfromandusedbyterascaleandpetascaleapplicationscontinuestoincrease,butourabilitytohandleandmanagetheselesisstilllimitedbythecapabilitiesofthestandardserializedLinuxcommandset.
ThispaperintroducestheCenterforComputationalSciences(NCCS)atOakRidgeNationalLaboratory(ORNL)eortstowardsprovidingparallelizedandmoreecientversionsofthecommonlyusedLinuxcommands.
Thedesignandimplementationdetailsaswellasperformanceanalysisofanin-housedevelopeddistributedparallelizedversionofthecptool,spdcpispresented.
Testsshowthatourspdcputilitycanachieve73timesmoreperformancethanitsserializedcounterpart.
Inaddition,weintroducecurrentworktoextendthisapproachtoothertools.
1IntroductionUsersofHPCsystemswithparallellesystemsstillrelyonlegacyserialtoolstoperformmanyday-to-dayoperations.
ParallellesystemssuchasLustreandGPFSaretodaycapableofdeliveringhundredsofGigabytespersecond(GB/s)inaggregatebandwidth,butstandardserial-basedLinuxutilitiescannotharnessthiscapability.
Forexample,makingabackupcopyofcheckpointles,compressingoutput,orcreatingatarleofresultstypicallyiscarriedoutwithstandardLinuxtools.
Consequently,usersarelimitedtotheperformancethatcanbesustainedbyasinglenodeforthesetasks.
Thus,theuserisnotabletotakeadvantageoftheextensivecapabilitiesoftheparallellesystem.
TheCenterforComputationalSciencesatOakRidgeNationalLaboratoryhasbegunworkingontoolstoaddressthisissues.
Inthispaperwewilldescribetheapproachusedindevelopingthesetoolsandpresentsomeearlyperformanceresults.
Wewillalsodiscussworkinprogressandfutureplans.
2MotivationTheNationalCenterforComputationalSciences(NCCS)atOakRidgeNationalLaboratoryoperatesanumberofthemostpowerfulcomputersystemsusedforopenresearch[1][2].
Theagshipsystem,Jaguar,isaCrayXT4withover20,000coresand40TBofmemory.
Itisconguredwithaparallellesystemwithnearly1PBofdiskcapacityandover40GB/soflesystembandwidth.
ThesystemusestheLustrelesystem[3].
TheLustrelesystemaggregatesdistributedstorageunitsintoonelogicallesystem.
Filesarestripedtransparentlybythelesystemacrossmultiplestoragetargetstoaggregatebothcapacityandbandwidth.
Asaresult,userscanachievehighthroughputtostorageforcriticalI/Ooperationssuchaswritingorreadingacheckpointle.
ApplicationssuchastheGryokineticTokamakCode(GTC)havedemonstratedover10GB/sofaggregatebandwidth.
However,manydaytodayoperationsfailtoachieveevenasmallfractionofthiscapabilitybecausetheunderlyingutilitiessuchascp,bzip2,andtarmustbeconnedtoasinglenode.
Afullystripedle(asinglelestripedacrossallstoragetargets)canbewrittenatover20GB/sonaJaguarlesystem.
However,usingcptocopythislebetweentwolocalLustrelesystemsmightonlysustain200MB/s.
Asaresult,whileitmighthavetakenaround50secondstocreatea1TBcheckpointle,itwouldtakemorethan80minutestomakeacopyofthele.
Theuserwouldlikelyencountersimilarproblemswhencompressinganduncompressingles,creatingatarle,orotheroperationsthatrelyonserial-basedtools.
Fromdiscussionswithourusers,ithasbecomeevidentthatthesebottlenecksinday-to-dayoperationsarethesourceofsomeveryrealbarrierstoproductivityandthattherewasaclearandgrowingneedforparallelversionsofthesecommontools.
Furthermore,ifageneralizedframeworkcouldbecreatedforparallelizingmanyofthesecommontasks,itcouldbeextendedtootherusecases.
Fortunately,manyofthesetoolslendthemselvestoparallelizationwithveryclearwaystodecomposethetheinputdomain.
Wechosetofocusonthoseutilitiesthatwouldquicklyprovidethemostbenettoourusercommunity.
23ApproachTherearesomelimitingfactorsinparallelizingLinuxcommands.
First,thesourcedatamustberandomlyaccessible.
Datafromacheckpointleinalesystemisanexample,whiledatafromasocketorpipeisnot.
Second,thedatasetmustresideonmultipleindependentphysicaldevices.
SinceperformanceimprovementisbasedonparallelI/O,accessingmultipleindependentphysicaldevicesconcurrentlyincreasestheachievableaggregatebandwidth.
Therearetwotypesofparallelizationthatcanbeexploited.
First,thereistheparallelismassociatedwithprocessingmultiplelessimultaneously.
Second,thereistheparallelismassociatedwithusingmultipleprocessorstomapcooperativelythedataofasinglele.
Obviously,thegainfromtheuseofthelatterisdependentonhowwellthelehasbeendistributedacrossmultipleserversandiftheworkcanbeeasilydecomposed.
Anothercriticalfactortoperformanceisthesizeofthedatabuersthatareemployed.
Likemostlesystems,parallellesystemspreferlargebuers.
Forexample,Lustrelesystemachievesbestperformancewith1MBbuers.
Parallellesystemsaretypicallymoresensitivetobuersizessincetheselesystemsrelyonnetworkstotransportdatafromthestorageserverstotheclients.
Furthermore,byterangelockingistypicallyusedtoinsureconsistency.
Largerbuersrequirelessoverheadinmanagingtheselocks,resultinginbetterperformance.
Sincethedetailsofhowtodecomposetheworkdependsonthespeciccommandtargeted,eachcommandhastobeexaminedindividually.
However,thebasisofalgorithmsforperformingI/Oinparallelremainsthesame.
Inaddition,amethodforcommunicatingbetweenthevariousparticipatingprocessorsmustbeestablished.
Whilesystemspeciclow-levelprotocolssuchasPortalsonaCrayXTorVerbsonanInniBandclustermightprovidethebestperformance,theylackportability.
Therefore,MPIisusedtoensureportabilitywhilesacricingsomedegreeofperformance.
Ourparallelizedutilitiescaneasilybeportedandcompiledformostparallelsystems.
WhileaLustrelesystemwasusedinthedevelopmentandtestingoftheinitialimplementation,thesetechniquescanbeappliedtootherparallellesystems.
Incertaincases,Lustre-speciccallstoquerythelayoutofthedataareusedtoimproveeciency.
However,goodperformanceandeciencycanstillbeachievedwithouttheseLustrespeciccalls.
LustreisaPOSIXcompliant,object-basedlesystemcomposedofthreecomponents:MetaDataServerAsingleMetaDataServer(MDS)perlesystemthatstoresandmanagesLustrelemetadata,suchaslenames,directories,permissions,stripingpattern,andlelayout.
ObjectStorageTargetOneormoreObjectStorageTargets(OSTs)areblockdevicesthatactuallystoretheledata.
OSTsaremanagedbytheObjectStorageServers(OSSs).
AtanygivencongurationtherecanbeoneormoreOSTscontrolledbyagivenOSS.
ClientClient(s)accessandusethedata.
LustreprovidesallclientswithstandardPOSIXsemanticsandconcurrentreadandwriteaccesstothelesinthelesystem.
Currently,Lustreusesanenhanchedversionofext3lesystemonMDSandOSTstostoreLustreledata.
LustreachieveshighreadandwriteperformancebydistributingtheledataovermultipleOSTs.
Thisisknownasstriping.
ThenumberofOSTsthataleisstripedacrossisknownasstripecount.
Withstriping,themaximumlesizeisnotlimitedbythesizeofasingleblockdevice,andtheaggregateI/ObandwidthscaleswiththenumberofOSSs.
AmoredetaileddescriptionofLustrelesystemisbeyondthescopeofthisdocument.
Interestedreadersareencouragedtoread[3].
TheLinuxcputilitywasselectedasthersttoolforparallelization,asitisacommonlyusedfunction,andthedecompositionissimplesincethemappingofinputdatatooutputdataisdirect.
Consequently,therearealmostnodependenciesbetweentheindividualthreadscarryingoutthecopy.
Theparallelversionofcpistermedspdcpforstreamingparalleldistributedcp.
Currently,spdcponlyworksonLustrelesystem,butourfutureplansinvolveextendingittootherlesystems,suchasGPFS.
Weareintheprocessofpubliclyreleasingthespdcpsourcecodeunderanopensourcelicense.
34PrototypeforaParallelDistributedCopyInpreparingtheprototype,therearetwopossiblewaysinwhichtoproceed.
TherstistotakethesourceforGNUcpandmodifyit.
Thesecondistowritethefunctionfromscratch.
Itisunlikelythatapatchtoreworkcpcouldmakeitintothemainstreamgiventheamountofchangesthatareneededtoparallelizeit.
Thereforewechosetoimplementanewcopycommandstartingfromscratch.
However,wetriedtopreservemanyofthecommand-lineoptionsandgeneralbehaviourofcp.
Theoveralldesignconsistsofseveralcomponents.
AdiagramofthecomponentsisshowninFig.
1.
Thebasecomponentisthe"launchprocess"whichinvokestheMPI-basedcomponents.
InadditiontolaunchingtheMPIjob,italsoperformsanumberofotheroperations,asdescribedbelow.
The"rank0process"intheMPIjobisdesignatedasamaster.
Itisresponsibleformanagingthework.
Anumberofslaveprocessesareresponsibleforcopyingtheledatafromsourcetotarget.
Howthisworkisdistributedacrosstheslavenodesisdescribedbelow.
Thereareanumberofdesignconsiderationstobemade.
First,theprototypeneedstobeawareoftheparallelcharacteristicsofsourcele(s).
Itneedstobeabletoacquiretheseattributesforsourcele(s)andsettheseontargetle(s).
Next,itneedstobeawareoftheavailableresources.
Thatistosay,iftheLinuxcommandisnotrunwithinthecontextofabatchjob,itneedstospawnabatchjobandrequestappropriateresources.
Anotherdesignchoicewastodecidehowmeta-dataoperationswouldbedecomposed.
Currently,LustreemploysasingleMetadataServer(MDS)foralesystem.
Consequently,havingmultipleclientsinteractwiththeMDSmaynotimproveperformanceandmayevenreduceit.
Therefore,theprototypeperformsmanyofthemeta-dataspecictasksinthelaunchprocess.
Forexample,theLinuxcommandthatlaunchestheMPIjob,performsthesearchforsourcele(s),acquiresbothLinuxmeta-dataandLustremeta-dataforthese,andsendsallofthisinformationtoMPImasterviaapipe.
Furthermore,thisprocesscreatesthetargetdirectoryhierarchybeforesendingthelistoflestotheMPIbasedcomponents.
Thisavoidsduplicationofeortandraceconditions,e.
g.
,multipleprocessesrequestingcreationofthesametargetdirectory.
Finally,thelaunchprocesshandlescorrectlysettingtimestampsontargetdirectorieswhenneeded.
Theadvantagetothisstrategymaynotbeobvious.
Sincethelaunchprocesshasalreadyhastraversedthesourcehierarchy,itonlyneedstoretainalistofthedirectoriesandtheirmeta-data.
ThelaunchprocessmustallowtheMPIjobtocompletesothatitcanensureanyupdatestotheaccesstimearenotoverwrittenbyanyoftheslaveprocesses.
Theprototypeemploysavariablestrategyfordecomposingworktodeterminethenumberofclientstoemployincopyingeachle.
Itmakesthisdeterminationbasedonaperformancepredictionmodelofthedataset.
ForsmalllesorleswithonlyasingleLustrestripe,theentireoperationiscarriedoutbyasingleslavenode.
Forlesthataredistributedovermultiplestripes,theworkisdistributedacrossasubsetofprocesses.
Themasterprocesswaitsuntiltheappropriatenumberofslaveprocessesareavailableandthenschedulesthecopyoperationacrossthesubset.
A"teamleader"isselectedwithinthesubset.
TheteamleaderensuresthatthetargetlehasbeencreatedwiththeappropriateLustremeta-dataparameters,suchasthestripecountandstripewidth.
Ifthetypicallemeta-data(modicationdate,etc.
)istobeanexactcopyoftheoriginal,thenalloftheteammembersreporttotheteamleaderthattheyhavecompletedalloftheirI/Orequests.
Otherwise,theteammembersreportdirectlybacktothemasternodefortheirnextassignment.
Likewise,aftertheteammembersreportbacktotheirteamleaderforcompletionnotication,theyawaitfurtherinstructionsfromthemasternode.
Theteamleaderreportstothemasternodetoindicatethatthecopyhascompletedandtheteammembersarearereadyforthenextassignment.
ThetechniquesdescribedaboveallowtheloadonthetargetOSTstobemanaged.
Byinstructingtheprototypecommandtouseonlyaspeciednumberofprocessorsfortheparallelpart,inconjunctionwithspecifyingthebuerwidth,wecanensurethattheidealnumberofclientsareparticipatinginthecopyoperationforagivenle.
ContentioncanstillarisefromothercopythreadshavingstripesthatoverlaponthesameOST.
However,preventingthiswouldincreasethecomplexityandlikelyprovideonlymarginalimprovementsinperformance.
Theprototypeimplementationofspdcpstrivestomimicthestandardcpcommandthatusersarefamiliarwith.
Theintentistocreateadropinreplacementforcpthatuserscaneasilyemployintheirexistingscripts.
4Fig.
1.
Diagramofthecomponentsusedintheparalleldistributedcopy.
Allcomputenodesaccessthelesystem.
ThenumberofteammembersusedforasourceinputledependsonthesourceleLustrestripepattern.
However,someadditionalcommand-lineoptionshavebeenaddedtocontrolaspectsoftheparallelexecutionoftheutility.
Forexample,thereareoptionstocontrolthenumberoftasksandbuersizes.
Furthermore,sinceourenvironmentrequiressubmittingabatchjobtorunaparalleljob,theutilitycantransparentlysubmititselftothebatchqueue.
Consequentlythereareoptionsrelatedtothebatchsubmissionaswell.
AsampleexecutionisshowninFig.
2.
5PerformanceAseriesofperformancemeasurementswerecarriedoutonspdcptool.
Threereferencedatasetswerecreatedinordertomeasuretheperformanceofthespdcptool.
Therstdataset(workload1)consistedof2400les,eachofsize100MB.
Thisisrepresentativeoflestypicallycreatedbyamodelingapplicationwhichlaterareanalyzedorvisualized.
Theseconddataset(workload2)consistedof10les,eachofsize24000MB.
Thisisrepresentativeofacheckpointwhichisdonetoasharedle.
Thethirddataset(workload3)consistedof1200lesofsize100MBand5lesofsize24,000MB.
Thiswasdonetodemonstratetheabilitytoecientlycopyanon-uniformdataset.
TheLinuxcpcommandwasusedtoestablishbaselineperformance.
Then,weevaluatedtheperformanceatvariousscalesinordertounderstandthescalingbehaviorfortheprototype.
Thesemeasurementswereperformedona3500socketCrayXT3systemagainstitslocalLustrelesystem.
TheLustrelesystemconsistedof80OSTsservedby20ObjectStorageServers(OSSs).
Thebackendstoragewasprovidedby10coupletsofDDN8500[10].
ThislesystemhasbeenmeasuredusingtheIOR[11]benchmarktosustainover10GB/sonale-per-processrun.
5spdcp-s16-r/source/directory//target/directory/spdcp-hUsage:spdcp[options]SRCDESTorspdcp[options]SRC.
.
.
DIRECTORYCopyfileSRCtofileDESTorlistoffilesSRC.
.
.
todirectoryDIRECTORY,replicatingLustrestripeinformationwherepossible.
CopyisperformedinparallelbydistributedclientsusingMPImessagepassingforsynchronizationandcontrol.
Whencomputenoderesourcesareaccessibleonlyinbatchmode,commandwillstagejobandretaincontroluntiljobfinishes.
Thefollowingoptionsoffercontrolovercommand:-hPrintthismessage(disablescopy)-VPrintcommandandagentversions(disablescopy)-dUsedummyform(disablescopy,printstargets)-vIncreaseverbositylevel(maximum2)-pPreservemode,ownership,andtimestamps-r,-RCopyrecursively-cReduceOSTcountatdestinationtosourceusage-nDonotoffsetinitialOSTatdestination-b{F}IncreaseI/OrequestsizebyafactorofF-s{M}EmployMparallelclients-A{P}Ifspawningbatchjob,chargeruntoproject,P-w{T}Ifspawningbatchjob,limitwalltimetoTseconds-q{Q}Ifspawningbatchjob,directtobatchqueue,QFig.
2.
Sampleexecutionofspdcp(Top).
Thetotalnumberofclientsrequestedisidentiedbythe-sswitch.
Notethat,thisnumberalsoincludesthe"master(orrank0)node.
"Thespdcphelpmenu(Bottom).
AscanbeseeninFig.
3,spdcpachievesgoodparallelspeedup.
ThedataexhibitacertainamountofvariationbecausetheywereobtainedduringthecourseofnormalproductionoperationoftheCrayXT3.
ItshouldbenotedthatthestockLinuxcputilityachieved324MB/s,126MB/s,and177MB/sforworkload1,workload2,andworkload3,respectively.
Intermsofpeakperformance,ascanbeseeninFig.
3,theworkload2achievesthebestperformancewithspdcp,ataround9300MB/s.
Thisisa73xperformanceincreasecomparedtotheLinuxcputility.
Thepeakperformanceis7300MB/sforworkload1.
Thisis22xspeedupcomparedtotheLinuxcputility.
Forworkload3thepeakisatapproximately9100MB/s;a51xspeedupovertheLinuxcputility.
Also,ascanbeseeninFigure3,thepeakperformanceisobtainedat160to256clients.
However,fromapracticalpointofview,thescalingofperformancelevelsoataround100clients.
ThismakessensegiventhatthenumberofclientsandOSTsareroughlyequivalent.
Consequently,theOSTshavenearlyreachedtheirpeakbandwidth.
Thisisfurtherdemonstratedbythefactthattheaggregatebandwidthis73%to93%ofthepeakbandwidthasmeasuredbyIOR.
6On-goingworkTheparallelimplementationofthecopyutilityisjusttherststepinabroaderinitiativetocreateasuiteofparallelizedtools.
Towardsthisend,wehavestartedtocreateaframeworktogeneralizetheapproachesused61001000100001101001000AggregateBandwidth(MB/s)NumberofClientsWorkload1Workload2Workload3Fig.
3.
spdcpperformanceforclientsupto512.
Theworkload1iscomposedoflargeles,workload2iscomposedofsmallles,andworkload3isamixoflargeandsmallles.
ThestockLinuxcputilityachieved324MB/s,126MB/s,and177MB/sforworkload1,workload2,andworkload3,respectively(notshownonthegure).
inspdcpsothattheycaneasilybeappliedtoothercommonutilities.
Thespdcputilitydoesnotcurrentlyusetheframework,butmaybere-implementedusingtheframeworkinthenearfuture.
Thisframework,whichiscalledspdframe,hasalreadybeenusedforcompressionanddecompressionofbzip2les[12].
Thispresentsslightlymoredicultythanthecopytool,asthedecompositionfordecompressionismoredicult.
Preliminarytestsshowthatourbzip2implementationispromisingandunderrightcongurations(e.
g.
64processorswitha20MBle)itcanachieve15timesmoreperformanceforcompressioncomparedtoitsserializedversionon.
Futureworkwillfocusonapplyingtheframeworktotarandothercommonlebasedutilities.
Whilewearefocusingonapplyingtheframeworktocommontools,theframeworklendsitselftootherusesaswell.
Theframeworkprovidesaneasywayforuserstoapplyafunctionovermultiplelesinparallel.
So,forexample,ausercouldeasilyapplytheframeworktoperformaparallelgreponasetofles.
7RelatedworkIncreasingtheperformanceofcommonLinuxutilitiesgatheredsomeattentionfromtheresearchcommunityovertheyears.
WilliamGroppandEwingLusk[4]haverstrealizedthelimitationsoflegacyserialUNIXutilitiesinparallelenvironments.
TheyintroducedseveralparallelversionsofcommonlyusedUNIXutilitieswithparallelrshastheunderlyingparallelsynchronizationandcommunicationmechanism.
Asafollowuptotheirwork,EmilOng,EwingLusk,andWilliamGroppdevelopedtheMPI-basedversionoftheirparallelizedUNIXutilities[5].
However,thereisacleardistinctionbetweenourgoalandtheirs.
ThetargetforGroppandLuskwasincreaseeciencybyexecutingthesamecommandwiththesameargumentlistandparametersinparallelovermultipleindependentnodeswithindependentoperatingsystemsandlesystems.
Inmanyaspects,theyhaveimplementedSIMD-likeversionsofthecommonUNIXtools.
However,ourapproachdepartsfromtheirsasourgoalwastoincreasetheeciencyofasingleexecutionagivenLinuxutilitybyparallelizinganddistributingitsworkloadovermultipleworker/computenodes,allsharingacommonlesystem,butindependentOSes.
JeGilchristandAysegulCuhadar[7]introducedtwoparallelizedversionsofBWT-basedbzip2nblock-sortinglecompressor,namelypbzip2andmpibzip2.
Thepbzip2isathread-parallelversionofbzip2foruse7onsharedmemorymachines.
Itproducescompatiblebutlargerarchivescomparedtotheoriginalbzip2.
Thempibzip2isanMPI-basedparallelimplementationofthebzip2block-sortinglecompressorforclusters.
Thebzip2smpprogramisanotherparallelizedversionofthebzip2compressor[8].
ItisspecicallytargetedforSMPsystems.
Itisverycache-dependantanddoesnotperformwellwithhyperthreadedsystems.
Itissimilartopbzip2innature,butunlikepbzip2,bzip2smpsupportscompressionfromstdin.
ConclusionIncreasingparallelisminlesystemspavethewayforprocessinglargerdatasetsinshortertimes.
However,whilecapabilitiesforgeneratinglargerdatasetsareconstantlyincreasing,ourtoolsforhandlingandmanagingsuchles,stillremainserialandlimitedinperformance.
TheCenterforComputationalSciences(NCCS)atOakRidgeNationalLaboratory(ORNL)hasstartedaninitiativeforprovidinghigh-performance,parallelversionsofcommonlyusedLinuxcommands.
Thecpcommandwasourstartingpoint.
WehavedevelopedandimplementedaMPI-basedbatch-processingcapableparallelversionofthestandardcpcommand.
Testsshowthat,ourversioncanachieve73timesmoreperformanceoveritsstandardserializedcounterpart.
Also,thispaperintroducesoureortstowardsdevelopingaparallelizeddistributedversionofthebzip2command.
Theimplementationfollowsaframework,whichifsuccessful,willbeusedfordevelopingandparallelizingotherLinuxcommands.
AcknowledgmentsTheauthorswouldliketothankthestaandcolleagueswhohavecontributedmaterialtothispaper.
ResearchsponsoredbytheMathematical,Information,andComputationalSciencesDivision,OceofAd-vancedScienticComputingResearch,U.
S.
DepartmentofEnergy,underContractNo.
DE-AC05-00OR22725withUT-Battelle,LLC.
AbouttheAuthorsKenMatneyisaresearcherintheTechnologyIntegrationGroupwhichispartoftheNationalCenterforCom-putationalSciencesatOakRidgeNationalLab.
HecanbereachedbyE-Mail:matneykdsr@ornl.
gov.
ShaneCanonistheGroupLeaderforTechnologyIntegrationTeam.
HecanbereachedbyE-Mail:canonrs@ornl.
gov.
SarpOralisaresearcherintheTechnologyIntegrationGroupwhichispartoftheNationalCenterforCom-putationalSciencesatOakRidgeNationalLab.
HecanbereachedbyE-Mail:oralhs@ornl.
gov.
References1.
NationalCenterforComputationalSciences.
WebPagehttp://nccs.
gov.
2.
Top500Supercomputersites-November2007list.
WebPagehttp://www.
top500.
org/list/2007/11.
3.
ClusterFileSystems,Inc.
Lustremanual.
Webpage.
http://www.
lustre.
org/manual.
html.
4.
WilliamGroppandEwingL.
Lusk.
ScalableUnixtoolsonparallelprocessorsInProceedingsoftheScalableHigh-PerformanceComputingConference,pp.
56-62,1994.
5.
EmilOng,EwingL.
Lusk,andWilliamGropp.
ScalableUnixCommandsforParallelProcessors:AHigh-PerformanceImplementationInProceedingsofthe8thEuropeanPVM/MPIUsers'GroupMeetingonRecentAdvancesinParallelVirtualMachineandMessagePassing,pp.
410-418,2001.
6.
M.
BurrowsandD.
J.
Wheeler.
Ablock-sortinglosslessdatacompressionalgorithmTechnicalReport124,DigitalSystemsResearchCenter,1994.
7.
JeGilchristandAysegulCuhadar.
ParallelLosslessDataCompressionBasedontheBurrows-WheelerTransformIn21stInternationalConferenceonAdvancedNetworkingandApplications(AINA'07),pp.
877-884,2007.
8.
WebPagehttp://bzip2smp.
sourceforge.
net/9.
R.
S.
CanonandH.
SarpOral.
ACenter-wideFileSystemusingLustre.
InCUGProceedings,2006.
10.
DataDirectNetworks.
WebPagehttp://datadirectnetworks.
com/11.
HedgesetalParallellesystemtestingforthelunaticfringe:thecareandfeedingofrestlessI/OpowerusersInIEEEMassStorageSystemsandTechnologiesProceedings,200512.
JulianSeward.
Thebzip2andlibbzip2ocialhomepage.
WebPagehttp://sources.
redhat.
com/bzip2

Cloudxtiny:£1.5/月,KVM-512MB/100GB/英国机房

Cloudxtiny是一家来自英国的主机商,提供VPS和独立服务器租用,在英国肯特自营数据中心,自己的硬件和网络(AS207059)。商家VPS主机基于KVM架构,开设在英国肯特机房,为了庆祝2021年欧洲杯决赛英格兰对意大利,商家为全场VPS主机提供50%的折扣直到7月31日,优惠后最低套餐每月1.5英镑起。我们对这场比赛有点偏见,但希望这是一场史诗般的决赛!下面列出几款主机套餐配置信息。CPU...

Nocser:马来西亚独立服务器促销$60.00/月

Nocser刚刚在WHT发布了几款促销服务器,Intel Xeon X3430,8GB内存,1TB HDD,30M不限流量,月付$60.00。Nocser是一家注册于马来西亚的主机商,主要经营虚拟主机、VPS和马来西亚独立服务器业务,数据中心位于马来西亚AIMS机房,线路方面,AIMS到国内电信一般,绕日本NTT;联通和移动比较友好,联通走新加坡,移动走香港,延迟都在100左右。促销马来西亚服务器...

ReliableSite:美国服务器租用,洛杉矶/纽约/迈阿密等机房;E3-1240V6/64GB/1TSSD,$95/月

reliablesite怎么样?reliablesite是一家于2006年成立的老牌美国主机商,主要提供独服,数据中心有迈阿密、纽约、洛杉矶等,均免费提供20Gbps DDoS防护,150TB月流量,1Gbps带宽。月付19美金可升级为10Gbps带宽。洛杉矶/纽约/迈阿密等机房,E3-1240V6/64GB内存/1TB SSD硬盘/DDOS/150TB流量/1Gbps带宽/DDOS,$95/月,...

linuxcp为你推荐
乐划锁屏乐视手机屏幕锁怎么自己就变了vc组合有一首歌好像是什么昆虫组合?跟青春有关好像。叫什么了小度商城小度怎么下载app?敬汉卿姓名被抢注身份通被人注册了我该怎么办sherylsandberg谷歌怎么看自己的详细资料关键字关键词编故事lunwenjiancepaperfree论文检测安全吗777k7.comwww.777tk.com.怎么打不 开www.gegeshe.com《我的电台fm》 she网址是多少?www.zjs.com.cn请问宅急送客服电话号码是多少?
中国域名注册 手机域名注册 php主机空间 中国万网域名 大硬盘 国外免费空间 嘟牛 警告本网站美国保护 元旦促销 圣诞促销 怎样建立邮箱 admit的用法 cdn联盟 免费防火墙 国外免费asp空间 鲁诺 腾讯总部在哪 重庆服务器 建站论坛 comodo 更多