REVIEWCheckpointcontrolandcancerRHMedema1,3andLMacurek21DepartmentofMedicalOncology,UniversityMedicalCenter,Utrecht,TheNetherlandsand2DepartmentofGenomeIntegrity,InstituteofMolecularGenetics,AcademyofSciencesoftheCzechRepublic,Prague,CzechRepublicDNA-damagingtherapiesrepresentthemostfrequentlyusednon-surgicalanticancerstrategiesinthetreatmentofhumantumors.
Thesetherapiescankilltumorcells,butatthesametimetheycanbeparticularlydamagingandmutagenictohealthytissues.
TheefcacyofDNA-damagingtreatmentscanbeimprovediftumorcelldeathisselectivelyenhanced,andtherecentapplicationofpoly-(ADP-ribose)polymeraseinhibitorsinBRCA1/2-decienttumorsisasuccessfulexampleofthis.
DNAdamageisknowntotriggercell-cyclearrestthroughactivationofDNA-damagecheckpoints.
Thisarrestcanbereversedoncethedamagehasbeenrepaired,butirreparabledamagecanpromoteapoptosisorsenescence.
Alterna-tively,cellscanreenterthecellcyclebeforerepairhasbeencompleted,givingrisetomutations.
InthisreviewwediscussthemechanismsinvolvedintheactivationandinactivationofDNA-damagecheckpoints,andhowthetransitionfromarrestandcell-cyclere-entryiscontrolled.
Inaddition,wediscussrecentattemptstotargetthecheckpointinanticancerstrategies.
Oncogene(2012)31,2601–2613;doi:10.
1038/onc.
2011.
451;publishedonline3October2011Keywords:DNAdamage;checkpoint;cancer;check-pointrecoveryIntroductionTomaintaingenomeintegrity,cellsneedtoadequatelyrespondtovariousmodesofgenotoxicstress.
ThisisachievedbyactivationofevolutionarilyconservedDNA-damageresponse(DDR)pathwaysthatabrogatecell-cycleprogressionwhenthegenomeisdamagedandstimulateDNArepair.
DependingontheextentofDNAdamage,cellseithermanagetorepairalllesionsandre-enterthecellcycle(checkpointrecovery),ortheyareeliminatedbyprogrammedcelldeath(apoptosis).
Alternatively,cellscanremainpermanentlyarrestedafteraDNA-damaginginsult(senescence).
ActivationofthecomponentsofDDRpathwaythatallowsefcientDNArepairhasbeenrecentlyreviewedextensivelyelsewhere(Bekker-JensenandMailand,2010;CicciaandElledge,2010;PoloandJackson,2011).
Thisreviewwillfocusonthemechanismsthatactivatecheckpointsaftergenotoxicstressandsilencingofcheckpointsduringtherecoveryprocessthatcanoccuraftersuccessfulrepairofthedamage.
ActivationofDNA-damagecheckpointsIngeneral,activationofDNA-damagecheckpointsisenabledbyrecognitionofDNAdamagebysensors,followedbyanorderedactivationofupstreamandeffectorkinases,thelatterofwhichcandirectlytargetthemajorcell-cyclecontrolmachinery(Figure1a).
DNAdamagecaninduceacell-cyclearrestintheG1,intra-SorG2phaseofthecellcycle.
Dependingonthephaseofthecellcyclewhendamageoccurs,andthemodeofDNAdamage,cellscanactivatedistinctpathwaysinresponsetogenotoxicstress.
TheprimaryresponsetoDNAdamageisaccom-plishedbyupstreamkinasesofthephosphatidylinositol-3-OHkinase-relatedfamily,whichincludesATM(ataxiateleangiectasiamutatedkinase),ATR(ATM-andRad3-relatedkinase)andDNA-PK(DNA-depen-dentproteinkinase).
WhereasATMandDNA-PKareactivatedbydouble-strandbreaks(DSBs),ATRre-spondstoabroaderspectrumofDNA-damaginglesionsthatgeneratesingle-strandedDNA(includingstalledreplicationforkscausedbybulkybaseadductsorUVphotoproducts).
Thissimplisticview,however,isinfactmorecomplexbecauseDSBsareprocessedduringtheS/G2phasesofthecellcyclebytheendonucleaseCtIPandgeneratesingle-strandedDNAlesionsleadingtoasecondaryactivationoftheATR(Jazayerietal.
,2006;Sartorietal.
,2007).
Allphosphatidylinositol-3-OHkinasesrespondingtoDNAdamageshowsimilarsubstratespecicities,andrecentphosphoproteomicscreensrevealasubstantialoverlapoftheirsubstrates(Matsuokaetal.
,2007;Bennetzenetal.
,2010;Bensimonetal.
,2010).
ThebestexampleisprobablythehistonevariantH2AX,whichisrapidlyphosphorylatedatSer-139(producinggH2AX)byATM/ATRorDNA-PKinthechromatinankingthedamagesite.
Ontheotherhand,thesekinasesalsohavesomeexclusivesubstrates,whicharenotsharedbytheothermembers.
ThusATMphosphorylatescheckpointkinase-2(Chk2)atThr-68,whereasATRphosphorylatesChk1attworesidues,Ser-317andSer-345(BartekandLukas,2003).
Ingeneral,Received10July2011;revised16August2011;accepted29August2011;publishedonline3October2011Correspondence:DrLMacurek,DepartmentofGenomeIntegrity,InstituteofMolecularGenetics,AcademyofSciencesoftheCzechRepublic,Videnska1083,Prague414200,CzechRepublic.
E-mail:libor.
macurek@img.
cas.
cz3Currentaddress:DivisionofCellBiology,NetherlandsCancerInstitute,Amsterdam,TheNetherlandsOncogene(2012)31,2601–2613&2012MacmillanPublishersLimitedAllrightsreserved0950-9232/12www.
nature.
com/oncphosphorylationofChk2andChk1leadstotheiractivationandfurthertransmissionofthecheckpointsignal(seebelow).
Activationoftheupstreamcheckpointkinasesre-quirestherecognitionoftheDNAlesion.
IncaseofDSBs,thisisachievedbytheMre11–Rad50–Nbs1complexthatdirectlybindstotheexposedendsoftheDNA,recruitsATMandinitiatesitsactivation(Falcketal.
,2005).
ActiveATMgeneratesgH2AXatthesurroundingchromatin,whichisrecognizedbyphosphopeptide-bindingBRCTdomainsthatarepresentinmanyproteinsinvolvedintheDDR,andservesasadockingsiteforalargeadaptorprotein,MDC1(Stuckietal.
,2005).
Recruitmentofmultipleadditionalcompo-nentsofthecheckpointthenfollowsinanorderlymanner,includingRNF8,RNF168,HERC2,53BP1andBRCA1(reviewedelsewhereBekker-JensenandMai-land,2010).
Ingeneral,recruitmentoftheseproteinstothechromatinisessentialforefcientDNArepairandmayalsohavesomeroleinfurtheramplicationofthecheckpointsignaling(thatis,byrecruitingmoreATM)(Leeetal.
,2010;Shibataetal.
,2010).
ATMisrapidlyautophosphorylatedatSer-1981,whichwasoriginallyproposedtoinducethedissociationofaninactivehomodimerintoactivemonomers(BakkenistandKastan,2003).
However,micelackingthecorrespondingATMautophosphorylationsitesarestillabletofullyactivatethecheckpointafterexposuretoionizingradiation(IR),stronglysuggestingthatATMautopho-sphorylationisnotanessentialstepforitsactivation(butausefulmarkerofATMactivity)(Pellegrinietal.
,2006).
Instead,DNAdamage-inducedacetylationofATMatLys-3016bytheacetyltransferaseTip60wasrecentlyproposedtoactivatetheATM(Sunetal.
,2005,2007).
Inthismodel,Tip60isrecruitedtoDSBsbyadirectinteractionwiththeMre11–Rad50–Nbs1complexanditsenzymaticactivitytowardATMisincreasedafterbindingofitschromodomaintotrimethylatedhistoneH3(H3K9me3)(Sunetal.
,2009;Chailleuxetal.
,2010).
Bycontrast,single-strandedDNAlesions(suchasthestalledreplicationforksorresectedDSBs)arerapidlycoatedbyreplicationprotein-Acomplexes,whichfurtherrecruitandactivateATRinastablecomplexwithitscofactorATRIP(ZouandElledge,2003).
Inparallel,replicationprotein-AbindstoRad17andrecruitsaring-shapedtrimericcomplex,Rad9–Hus1–Rad1(9-1-1),tothesiteofdamage.
This9-1-1complexisthenphosphorylatedbyATRandcanbindtotheBRCTdomainsofanadaptorprotein,TopBP1,whichfurtherbooststheactivityofATR(CimprichandCortez,2008).
RHINO,arecentlyidentied9-1-1-andTopBP1-interactingprotein,isrequiredforefcientactivationofATR(Cotta-Ramusinoetal.
,2011).
ActiveATRhasseveralhundredsofsubstrates,includingChk1,whichisessentialforinductionofthecheckpointresponse.
Importantly,Chk1needstoformacomplexwithamediatorprotein,claspin,tobeefcientlyactivatedbyATR(ChiniandChen,2003;Kumagaietal.
,2004).
Uponphosphorylation,Chk1isreleasedfromthechromatinandcanfreelydiffusethroughthenucleustophosphorylatemultiplesubstratestoestablishthecheckpointresponse(seebelow)(Smitsetal.
,2006).
Checkpointkinases—effectorsofthecheckpointProliferatingcellsrepeatedlypassthroughtheG1(growthphase),S(replicationofDNA)andG2phasescyclinCdkATMp53Chk2DSBp21Cdc25A/B/CWee1Nek11Chk1ClaspinATRssDNARPA9-1-1ATRIPTopBP1RHINOCtIP(SorG2phase)BaxNoxaAPOPTOSISMRNH2AXMDC1IRorchemotherapyUVorreplicationstressp38MK2CHECKPOINTARRESTGADD45CHECKPOINTMAINTENANCE&SURVIVALMdm2Plk1Aurora-AWip1ATMp53p21Chk1ClaspinATRMdm2MdmXH2AXCdc25A/B/CWee1GTSE1hBoracyclinBCdk1CHECKPOINTRECOVERYFigure1(a)Checkpointactivation.
DNAdamageisrecognizedbyvarioussensorandadaptorproteins,whichleadstoactivationofATMandATRkinasesandallowsestablishingofaDNA-damagecheckpoint.
ThemajorcomponentsactivatedduringthisresponseareChk1andp53(green).
Chk1regulatescdc25A/B/CandWee1,whichleadstoinhibitoryphosphorylationofCdk(yellowdots),preventsitsactivation(red)andcausescell-cyclearrest.
p53isstabilizedbymultipleposttranslationalmodications(dots),andbyincreasingthetranscriptionofaCdkinhibitor,p21,andrepressingthetranscriptionofcyclin-B,itcontributestoinhibitionofcyclin–Cdk.
Inaddition,cellsactivatetheChk2andp38/MK2pathwaysthatareinvolvedinapoptosisandcheckpointmaintenance,respectively.
(b)RecoveryfromtheG2checkpoint.
AfterDNArepair,multipleproteinsarede-phosphorylatedbyWip1phospha-tase,whichleadstosilencingofthecheckpointsignalingandinactivationofp53.
Inparallel,Plk1kinasetargetsclaspinandWee1fordegradation,andactivatesCdc25A/B/C,whichallowsactivationofcyclin-B–Cdk1andcheckpointrecovery.
CheckpointcontrolandcancerRHMedemaandLMacurek2602Oncogeneofthecellcycle,followedbynucleardivision(mitosis)andcellulardivision(cytokinesis).
Transitionsbetweenthedifferentphasesofthecellcyclearefacilitatedbyevolutionarilyconservedcyclin-dependentkinases(Cdks),whichactincomplexwithvariouscyclins(mainlyCdk2/cyclin-EinG1/SandCdk1/cyclin-BinG2/Mtransition).
ActivityofaCdkisnegativelyregulatedbyphosphorylationofThr-14andTyr15byWee1andMyt1kinases.
Conversely,Cdksareactivatedbyde-phosphorylationoftheseresiduesbytheCdc25familyofphosphatases.
Thecell-cyclearrestinducedinresponsetoDNAdamageisatleastinpartestablishedthroughinhibitionofCdc25activity.
HumancellsexpressthreedistinctisoformsofCdc25,Cdc25A,BandC,allofwhichcandephosphorylateandactivateCdks.
AfterDNAdamage,Cdc25Aisrapidlydegraded,whichleadstoincreasedinhibitoryphosphorylationatTyr-15ofCdk2orCdk1,andcausesaG1orG2checkpointarrest,respectively(Mailandetal.
,2000).
DestructionofCdc25AisexecutedbybTrCP–SCF-dependentubiquitinationandproteasomaldegradation,andisinducedbyCdc25AphosphorylationatSer-76mainlybyChk1(Jinetal.
,2003,2008).
Chk1alsoautophosphorylatesatSer-296,whichgeneratesamotifrecognizedby14-3-3gthatmediatestheinteractionofChk1withCdc25A(Kasaharaetal.
,2010).
Inparallel,Chk1alsoactivatesNek11(Neverinmitosisgene-A-relatedkinase-11),whichfurtherphosphorylatesCdc25AatSer-82andenablesitsrecognitionbythebTrCP–SCF(SKP/Cullin/F-boxprotein)complex(Melixetianetal.
,2009).
TheATM–Chk2pathwaywasoriginallyalsosuggestedtobeinvolvedinthedegradationofCdc25A(Falcketal.
,2001);howeverthendingthatIR-induceddegradationofCdc25AinHCT116-Chk2/cellsoccurswiththesamekineticsasinwt-HCT116cellsindicatesthatthecontributionofChk2todegradationofCdc25Aiseitherfunctionallyredundantoroccursinacelltype-specicmanner(Jinetal.
,2008).
Inaddition,Cdc25BandCdc25Carephosphory-latedbyChk1/2atSer-323andSer-216,respectively,andarefunctionallyinactivatedbybindingto14-3-3proteins(Pengetal.
,1997;Sanchezetal.
,1997;ForrestandGabrielli,2001).
Nonetheless,micedecientinCdc25BandCdc25CarestillabletofullyactivatetheDNA-damagecheckpoints,indicatingthatmereregulationofCdc25Aissufcienttoestablishthecheckpoint(Fergu-sonetal.
,2005).
ThisobservationisinlinewiththecurrentviewoffunctionalredundancyinthemolecularmachinerythatcontrolstheG2/Mtransition(Lindqvistetal.
,2009b).
InadditiontoitseffectonCdc25A,Chk1canalsophosphorylateandactivateWee1kinase,whichcandirectlyincreasetheinhibitorymodicationofCdk2andCdk1(O'Connelletal.
,1997).
Importantly,theroleofChk1incheckpointcontrolisevolutionarilyconservedfromyeasttohumansandhumanChk1operatesbythesamemolecularmechan-ismsasitsyeasthomolog(Sanchezetal.
,1997).
Chk2(homologoustoRad53andCds1inyeast)isstructurallydistinctfromChk1,butbothkinasessharesimilarsubstratespecicityandmaythereforehaveoverlappingsubstrates.
DatafromChk2-knockoutmiceandalsofromHCT116-Chk2/humancoloncancercellsindicatethat,incontrasttoyeast,Chk2isfunctionallyredundantincheckpointactivationinhighereukaryotes(Jacketal.
,2002;Jinetal.
,2008).
Instead,Chk2seemstoadoptauniqueroleintheregulationoftheapoptoticpathwaysinducedbyDNAdamage,asChk2/micearemoreresistanttoIRcomparedwiththecontrolanimals(Hiraoetal.
,2002;Takaietal.
,2002).
IRstimulatesATMtoactivateChk2byphosphorylationatThr-68,whichinturnleadstostabilizationofthetumorsuppressorp53andpromotesthetranscriptionofseveralpro-apoptoticgenessuchasBax,PumaandNoxa(Ahnetal.
,2000;Hiraoetal.
,2000,2002;Takaietal.
,2002).
Phosphorylationofp53atSer-20wasoriginallyproposedtoberesponsiblefortheChk2-dependentactivationofp53;however,thismodicationwasretainedinChk2/cellsaswellasinChk2-depletedcells,suggestingthatadditionalmechanismsmayexistbywhichChk2modulatesapoptoticresponses(Ahnetal.
,2003;Jallepallietal.
,2003).
Indeed,Chk2hasalsobeenreportedtoregulateapoptosisaftertreatmentwithetoposideinanp53-independentmannerthroughphosphorylationofE2F1(Stevensetal.
,2003).
Chk2seemstobespecicallyinvolvedinregulatingapoptoticresponsestoagentscausingDSBsasUV-inducedapoptosisisnotaffectedinChk2/cells(Hiraoetal.
,2000).
ThisisingoodagreementwithChk2beingspecicallyactivatedbyATMbutnotATR.
Strikingly,thefunctionalredundancyofChk2forcheckpointactivationislostwhencellslosep53(Jiangetal.
,2009).
Incontrasttop53-procientcells,depletionofChk2inp53-decientcellsinterfereswiththeIR-inducedcheckpointarrest(Jiangetal.
,2009).
Reasonsforrewiringofcheckpoint-activatingpathwaysinp53-decientcellsarecurrentlyunclear;however,aninter-estingpossibilityisthat,bylosingp53,highereukaryoticcellssimplyregainsimilarmolecularpathwaysthatactinyeastandthatweresuppressedduringevolution.
AnothermechanismimplicatedinG1checkpointinductionisrapiddegradationofcyclin-D1afterexposuretoIR(AgamiandBernards,2000).
Degrada-tionofcyclin-D1isbelievedtoreleasetheCdkinhibitorp21fromCdk2/cyclin-D1complexes,whichinturnallowsp21toinhibitCdk2/cyclin-EandpreventtheG1/Stransition.
Degradationofcyclin-D1wasoriginallyreportedtodependonadestructionmotifwithincyclin-D1andubiquitinationbytheAPCE3ligasecomplex(AgamiandBernards,2000).
However,recentevidencesuggeststhatafterDNAdamage,cyclin-D1isubiqui-tinatedbytheSCFE3ligasecomplexandthisdependsbothonphosphorylationofcyclin-D1atThr-286byglycogensynthasekinase-3bandadirectphosphoryla-tionoftheF-boxproteinFBXO31byATM(Santraetal.
,2009).
Thus,itispossiblethattheprecisemechanismbywhichcellsdegradecyclin-D1afterDNAdamageiscelltype-dependent.
Moreover,italsoappearsthatDNAdamagespecicallyinducesthedegradationofcyclin-D1(butnotcyclinsD2andD3)indicatingthattheroleofthispathwayintheDDRinG1mightdependontheexpressionproleofD-typecyclinsinvarioustissues.
CheckpointcontrolandcancerRHMedemaandLMacurek2603OncogeneFinally,p38anditsdownstreameffectorMAPKAPkinase-2(MK2)haverecentlybeenimplicatedintheDDRinG2afterexposuretoUV(Bulavinetal.
,2001;Mankeetal.
,2005).
Thecontributionofp38totheDDRwasattributedtothephosphorylationofcdc25Bandcdc25CbyMK2(Mankeetal.
,2005).
Moreover,rapidandtransientactivationofthep38/MK2pathwaywasalsoreportedafterIR,ortreatmentwithdoxor-ubicinoralkylatingagentssuchasmethylmethanesul-fonate(MMS)(Mikhailovetal.
,2004;Ramanetal.
,2007;Lafargaetal.
,2009;Phongetal.
,2010).
Activationofthep38/MK2branchofthecheckpointhasbeenreportedtoinvolveATM/ATR-dependentactivationofThousandandoneaminoacidproteinkinases(TAO)thatbelongtotheMAPKKKfamily.
TAO-dependentphosphorylationofMEK3andMEK6thaninducestheactivityofp38(Ramanetal.
,2007).
Inaddition,thep38pathwaymightbeinvolvedintheinitiationoftheG1checkpointbyarapidstabilizationofp21mRNAcausedthroughphosphorylationofthemRNA-bindingproteinHuRbyp38atThr-118(Lafargaetal.
,2009).
Despiteallthis,theroleofthep38pathwayincheckpointactivationhasrecentlybeenchallengedwhenp38pathwaywassuggestedtohaveanessentialroleinsurvivalafterDNAdamagethroughinductionofmultiplesurvivalgenes(Phongetal.
,2010).
Inaddition,p38/MK2seemstobeinvolvedincheck-pointmaintenance(seebelow).
Thus,thepreciseroleoftheATM/ATR–p38–MK2pathwayinDDRsremainsincompletelyunderstoodanditispossiblethatitlargelydependsonthemodeandamplitudeofDNAdamage.
CheckpointmaintenanceAnappropriatecheckpointresponsetogenotoxicstressneedstobefastenoughtopreventtransitiontothenextphaseinthecellcyclewithdamagedDNA,butdurableenoughtoallowtimeforefcientDNArepair.
Recentworkhasmadeitclearthatinductionandmaintenanceofthecheckpointsaregovernedbydistinctmolecularmechanisms.
Asdiscussedabove,thefastcheckpointinductionlargelydependsonthetransmissionofthesignalthroughphosphorylationofmultiplesubstratesbyATM/ATRandChk1/2kinases,affectingtheiractivity,proteinstabilityorboth.
Conversely,pathwaysthatdependonchangesinthetranscriptionoftargetgenesactconsiderablyslowerandaremainlyinvolvedincheckpointmaintenance.
Thebest-studiedexampleofcheckpointmaintenanceisthecontributionofthetumorsuppressorp53anditstranscriptionaltargetp21.
p53isextensivelymodiedposttranslationally,especiallyintheN-terminaltransactivationdomain(includingphos-phorylationofSer-15andSer-20byATM/ATR/DNA-PKandChk1/2,respectively)andintheC-terminalregu-latorydomain(includingacetylationofLys-382andLys-320byCBP/p300andPCAF,respectively),whichtogetherreducetheafnityofp53foritsnegativeregulatorMdm2.
Thisallowsstabilizationandtetra-merizationofp53;promotesassociationofp53withtranscriptionalcoactivators(orco-repressors);andbindingofp53tothepromotersofitsmultipletargetgenes(forarecentreviewonp53posttranslationalmodicationsseeDaiandGu(2010)).
Oneofthese,thecyclin-dependentkinaseinhibitorp21,bindstoandinhibitsthecyclin-E/Cdk2andcyclin-A/Cdk2com-plexes,andhasamajorroleinthecontrolofG1arrest.
Similarly,p21alsocontributestomaintenanceoftheG2checkpoint(Bunzetal.
,1998).
Inaddition,p53canalsocontroltheG2checkpointindependentlyofp21throughtranscriptionalrepressionofmitoticinducers,includingcyclin-B,cdc25Bandpolo-likekinase-1(Plk1)(Imbrianoetal.
,2005;McKenzieetal.
,2010;Dalvaietal.
,2011).
Interestingly,recentdataindicatethatthedynamicsofp53'sresponsetoIRdoesnotoccurinalinearmannerbutinsteadappearsinmultiplerepeatingpulseswithxedamplitudeandduration(Lahavetal.
,2004;Batcheloretal.
,2008).
Theseoscillationshadlongremainedmaskedowingtoaveragingacrossapopulationofcells,buttheirobservationbecamepossiblewithrecentadvancesinsingle-cellimagingtechniques(Batcheloretal.
,2009).
Theoscillatorybehaviorofp53isinducedbyactivationofp53byATMatthetimeDNAdamageispresent,whichsubsequentlyresultsinthetranscriptionalactivationofMdm2andWip1(seebelow),bothnegativeregulatorsofp53,whichestablishnegativefeedbackloops(Batcheloretal.
,2009)(Figure2).
InresponsetoDSBs,cellsstabilizep53,generatingtherstpulse,whichisthenfollowedbypulsesofasimilarintensityrepeatingin4-to7-hintervalsuntiltheDNAisfullyrepaired.
Strikingly,spontaneouspulsesofp53expressionofcomparableintensitycanalsooccurinnormalcyclingcells;however,posttranslationalmodicationskeepp53inactiveintheabsenceofsustaineddamage(Loeweretal.
,2010).
Bycontrast,UVirradiationcausesaninductionofp53,butdoesnotinduceoscillationsasseenafterIR.
Instead,UVinducesasinglep53pulsetheamplitudeofwhichincreaseswiththedoseofUV(Batcheloretal.
,2011).
TheroleofIR-inducedp53pulsesindeterminingcellfatestillneedstobeaddressedfully;however,itopensupanexcitingpossibilitythat,byrecurringphasesofstrongcheck-pointoutputwithweakcheckpointoutput,cellscansensetheactualstrengthoftheDNAdamageandcanpreventinappropriateinitiationofapoptoticcelldeath(Batcheloretal.
,2009).
Importantly,theDDRinG1isprimarilydependentonp53.
Asaconsequence,cancercellsthathavelostp53failtoestablishaG1arrestinresponsetoDNAdamage,butarrestinG2instead,aresponsethatremainsrelativelyintactalsoincancercells(KuntzandO'Connell,2009).
Thisimpliesthat,apartfromp53,additionalmechanismsmustexisttopreventp53-decientcellsfromentryintomitosiswithdamagedDNA.
Survivalofp53-decientcellsafterDNAdamagewasrecentlyreportedtodependonthep38/MK2pathway(Reinhardtetal.
,2007).
WhereastheChk1pathwaywasfoundtobeimportanttoestablishtheG2checkpoint,thep38/MK2pathwaywasshowntobecriticalforlong-termmaintenanceoftheG2checkpoint(Reinhardtetal.
,2010).
Strikingly,Chk1andMK2kinasessharethesameoptimalphosphorylationmotifCheckpointcontrolandcancerRHMedemaandLMacurek2604Oncogene(Arg-X-X-pSer/Thr)andthusmayhaveoverlappingsubstrates(Mankeetal.
,2005).
However,thisdoesnotappeartobetheentirestory,asbothkinasesshowadistinctsubcellulardistributionaftertreatmentwithdoxorubicin.
WhereasChk1remainsmainlynuclearafterDNAdamage,activatedMK2rapidlyredistributestothecytoplasm,whereitphosphorylatesdistinctsubstrates(Reinhardtetal.
,2010).
ByphosphorylatinganRNA-bindingproteinhnRNPA0andaribonucleasePARN,activatedMK2inducestheaccumulationofgrowtharrestandDNA-damage-inducibleprotein-a(GADD45a)mRNA,leadingtoincreasedproteinlevelsofGADD45a(Reinhardtetal.
,2010).
Inturn,GADD45awassuggestedtoactinapositivefeedbackloopandtoinducep38/MK2-dependentphosphoryla-tionofcdc25B/C,bindingof14-3-3proteinandcytosolicsequestrationofcdc25B/C(Reinhardtetal.
,2010).
Thisndingisinlinewiththeobservationthatthepro-survivalactivityofGADD45ainhematopoieticcellsexposedtoUVdependsonthep38pathway(Guptaetal.
,2006).
However,GADD45awasalsoreportedtodirectlyassociatewithandinhibitcyclin-B/Cdk1(Wangetal.
,1999;Zhanetal.
,1999),andthusitispossiblethatGADD45apreventsprematuremitoticentrythroughmultipleindependentmechanisms.
Inaddition,thep38pathwaywasalsoreportedtoregulatecheckpointmaintenancethroughstabilizationofp27Kip,whichcanfurthersuppressanyresidualCdkactivityincasetheDNAdamagepersists(Cuadradoetal.
,2009;Liontosetal.
,2010).
AscheckpointsneedtobemaintaineduntiltheDNAdamageisfullyrepaired,DNA-repairpathwaysarelikelytobefunctionallyconnectedwithcheckpointsignaling.
Indeed,shortinterferingRNAscreensforDNArepairfactorsinvolvedincheckpointregulationrevealedthattwohomologousrecombination-repairproteins,BRCA2andPALB2,arerequiredforG2checkpointmaintenance(Cotta-Ramusinoetal.
,2011;Menzeletal.
,2011).
ItispossiblethatbyusingDNA-repairfactors,cellscoordinatecheckpointsignalingwithongoingDNArepair;however,theexactmechanismbywhichBRCA2andPALB2communicatewiththecheckpointstillremainstobeexplored.
SilencingofcheckpointsbyphosphatasesandcheckpointrecoveryAftersuccessfulDNArepair,cellsre-enterthecellcycleinaprocesscalledcheckpointrecovery.
Owingtotheinactivationanddegradationofamultitudeofcell-cycle-regulatoryproteins,whichoccursinresponsetoDNAdamage,cellsthatarearrestedinresponsetoDNAdamagearebiochemicallydifferentfromunda-magedcellsinthesamephaseofthecellcycle.
Thishastheconsequencethatthecell-cyclemachineryoperatesdifferentlyduringrecoveryascomparedwithcontrolofthecellcycleinunperturbedcells.
Currently,thebestunderstoodmechanismsthatpromoterecoveryaremechanismsresponsibleforcheckpointrecoveryfromtheG2checkpoint(Figure1b).
WhereasthereisaconsiderabledegreeoffunctionalredundancyinmechanismsregulatingunperturbedG2/Mprogres-sion,certainpathwaysbecomeessentialwhencellsrecoverfromDNAdamage(Lindqvistetal.
,2009b).
Inparticular,thisistrueforPlk1(anditsyeasthomologcdc5)depletionorinhibitionofwhichdoesnotaffectnormalmitoticentrybutcompletelyblockscheckpointrecovery(Toczyskietal.
,1997;vanVugtetal.
,2004;Lenartetal.
,2007).
Plk1containsaconservedthreonineresidue(Thr-210)withintheT-loop,whichhastobephosphorylatedtofullyactivatePlk1(Jangetal.
,2002).
InlateG2,Aurora-Akinase,togetherwithitscofactor,hBora,phosphorylatesPlk1atThr-210,resultinginactivationPlk1(Macureketal.
,2008;Sekietal.
,2008).
InresponsetoDNAdamage,activityofPlk1iskeptlowthroughinhibitionofThr-210phosphorylation(Smitstimep53levelsIRrepairATMp53Wip1Mdm2IRFigure2Dynamicsofthep53responseinducedbyDNAdamage.
Inunstressedcells,basallevelsofp53arekeptlowbyMdm2-dependentdegradation.
InresponsetoIR-induceddamage,ATMisactivatedandphosphorylatesp53andMdm2bothresultinginstabilizationofp53.
Activep53stimulatesthetranscriptionofMdm2andWip1mRNA,whichleadstoadelayedincreasedexpressionoftheseproteins.
Inturn,Wip1de-phosphorylatesp53,ATMandMdm2,generatingnegativefeedbackloopsthatleadtodestabilizationofp53.
Thisresponseresultsinregularoscillationsofp53levelsuntiltheDNAdamageisrepaired.
Spontaneouspulsesofp53transcriptioncanbegeneratedbytransientdamagethatoccursduringthecell-cyclephaseassociatedwithintrinsicDNAdamage.
Thegreenlinesindicateactivation,redlinesinactivation.
CheckpointcontrolandcancerRHMedemaandLMacurek2605Oncogeneetal.
,2000;TsvetkovandStern,2005).
Plk1activationcanpromotemitoticentryinanunperturbedcellcycle,butfollowingaDNA-damaginginsult,cellscometocompletelyrelyonPlk1tore-enterthemitoticcycle(vanVugtetal.
,2004).
Topromoterecovery,Plk1targetsclaspinandWee1forbTrCP–SCF-dependentdegrada-tion(Watanabeetal.
,2004;Mailandetal.
,2006;Mamelyetal.
,2006;Peschiarolietal.
,2006),promotesnucleartranslocationofCdc25B/C(Toyoshima-Mor-imotoetal.
,2002;Lobjoisetal.
,2009)anddirectlyinhibitsChk2(vanVugtetal.
,2010).
Asaresult,Plk1effectivelypreventsfurtheractivationofbothChk1/2andcontributestoactivationofcyclin-B/cdk1com-plexes,stimulatingcheckpointsilencingandrecoveryatmultiplelevels(vanVugtetal.
,2004).
Inaddition,Plk1phosphorylatesG2-andS-phase-expressedprotein-1,whichactsasanegativeregulatorofp53andthusPlk1activitycontributestosuppressionofp53duringcheckpointrecovery(Liuetal.
,2010).
Plk1activityisessentialbutnotsufcientforcheckpointrecovery,indicatingthatadditionalcontrolmechanismsexist.
Amongthem,phosphatases,whichcounteractthemultitudeofproteinphosphorylationsimplementedbythecheckpointmachinery,arelikelycandidatestobeinvolvedinsilencingthecheckpointandpromotingcheckpointrecovery(FreemanandMonteiro,2010).
Dataanalysisfromlargephosphopro-teomicscreensindicatesthatphosphatasesmayhaveamoreactiveroleintheregulationofDDRsthanoriginallyanticipated(Bensimonetal.
,2010).
Sofartheonlywell-characterizedphosphatasethathasbeendescribedtoactivelyparticipatetoestablishthecell-cyclearrestisPP2Aincomplexwithitsregulatorysubunit,B56g.
Thus,B56gisstabilizedinanATM-dependentmannerandactivatesp53throughde-phosphorylationofpThr-55(Lietal.
,2007;Shouseetal.
,2011).
Ontheotherhand,themajorcellularphosphatasePP2AhasalsobeenshowntolimitbasalphosphorylationofATM–pSer-1981,Chk2–pThr-68,Chk1–pSer-317andgH2AX(Goodarzietal.
,2004;Chowdhuryetal.
,2005;Leung-Pinedaetal.
,2006;Carlessietal.
,2010;Freemanetal.
,2010).
BykeepingarelativelyhighbasalactivityofPP2A,cellscanthereforepreventinadequateactivationofthecheckpointundernormalconditions.
DNAdamage(perhapswhenexceedingacertainthreshold)rapidlydisruptstheinteractionofPP2AwithATM,Chk1andChk2,allowingfullactivationofthecheckpoint(Goodarzietal.
,2004;Carlessietal.
,2010;Freemanetal.
,2010).
Similarly,PP1phosphataseincomplexwithitschroma-tin-targetingsubunit,Repo/Man,wasrecentlydemon-stratedtoinhibittheactivityofATMunderunstressedconditions,thusdeterminingthethresholdforactivationoftheDNA-damagecheckpoint(Pengetal.
,2010).
ItispossiblethataftersuccessfulDNArepair,there-establishedinteractionofPP2Aand/orPP1withvariouscomponentsoftheDDRpathwayhelpstorevertproteinphosphorylationbacktotheoriginallevel,contributingtothesilencingofthecheckpoint.
However,itremainsuncleartowhatextentcellsactivelyregulatethesephosphatasesduringtheDDR.
Moreisknownaboutthecontributionofphospha-tasestocheckpointsilencingandrecovery.
RecentdatafromseveralgroupsindicatethataPP2Cdphosphatase(PPM1D,hereafterreferredtoasWip1)hasacentralroleinterminationofthecheckpointsignalingandincheckpointrecovery(Luetal.
,2008;LeGuezennecandBulavin,2010).
SeverallinesofevidencesuggestthatthefunctionofWip1istightlylinkedwithregulationoftheDDR.
First,depletionofWip1byRNAinterferenceresultsinprolongedcheckpointactivationwhereasoverexpressionofWip1causesefcientcheckpointoverride,indicatingthatWip1hasthepotentialtoregulatecheckpointsignaling(Luetal.
,2005;Lindqvistetal.
,2009a).
Second,thesubstratespecicityoftheWip1seemstocorrespondwiththemotifsphosphory-latedduringtheDDR,namelypSQ/pTQmotifsthatareselectivelyphosphorylatedbyATM/ATRandthepTxpYmotifinp38thatisalsophosphorylatedinresponsetoDNAdamage(Yamaguchietal.
,2007).
Byrecognizingsuchmotifs,Wip1couldefcientlytargetallofthesubstratesofATM/ATR,andthisishasthusfarbeenconrmedforATM–pSer-1981,Chk1–pSer-317,Chk2–pThr-68,p53–pSer-15,Mdm2–pSer-395andgH2AX(Takekawaetal.
,2000;Fujimotoetal.
,2005;Luetal.
,2005,2007;Shreerametal.
,2006a;Chaetal.
,2010;Macureketal.
,2010;Moonetal.
,2010).
Third,PPM1Disatargetgeneofp53andexpressionofWip1isincreasedaftergenotoxicstress(Fiscellaetal.
,1997).
Likethis,cellscancyclewithlowlevelsofWip1(limitingtheriskofanundesiredde-phosphorylationofanyphosphoproteininvolvedinnormalcellprogres-sion),whereasDNAdamagereleasesanegativefeed-backloopinwhichexpressionofWip1willlimittheamplitudeofthecheckpointtopreventanirreversiblearrest.
Fourth,prematuretranslationofWip1mRNAisblockedbymiR-16,whichisalsoinducedbygenotoxicstress(Zhangetal.
,2010).
ThismechanismassuresthatearlyafterDNAdamageWip1levelsarekeptlowtoallowefcientcheckpointinductionandDNArepair.
Fifth,Wip1isanuclearproteinandisenrichedatthechromatin,whereitcangetinclosecontactwiththeproteinsoftheDDRpathway(Macureketal.
,2010).
Finally,althoughWip1isnotpresentinyeast,itappearsthatloweukaryotesusethesamefamilyofPP2Cphosphatases(namelyPtc2andPtc3)toregulatecheckpointrecovery,indicatingpartialconservationinevolution(Leroyetal.
,2003).
AmongmanysubstratesofWip1,p53seemstohaveaspecialroleincheckpointrecovery.
WehavenotedthatevencompleteinhibitionofChk1/2,ATM/ATRandp38isnotsufcienttopromoterecoveryinWip1-depletedcells(Lindqvistetal.
,2009a).
Ontheotherhand,cellslackingbothWip1andp53recoverednormally,indicatingthatp53isthecrucialtargetofWip1tocontrolrecovery.
Thisalsoimpliesthatde-phosphorylationofallotherWip1substratesislessrelevantforefcientrecovery.
Whatismore,wecouldshowthatWip1isrequiredthroughoutthecheckpointresponse,notjustatthestagethatthecheckpointisdenitivelyterminated(Lindqvistetal.
,2009a).
ThismeansthattheactivityofWip1isrequiredthroughoutCheckpointcontrolandcancerRHMedemaandLMacurek2606OncogenetheDNA-damagecheckpointtopreventexcessivep53activationandisessentialtoretaincheckpointrecoverycompetence(Lindqvistetal.
,2009a).
Interestingly,Wip1canregulatep53bymultiplemechanisms.
Apartfromdirectde-phosphorylationofpSer15onp53,Wip1hasbeenshowntoactivatetheubiquitinE3ligasemdm2,whichtargetsp53forproteasomaldegradation,andactivateMdmX,whichdirectlyinhibitsthetranscrip-tionalactivityofp53(Luetal.
,2005,2007;Zhangetal.
,2009).
Whichoneofthesemechanismsisthemostphysiologicallyrelevantiscurrentlyunclear;however,counteractingp53'sfunctionseemstobethemajorroleforWip1topreventanirreversiblecell-cyclearrest.
Inaddition,thetwonegativefeedbackloopsinwhichWip1inactivatesp53andATMarerequiredtoestablishthedynamicbehaviorofthep53responsethatfollowsafterDSBs(seeabove).
Importantly,Wip1isoverexpressed(usuallybecauseofamplicationofthe17q23locus)inmultiplehumancancers,includingmedulloblastomas,neuroblastomas,breast,ovarianandgastriccarcinomas(Bulavinetal.
,2002;Lietal.
,2002;Saito-Oharaetal.
,2003;Castellinoetal.
,2008;Tanetal.
,2011).
Moreover,overexpressionofWip1islinkedtopoorprognosisinlungadenocarci-noma(Satohetal.
,2011).
HighexpressionlevelsofWip1areusuallyfoundintumorsthatretainwild-typep53,whereasoverexpressionofWip1israreintumorscarryingmutationsorlackingp53(Bulavinetal.
,2002).
Strikingly,Wip1-knockoutmiceareviableandareresistanttooncogene-inducedaswellasspontaneouscancerdevelopment(Bulavinetal.
,2004;Harrisonetal.
,2004;Belovaetal.
,2005;Nannengaetal.
,2006;Shreerametal.
,2006b),suggestingthatinhibitionofWip1activitymaypotentiallybebenecialincancertherapy.
Duringprolongedcheckpointactivation,cellsneedtomaintainexpressionofcriticalcell-cycleregulatorsaboveaminimalleveltoremaincompetentforeventualcheckpointrecoveryaftersuccessfulrepair.
ThishasbeenshowntobethemostcrucialfunctionofWip1duringacheckpointresponseinG2.
WhencellsdepletedofWip1aretreatedwithDNA-damagingagents,expressionofcyclin-B(aswellasanumberofothercell-cycle-regulatoryproteins)decreasesbelowtheminimallevelrequiredforrecovery(Lindqvistetal.
,2009a).
Theexcessivereductionincyclin-Bexpressionisduetodisproportionateactivationofp53,whichoccursincellslackingWip1(Lindqvistetal.
,2009a).
Whenexpressionofcyclin-Breducesbelowacriticalthreshold,cellslosethecompetencetorecover.
ThisdemonstratestheimportanceofcontinuedexpressionoftheG2clusterofcell-cycle-regulatedgenesduringaDNA-damage-inducedarrestinG2.
Indeed,itwasdemonstratedrecentlythatminimalbasalCdkactivityandtransactivationbythetranscriptionalfactorFoxM1isneededtosustaincyclin-Bexpressionatalevelthatcanfacilitaterecoveryoncethecheckpointissilenced(Alvarez-Fernandezetal.
,2010).
TargetingcheckpointcomponentsincancertherapyInductionofcelldeathbyexcessiveDNAdamagerepresentsthegeneralprincipleofvariouscancertherapies,suchasradiotherapyandalargeproportionofchemotherapeutictherapies.
Thistreatmenttargetsgeneticallyinstablecancercells(thatarepronetocelldeathcausedbygenotoxicstress)butalsohitsnormaltissues,especiallythosewithhighproliferativerates(suchasepitheliainthegastrointestinaltract,hairfolliclesandbonemarrow).
UndesiredtargetingofhealthytissuesbyDNA-damagingagentsrepresentsamajorproblemintheclinicsandlimitsefciencyincuringcancer.
AlargesubsetofcancertypesisincapabletoestablishtheG1checkpoint,mostoftenbecauseofmutationorlossofthep53tumorsuppressor.
SurvivalofthesecellsafteraDNA-damagingtreatmentdependsonactivationoftheG2checkpointbytheATR/Chk1,p38/MK2andATM/Chk2pathways(Wangetal.
,1996;Zhaoetal.
,2002;Reinhardtetal.
,2007;Jiangetal.
,2009).
Asaconsequence,cellsdecientofp53aremorevulnerabletoinactivationoftheG2checkpoint.
Thisndingledtoanovelstrategyofchemosensitization,whichcombinestreatmentwithaDNA-damagingagentwithcheckpointinhibitor(s),thuspreventingcell-cyclearrestandpro-motingcelldeaththroughmitoticcatastrophe(ZhouandBartek,2004)(Figure3).
PreviousstudiesshowedthatdisruptionoftheChk1pathway,eitherbyshortinterferingRNAorbytreatmentwiththeChk1inhibitorUCN-01,abrogatesG2checkpointactivationinducedbyvariousDNA-damagingagents(includingIR,5-uorouracil,cisplatinandcampotecin),andleadstoprematuremitoticentryandcelldeath(Zhaoetal.
,2002;Xiaoetal.
,2003).
Subsequently,UCN-01wasusedinphase-Itrialsincombinationwithcisplatinoririnotecan(Laraetal.
,2005;Fracassoetal.
,2010;Healthycellsp53mutatedcancercellsp53wtcancercellsIRATM/Chk2/p53ATR/Chk1CheckpointarrestIRATM/Chk2/p53ATR/Chk1IR/Chk1iATM/Chk2/p53ATR/Chk1MitoticcatastropheIR/Wip1iorIR/NutlinATM/Chk2/p53TreatmentApoptosisActivatedpathwayOutcomeCheckpointarrestATR/Chk1Figure3Checkpointregulatorsandcancertherapy.
Healthycellswithintactcheckpointcomponentsareabletofullyactivatethecheckpointaftergenotoxicstress.
Tumorcellslackingfunctionalp53showaweakG1checkpointbutarestillabletoarrestinG2thankstotheATR/Chk1pathway.
ExposureofthesecellstoDNAdamagetogetherwithinhibitionofChk1preventscheckpointactivationandleadstocelldeathbymitoticcatastrophe.
Tumorcellswithwild-typep53activatethecheckpointwhenexposedtoDNAdamage;however,stimulationofp53bytreatmentwithnutlin-3orbyinhibitionofWip1phosphatasemayleadtoextensivep53responseandapoptoticcelldeath.
CheckpointcontrolandcancerRHMedemaandLMacurek2607OncogeneMaetal.
,2011).
However,lowspecicityofUCN-01forChk1,aswellasunfavorablepharmacokineticproles,preventedfurtheruseofUCN-01intheclinic.
AnewgenerationofATP-competitiveinhibitorsofChk1showshigherselectivitytowardChk1/2thanUCN-01(Maetal.
,2011).
Forexample,AZD7762iscomparablyefcienttowardChk1andChk2(IC505–10nM),whereasthePF477736andSCH900776com-poundsselectivelyinhibitChk1(IC500.
49and3nM,respectively).
PreclinicaltestingshowedthatthesenovelChk1inhibitorsefcientlyabrogatetheG2checkpointandsensitizep53-decientcellstovariousDNA-dama-gingagents(Maetal.
,2011),anditwillbeinterestingtoseehowtheseinhibitorswillperforminongoingclinicaltrials.
AnimportantaspectthatneedstobeconsideredwhenusingChk1inhibitorsintheclinicsistheroleoftheChk1outsidethecheckpointcontrol.
EssentialfunctionsofChk1attheorganismallevelarewell-documentedbytheearlyembryoniclethalityofChk1-knockoutmiceaswellasbyseveredefectsinthemammaryepitheliaintheconditionalChk1haploinsuf-ciencymousemodel(Liuetal.
,2000;Takaietal.
,2000;Lametal.
,2004).
Chk1appearstobeessentialformaintenanceofgenomeintegritybymonitoringreplica-tionforksduringnormalS-phaseprogression(Takaietal.
,2000;Syljuasenetal.
,2005;Maya-Mendozaetal.
,2007).
ThusinhibitionofChk1togetherwithtreatmentsthatcausestallingofreplicationforksmayleadtoirreversiblereplicationforkcollapse(Maya-Mendozaetal.
,2007).
Inaddition,recentreportssuggestthatChk1mayalsocontributetotheregulationofmultipleaspectsofunperturbedmitoticprogressionandcelldivision(Krameretal.
,2004;Zachosetal.
,2007;Wilskeretal.
,2008;Peddibhotlaetal.
,2009).
InthisrespectitmightbebenecialtopharmacologicallytargetdownstreameffectorsofChk1specicallyactinginthecheckpointpathway.
ApromisingexampleistheWee1kinase,whichactsdownstreamfromChk1andregulatestheG2/Mtransition.
MK1775,asmall-moleculeinhi-bitorofWee1,hasrecentlybeendevelopedandshowedchemosensitizationofp53-decienttumorcellsandxenograftstogemcitabine,cisplatinand5-uorouracil,basicallymimickingtheeffectsofChk1inhibition(Hiraietal.
,2009,2010;Rajeshkumaretal.
,2011).
Similarly,thePD0166285compound,whichalsoinhibitsWee1,showedradiosensitizationofvariouscancercelllines(Wangetal.
,2001).
Asdiscussedabove,efcientcheckpointactivationincellsthatlackp53requiresalsoactivityofChk2,andithasbeensuggestedthatinhibitionoftheATM/Chk2pathwaymightsensitizep53-decienttumorstoDNA-damagingtreatmentsortopoly-(ADP-ribose)polymeraseinhibitors(Jiangetal.
,2009;Andersonetal.
,2011).
TheuseofChk2inhibitorsmightalsobringadditionalbenetstosurroundinghealthytissuesexpressingintactp53,asthiscouldpreventanapoptoticresponsewhenChk2isinhibited(ZhouandBartek,2004).
Bycontrast,usingChk2inhibitorsontumors,whichretainwild-typep53,woulddramaticallyincreasetheirresistancetoirradiation,leadingtounfavorableclinicaloutcomes.
Thustransla-tionofthistreatmentstrategyintotheclinicwillrequiretheestablishmentofreliablepredictivebiomarkers(suchasthestatusofthep53andATMpathways)andarguablywillbelimitedtosituationswheretumortissuesamplesareavailable(Jiangetal.
,2009).
Theobserva-tionthatsurvivalofp53-decientcellsexposedtogenotoxicstresscriticallydependsonthep38/MK2pathway(Reinhardtetal.
,2007)opensanintriguingpossibilitythatpatientsreceivingchemotherapycouldpotentiallybenetfromadjuvanttherapywithp38inhibitors;howeverthisnovelconceptawaitsexperi-mentaltesting.
Importantly,chemosensitizationseemstoworkef-cientlyonlyincellswithadecientp53pathway(ZhouandBartek,2004;Maetal.
,2011).
Thus,althoughthisstrategycouldbeusefulincancerswithmutatedp53,thereisaneedtodevelopotherstrategiessuitableforcancersthatretainwild-typep53.
Nutlin-3awastherstidentiedsmall-moleculeantagonistofMDM2thatspecicallyblocksinteractionbetweenMDM2andp53,leadingtostabilizationofp53andinducingapoptosisorcellularsenescence(Vassilevetal.
,2004).
Strikingly,Nutlin-3ahasastrongantitumoractivityintumorcellsthatretainwild-typep53,andpromisingpreclinicalresultsforNutlin-3awerereportedwithvarioustumortypes(Secchieroetal.
,2011;ShenandMaki,2011).
SimilarlytoNutlin-3a,MI-219blockstheMDM2–p53interaction,butitshowshigherafnitytoMDM2andexcellentpharmacokineticproperties(Shangaryetal.
,2008).
Anotherpotentialpharmacologicaltargetinp53-positivetumorsisWip1,whichactsinsilencingoftheG2checkpointprimarilythroughblockingtheactivityofp53(Lindqvistetal.
,2009a).
DepletionofWip1byantisenseoligonucleotidesorbyRNAinterferencedecreasedviabilityincelllinesderivedfromneuroblas-toma,glioma,breastadenocarcinomaandovarianclearcellcarcinoma,indicatingthatasubsetofcancerpatientssufferingfromp53-positivetumorscouldbenetfromblockingtheactivityofWip1(Saito-Oharaetal.
,2003;Rayteretal.
,2008;Tanetal.
,2009;Wangetal.
,2011).
Indeed,PPM1D-knockoutmiceareviableandareprotectedfromtumordevelopment,indicatingthatlossofWip1activityiswell-toleratedandmayblocktumorgrowth(Bulavinetal.
,2004;Harrisonetal.
,2004).
However,developmentofspecicWip1inhibitorsrepresentsamajorchallengeowingtotherelativelyshallowgrooveintheactivesiteandthehighhomologywithotherPP2Cfamilyphosphatases(Harrisonetal.
,2004).
CyclicphosphopeptidesthatmimicthebindingofasubstratetotheactivesiteofWip1wereshowntoinhibittheactivityofWip1invitro;howevertheirefciencyininhibitingWip1incellsstillrequiresfurthertesting(Yamaguchietal.
,2006).
ChemicallibraryscreeningyieldedacompoundthatinhibitedWip1activityinvitroandalsoincreasedthephosphorylationofp38,JNKandextracellularsignal-regulatedkinaseintransformedmouseembryonicbro-blasts(Belovaetal.
,2005).
However,asthiscompoundaffectedthephosphorylationstatusofallmitogen-activatedproteinkinases,concernsremainaboutitsspecicitytowardWip1andfurthermodicationmaybenecessarytogenerateamoreselectiveinhibitorofWip1CheckpointcontrolandcancerRHMedemaandLMacurek2608Oncogene(Belovaetal.
,2005).
Anothercell-permeable,small-moleculeinhibitorofWip1(CCT007093,IC508.
4mM)hasrecentlybeenreportedtodecreasetheviabilityoftheMCF7,KPL1andMCF3Btumorcelllines(Rayteretal.
,2008).
Interestingly,thiscytotoxiceffectofWip1inhibitionseemstobespecicfortumorsthatover-expressWip1,whereascellswithnormalWip1levelstoleratethelossofWip1activity(Rayteretal.
,2008).
ThecelldeathinducedbyCCT007093wasdependentonp38,whichisawell-describedsubstrateofWip1,andmimickedtheeffectofWip1RNAinterference,indicat-ingthattheobservedphenotypeindeedresultsfromspecicinhibitionofWip1.
ItwillbeinterestingtoseehowthispromisingWip1inhibitorwillperformonabroaderspectrumoftumorsandinxenografttumormodels.
ConcludingremarksOverthelastdecades,wehavegainedalotofinsightintothemechanismsthatacttocoordinatethecellularresponsetoDNAdamage.
IthasbecomeclearthatvariouspathwayscanactinparalleltopromoteDNArepairandseveralothersacttogethertoinhibitcell-cycleprogression.
WehavealsolearnedthatdifferentcomponentsoftheoverallDDRcanbelostincancercells,renderingthemmoredependentontheremainingintactpathwaystopromoterepairandarrestthecellcycle.
Thishasalreadyledtothedevelopmentoftailoredtherapiesthatexploitthecancer-specicDDRdefect(s).
ThesepromisingapproachescallforamoreadvancedmolecularunderstandingoftheDDRaswellasthedevelopmentofsmall-moleculeinhibitorstargetingvariouscomponentsoftheDNA-damagecheckpoint,whichcanopenadditionalavenuesforpersonalizedcancertreatment.
ConictofinterestTheauthorsdeclarenoconictofinterest.
AcknowledgementsRHMwasfundedbytheNetherlandsGenomicsInitiativeoftheNetherlandsOrganizationforScienticResearchandbytheDutchCancerSociety(GrantUU2009-4478).
LMwassupportedbytheGrantAgencyoftheCzechRepublic(P301/10/1525andP305/10/P420).
ReferencesAgamiR,BernardsR.
(2000).
DistinctinitiationandmaintenancemechanismscooperatetoinduceG1cellcyclearrestinresponsetoDNAdamage.
Cell102:55–66.
AhnJ,SchwarzJ,Piwnica-WormsH,CanmanC.
(2000).
Threonine68phosphorylationbyataxiatelangiectasiamutatedisrequiredforefcientactivationofChk2inresponsetoionizingradiation.
CancerRes60:5934–5936.
AhnJ,UristM,PrivesC.
(2003).
Questioningtheroleofcheckpointkinase2inthep53DNAdamageresponse.
JBiolChem278:20480–20489.
Alvarez-FernandezM,HalimVA,KrenningL,ApreliaM,MohammedS,HeckAJetal.
(2010).
RecoveryfromaDNA-damage-inducedG2arrestrequiresCdk-dependentactivationofFoxM1.
EMBORep11:452–458.
AndersonVE,WaltonMI,EvePD,BoxallKJ,AntoniL,CaldwellJJetal.
(2011).
CCT241533isapotentandselectiveinhibitorofCHK2thatpotentiatesthecytotoxicityofPARPinhibitors.
CancerRes71:463–472.
BakkenistC,KastanM.
(2003).
DNAdamageactivatesATMthroughintermolecularautophosphorylationanddimerdissociation.
Nature421:499–506.
BartekJ,LukasJ.
(2003).
Chk1andChk2kinasesincheckpointcontrolandcancer.
CancerCell3:421–429.
BatchelorE,LoewerA,LahavG.
(2009).
Theupsanddownsofp53:understandingproteindynamicsinsinglecells.
NatRevCancer9:371–377.
BatchelorE,LoewerA,MockC,LahavG.
(2011).
Stimulus-dependentdynamicsofp53insinglecells.
MolSystBiol7:488.
BatchelorE,MockCS,BhanI,LoewerA,LahavG.
(2008).
Recurrentinitiation:amechanismfortriggeringp53pulsesinresponsetoDNAdamage.
MolCell30:277–289.
Bekker-JensenS,MailandN.
(2010).
AssemblyandfunctionofDNAdouble-strandbreakrepairfociinmammaliancells.
DNARepair9:1219–1228.
BelovaG,DemidovON,FornaceAJ,BulavinDV.
(2005).
ChemicalinhibitionofWip1phosphatasecontributestosuppressionoftumorigenesis.
CancerBiolTher4:1154–1158.
BennetzenMV,LarsenDH,BunkenborgJ,BartekJ,LukasJ,AndersenJS.
(2010).
Site-specicphosphorylationdynamicsofthenuclearproteomeduringtheDNAdamagetesponse.
MolCellProteomics9:1314–1323.
BensimonA,SchmidtA,ZivY,ElkonR,WangS-Y,ChenDJetal.
(2010).
ATM-dependentand-independentdynamicsofthenuclearphosphoproteomeafterDNAdamage.
SciSignal3:rs3.
BulavinD,HigashimotoY,PopoffI,GaardeW,BasrurV,PotapovaO.
(2001).
InitiationofaG2/Mcheckpointafterultravioletradiationrequiresp38kinase.
Nature411:102–107.
BulavinDV,DemidovON,SaitoSi,KauraniemiP,PhillipsC,AmundsonSAetal.
(2002).
AmplicationofPPM1Dinhumantumorsabrogatesp53tumor-suppressoractivity.
NatGenet31:210–215.
BulavinDV,PhillipsC,NannengaB,TimofeevO,DonehowerLA,AndersonCWetal.
(2004).
InactivationoftheWip1phosphataseinhibitsmammarytumorigenesisthroughp38MAPK-mediatedactivationofthep16Ink4a–p19Arfpathway.
NatGenet36:343–350.
BunzF,DutriauxA,LengauerC,WaldmanT,ZhouS,BrownJPetal.
(1998).
Requirementforp53andp21tosustainG2arrestafterDNAdamage.
Science282:1497–1501.
CarlessiL,BuscemiG,FontanellaE,DeliaD.
(2010).
Aproteinphosphatasefeedbackmechanismregulatesthebasalphosphoryla-tionofChk2kinaseintheabsenceofDNAdamage.
BiochimBiophysActa1803:1213–1223.
CastellinoR,DeBortoliM,LuX,MoonS-H,NguyenT-A,ShepardMetal.
(2008).
Medulloblastomasoverexpressthep53-inactivatingoncogeneWIP1/PPM1D.
JNeurooncol86:245–256.
ChaH,LoweJM,LiH,LeeJ-S,BelovaGI,BulavinDVetal.
(2010).
Wip1directlydephosphorylatesg-H2AXandattenuatestheDNAdamageresponse.
CancerRes70:4112–4122.
CheckpointcontrolandcancerRHMedemaandLMacurek2609OncogeneChailleuxC,TytecaS,PapinC,BoudsocqF,PugetN,CourilleauCetal.
(2010).
PhysicalinteractionbetweenthehistoneacetyltransferaseTip60andtheDNAdouble-strandbreakssensorMRNcomplex.
BiochemJ426:365–371.
ChiniC,ChenJ.
(2003).
Humanclaspinisrequiredforreplicationcheckpointcontrol.
JBiolChem278:30057–30062.
ChowdhuryD,KeoghM,IshiiH,PetersonC,BuratowskiS,LiebermanJ.
(2005).
Gamma-H2AXdephosphorylationbyproteinphosphatase2AfacilitatesDNAdouble-strandbreakrepair.
MolCell20:801–809.
CicciaA,ElledgeSJ.
(2010).
TheDNAdamageresponse:makingitsafetoplaywithknives.
MolCell40:179–204.
CimprichK,CortezD.
(2008).
ATR:anessentialregulatorofgenomeintegrity.
NatRevMolCellBiol9:616–627.
Cotta-RamusinoC,McDonaldER,HurovK,SowaME,HarperJW,ElledgeSJ.
(2011).
ADNAdamageresponsescreenidentiesRHINO,a9-1-1andTopBP1interactingproteinrequiredforATRsignaling.
Science332:1313–1317.
CuadradoM,Gutierrez-MartinezP,SwatA,NebredaAR,Fernan-dez-CapetilloO.
(2009).
p27Kip1stabilizationisessentialforthemaintenanceofcellcyclearrestinresponsetoDNAdamage.
CancerRes69:8726–8732.
DaiC,GuW.
(2010).
p53post-translationalmodication:deregulatedintumorigenesis.
TrendsMolMed16:528–536.
DalvaiM,MondesertO,BourdonJC,DucommunB,DozierC.
(2011).
Cdc25Bisnegativelyregulatedbyp53throughSp1andNF-Ytranscriptionfactors.
Oncogene30:2282–2288.
FalckJ,CoatesJ,JacksonSP.
(2005).
ConservedmodesofrecruitmentofATM,ATRandDNA-PKcstositesofDNAdamage.
Nature434:605–611.
FalckJ,MailandN,SyljuasenRG,BartekJ,LukasJ.
(2001).
TheATM–Chk2–Cdc25Acheckpointpathwayguardsagainstradio-resistantDNAsynthesis.
Nature410:842–847.
FergusonAM,WhiteLS,DonovanPJ,Piwnica-WormsH.
(2005).
NormalcellcycleandcheckpointresponsesinmiceandcellslackingCdc25BandCdc25Cproteinphosphatases.
MolCellBiol25:2853–2860.
FiscellaM,ZhangH,FanS,SakaguchiK,ShenS,MercerW.
(1997).
Wip1,anovelhumanproteinphosphatasethatisinducedinresponsetoionizingradiationinap53-dependentmanner.
ProcNatlAcadSciUSA94:6048–6053.
ForrestA,GabrielliB.
(2001).
Cdc25Bactivityisregulatedby14-3-3.
Oncogene20:4393–4401.
FracassoP,WilliamsK,ChenR,PicusJ,MaC,EllisMetal.
(2010).
Aphase1studyofUCN-01incombinationwithirinotecaninpatientswithresistantsolidtumormalignancies.
CancerChemotherPharmacol67:1225–1237.
FreemanA,DapicV,MonteiroA.
(2010).
NegativeregulationofCHK2activitybyproteinphosphatase2AismodulatedbyDNAdamage.
CellCycle9:736–747.
FreemanA,MonteiroA.
(2010).
PhosphatasesinthecellularresponsetoDNAdamage.
CellCommunSignal8:27.
FujimotoH,OnishiN,KatoN,TakekawaM,XuXZ,KosugiAetal.
(2005).
RegulationoftheantioncogenicChk2kinasebytheoncogenicWip1phosphatase.
CellDeathDiffer13:1170–1180.
GoodarziA,JonnalagaddaJ,DouglasP,YoungD,YeR,MoorheadG.
(2004).
Autophosphorylationofataxia-telangiectasiamutatedisregulatedbyproteinphosphatase2A.
EMBOJ23:4451–4461.
GuptaM,GuptaSK,HoffmanB,LiebermannDA.
(2006).
Gadd45aandGadd45bprotecthematopoieticcellsfromUV-inducedapoptosisviadistinctsignalingpathways,includingp38activationandJNKinhibition.
JBiolChem281:17552–17558.
HarrisonM,LiJ,DegenhardtY,HoeyT,PowersS.
(2004).
Wip1-decientmiceareresistanttocommoncancergenes.
TrendsMolMed10:359–361.
HiraiH,AraiT,OkadaM,NishibataT,KobayashiM,SakaiNetal.
(2010).
MK-1775,asmallmoleculeWee1inhibitor,enhancesanti-tumorefcacyofvariousDNA-damagingagents,including5-uorouracil.
CancerBiolTher9:514–522.
HiraiH,IwasawaY,OkadaM,AraiT,NishibataT,KobayashiMetal.
(2009).
Small-moleculeinhibitionofWee1kinasebyMK-1775selectivelysensitizesp53-decienttumorcellstoDNA-damagingagents.
MolCancerTher8:2992–3000.
HiraoA,CheungA,DuncanG,GirardP,EliaA,WakehamA.
(2002).
Chk2isatumorsuppressorthatregulatesapoptosisinbothanataxiatelangiectasiamutated(ATM)-dependentandanATM-independentmanner.
MolCellBiol22:6521–6532.
HiraoA,KongY-Y,MatsuokaS,WakehamA,RulandJ,YoshidaHetal.
(2000).
DNAdamage-inducedactivationofp53bythecheckpointkinaseChk2.
Science287:1824–1827.
ImbrianoC,GurtnerA,CocchiarellaF,DiAgostinoS,BasileV,GostissaMetal.
(2005).
Directp53transcriptionalrepression:invivoanalysisofCCAAT-containingG2/Mpromoters.
MolCellBiol25:3737–3751.
JackMT,WooRA,HiraoA,CheungA,MakTW,LeePWK.
(2002).
Chk2isdispensableforp53-mediatedG1arrestbutisrequiredforalatentp53-mediatedapoptoticresponse.
ProcNatlAcadSciUSA99:9825–9829.
JallepalliPV,LengauerC,VogelsteinB,BunzF.
(2003).
TheChk2tumorsuppressorisnotrequiredforp53responsesinhumancancercells.
JBiolChem278:20475–20479.
JangY-J,MaS,TeradaY,EriksonRL.
(2002).
Phosphorylationofthreonine210andtheroleofserine137intheregulationofmammalianPolo-likekinase.
JBiolChem277:44115–44120.
JazayeriA,FalckJ,LukasC,BartekJ,SmithGCM,LukasJetal.
(2006).
ATM-andcellcycle-dependentregulationofATRinresponsetoDNAdouble-strandbreaks.
NatCellBiol8:37–45.
JiangH,ReinhardtHC,BartkovaJ,TommiskaJ,BlomqvistC,NevanlinnaHetal.
(2009).
ThecombinedstatusofATMandp53linktumordevelopmentwiththerapeuticresponse.
GenesDev23:1895–1909.
JinJ,AngXL,YeX,LivingstoneM,HarperJW.
(2008).
DifferentialrolesforcheckpointkinasesinDNAdamage-dependentdegradationoftheCdc25Aproteinphosphatase.
JBiolChem283:19322–19328.
JinJ,ShiroganeT,XuL,NalepaG,QinJ,ElledgeS.
(2003).
SCFbeta–TRCPlinksChk1signalingtodegradationoftheCdc25Aproteinphosphatase.
GenesDev17:3062–3074.
KasaharaK,GotoH,EnomotoM,TomonoY,KiyonoT,InagakiM.
(2010).
14-3-3[gamma]mediatesCdc25AproteolysistoblockprematuremitoticentryafterDNAdamage.
EMBOJ29:2802–2812.
KramerA,MailandN,LukasC,SyljuasenR,WilkinsonC,NiggE.
(2004).
Centrosome-associatedChk1preventsprematureactivationofcyclin-B–Cdk1kinase.
NatCellBiol6:884–891.
KumagaiA,KimS,DunphyW.
(2004).
ClaspinandtheactivatedformofATR–ATRIPcollaborateintheactivationofChk1.
JBiolChem279:49599–49608.
KuntzK,O'ConnellMJ.
(2009).
TheG2DNAdamagecheckpoint:couldthisancientregulatorbetheAchillesheelofcancerCancerBiolTher8:1433–1439.
LafargaV,CuadradoA,LopezdeSilanesI,BengoecheaR,Fernandez-CapetilloO,NebredaAR.
(2009).
p38mitogen-activatedproteinkinase-andHuR-dependentstabilizationofp21Cip1mRNAmediatestheG1/Scheckpoint.
MolCellBiol29:4341–4351.
LahavG,RosenfeldN,SigalA,Geva-ZatorskyN,LevineAJ,ElowitzMBetal.
(2004).
Dynamicsofthep53–Mdm2feedbackloopinindividualcells.
NatGenet36:147–150.
LamMH,LiuQ,ElledgeSJ,RosenJM.
(2004).
Chk1ishaploinsuf-cientformultiplefunctionscriticaltotumorsuppression.
CancerCell6:45–59.
LaraPN,MackPC,SynoldT,FrankelP,LongmateJ,GumerlockPHetal.
(2005).
Thecyclin-dependentkinaseinhibitorUCN-01plusc–isplatininadvancedsolidtumors:aCaliforniaCancerCon-sortiumPhaseIPharmacokineticandMolecularCorrelativeTrial.
ClinCancerRes11:4444–4450.
LeGuezennecX,BulavinDV.
(2010).
WIP1phosphataseatthecrossroadsofcancerandaging.
TrendsBiochemSci35:109–114.
CheckpointcontrolandcancerRHMedemaandLMacurek2610OncogeneLeeJ-H,GoodarziAA,JeggoPA,PaullTT.
(2010).
53BP1promotesATMactivitythroughdirectinteractionswiththeMRNcomplex.
EMBOJ29:574–585.
LenartP,PetronczkiM,SteegmaierM,DiFioreB,LippJJ,HoffmannMetal.
(2007).
Thesmall-moleculeinhibitorBI2536revealsnovelinsightsintomitoticrolesofPolo-likekinase1.
CurrBiol17:304–315.
LeroyC,LeeS,VazeM,OchsenbienF,GueroisR,HaberJ.
(2003).
PP2CphosphatasesPtc2andPtc3arerequiredforDNAcheckpointinactivationafteradouble-strandbreak.
MolCell11:827–835.
Leung-PinedaV,RyanC,Piwnica-WormsH.
(2006).
PhosphorylationofChk1byATRisantagonizedbyaChk1-regulatedproteinphosphatase2Acircuit.
MolCellBiol26:7529–7538.
LiH-H,CaiX,ShouseGP,PilusoLG,LiuX.
(2007).
AspecicPP2Aregulatorysubunit,B56[gamma],mediatesDNAdamage-induceddephosphorylationofp53atThr55.
EMBOJ26:402–411.
LiJ,YangY,PengY,AustinRJ,vanEyndhovenWG,NguyenKCQetal.
(2002).
OncogenicpropertiesofPPM1Dlocatedwithinabreastcanceramplicationepicenterat17q23.
NatGenet31:133–134.
LindqvistA,deB,MacurekL,BrasA,MensingaA,BruinsmaW.
(2009a).
Wip1confersG2checkpointrecoverycompetencebycounteractingp53-dependenttranscriptionalrepression.
EMBOJ28:3196–3206.
LindqvistA,Rodrguez-BravoV,MedemaRH.
(2009b).
Thedecisiontoentermitosis:feedbackandredundancyinthemitoticentrynetwork.
JCellBiol185:193–202.
LiontosM,VelimeziG,PaterasIS,AngelopoulouR,PapavassiliouAG,BartekJetal.
(2010).
Therolesofp27Kip1andDNAdamagesignallinginthechemotherapy-induceddelayedcellcyclecheck-point.
JCellMolMed14:2264–2267.
LiuQ,GuntukuS,CuiX,MatsuokaS,CortezD,TamaiK.
(2000).
Chk1isanessentialkinasethatisregulatedbyAtrandrequiredfortheG(2)/MDNAdamagecheckpoint.
GenesDev14:1448–1459.
LiuXS,LiH,SongB,LiuX.
(2010).
Polo-likekinase1phosphoryla-tionofG2andS-phase-expressed1proteinisessentialforp53inactivationduringG2checkpointrecovery.
EMBORep11:626–632.
LobjoisV,JullienD,BoucheJ-P,DucommunB.
(2009).
Thepolo-likekinase1regulatesCDC25B-dependentmitosisentry.
BiochimBiophysActa1793:462–468.
LoewerA,BatchelorE,GagliaG,LahavG.
(2010).
Basaldynamicsofp53revealtranscriptionallyattenuatedpulsesincyclingcells.
Cell142:89–100.
LuX,MaO,NguyenT-A,JonesSN,OrenM,DonehowerLA.
(2007).
TheWip1phosphataseactsasagatekeeperinthep53–Mdm2autoregulatoryloop.
CancerCell12:342–354.
LuX,NannengaB,DonehowerL.
(2005).
PPM1DdephosphorylatesChk1andp53andabrogatescellcyclecheckpoints.
GenesDev19:1162–1174.
LuX,NguyenT,MoonS,DarlingtonY,SommerM,DonehowerL.
(2008).
Thetype2CphosphataseWip1:anoncogenicregulatoroftumorsuppressorandDNAdamageresponsepathways.
CancerMetastasisRev27:123–135.
MaCX,JanetkaJW,Piwnica-WormsH.
(2011).
Deathbyreleasingthebreaks:CHK1inhibitorsascancertherapeutics.
TrendsMolMed17:88–96.
MacurekL,LindqvistA,LimD,LampsonMA,KlompmakerR,FreireRetal.
(2008).
Polo-likekinase-1isactivatedbyauroraAtopromotecheckpointrecovery.
Nature455:119–123.
MacurekL,LindqvistA,VoetsO,KoolJ,VosH,MedemaR.
(2010).
Wip1phosphataseisassociatedwithchromatinanddephosphor-ylatesgammaH2AXtopromotecheckpointinhibition.
Oncogene29:2281–2291.
MailandN,Bekker-JensenS,BartekJ,LukasJ.
(2006).
DestructionofclaspinbySCF[beta]TrCPrestrainsChk1activationandfacilitatesrecoveryfromgenotoxicstress.
MolCell23:307–318.
MailandN,FalckJ,LukasC,SyljuasenRG,WelckerM,BartekJetal.
(2000).
RapiddestructionofhumanCdc25AinresponsetoDNAdamage.
Science288:1425–1429.
MamelyI,vanVugtMATM,SmitsVAJ,SempleJI,LemmensB,PerrakisAetal.
(2006).
Polo-likekinase-1controlsproteasome-dependentdegradationofclaspinduringcheckpointrecovery.
CurrBiol16:1950–1955.
MankeIA,NguyenA,LimD,StewartMQ,EliaAEH,YaffeMB.
(2005).
MAPKAPkinase-2isacellcyclecheckpointkinasethatregulatestheG2/MtransitionandSphaseprogressioninresponsetoUVirradiation.
MolCell17:37–48.
MatsuokaS,BallifBA,SmogorzewskaA,McDonaldIIIER,HurovKE,LuoJetal.
(2007).
ATMandATRsubstrateanalysisrevealsextensiveproteinnetworksresponsivetoDNAdamage.
Science316:1160–1166.
Maya-MendozaA,PetermannE,GillespieDAF,CaldecottKW,JacksonDA.
(2007).
Chk1regulatesthedensityofactivereplicationoriginsduringthevertebrateSphase.
EMBOJ26:2719–2731.
McKenzieL,KingS,MarcarL,NicolS,DiasS,SchummKetal.
(2010).
p53-dependentrepressionofpolo-likekinase-1(PLK1).
CellCycle9:4200–4212.
MelixetianM,KleinDK,SorensenCS,HelinK.
(2009).
NEK11regulatesCDC25AdegradationandtheIR-inducedG2/Mcheck-point.
NatCellBiol11:1247–1253.
MenzelT,Nahse-KumpfV,KousholtAN,KleinDK,Lund-AndersenC,LeesMetal.
(2011).
AgeneticscreenidentiesBRCA2andPALB2askeyregulatorsofG2checkpointmaintenance.
EMBORep12:705–712.
MikhailovA,ShinoharaM,RiederCL.
(2004).
TopoisomeraseIIandhistonedeacetylaseinhibitorsdelaytheG2/Mtransitionbytriggeringthep38MAPKcheckpointpathway.
JCellBiol166:517–526.
MoonS,LinL,ZhangX,NguyenT,DarlingtonY,WaldmanA.
(2010).
Wildtypep53-inducedphosphatase1dephosphorylateshistonevariant{gamma}-H2AXandsuppressesDNAdoublestrandbreakrepair.
JBiolChem285:12935–12947.
NannengaB,LuX,DumbleM,VanMaanenM,NguyenT-A,SuttonRetal.
(2006).
AugmentedcancerresistanceandDNAdamageresponsephenotypesinPPM1Dnullmice.
MolCarcinog45:594–604.
O'ConnellM,RaleighJ,VerkadeH,NurseP.
(1997).
Chk1isawee1kinaseintheG2DNAdamagecheckpointinhibitingcdc2byY15phosphorylation.
EMBOJ16:545–554.
PeddibhotlaS,LamMH,Gonzalez-RimbauM,RosenJM.
(2009).
TheDNA-damageeffectorcheckpointkinase1isessentialforchromosomesegregationandcytokinesis.
ProcNatlAcadSciUSA106:5159–5164.
PellegriniM,CelesteA,DilippantonioS,GuoR,WangW,FeigenbaumL.
(2006).
Autophosphorylationatserine1987isdispensableformurineAtmactivationinvivo.
Nature443:222–225.
PengA,LewellynAL,SchiemannWP,MallerJL.
(2010).
Repo-Mancontrolsaproteinphosphatase1-dependentrhresholdforDNAdamagecheckpointactivation.
CurrBiol20:387–396.
PengC-Y,GravesPR,ThomaRS,WuZ,ShawAS,Piwnica-WormsH.
(1997).
MitoticandG2checkpointcontrol:regulationof14-3-3proteinbindingbyphosphorylationofCdc25Conserine-216.
Science277:1501–1505.
PeschiaroliA,DorrelloNV,GuardavaccaroD,VenereM,HalazonetisT,ShermanNEetal.
(2006).
SCF[beta]TrCP-mediateddegradationofclaspinregulatesrecoveryfromtheDNAreplicationcheckpointresponse.
MolCell23:319–329.
PhongMS,VanHornRD,LiS,Tucker-KelloggG,SuranaU,YeXS.
(2010).
p38mitogen-activatedproteinkinasepromotescellsurvivalinresponsetoDNAdamagebutisnotrequiredfortheG2DNAdamagecheckpointinhumancancercells.
MolCellBiol30:3816–3826.
PoloSE,JacksonSP.
(2011).
DynamicsofDNAdamageresponseproteinsatDNAbreaks:afocusonproteinmodications.
GenesDev25:409–433.
RajeshkumarNV,DeOliveiraE,OttenhofN,WattersJ,BrooksD,DemuthTetal.
(2011).
MK-1775,apotentWee1inhibitor,synergizeswithgemcitabinetoachievetumorregressions,selectivelyCheckpointcontrolandcancerRHMedemaandLMacurek2611Oncogeneinp53-decientpancreaticcancerxenografts.
ClinCancerRes17:2799–2806.
RamanM,EarnestS,ZhangK,ZhaoY,CobbMH.
(2007).
TAOkinasesmediateactivationofp38inresponsetoDNAdamage.
EMBOJ26:2005–2014.
RayterS,ElliottR,TraversJ,RowlandsMG,RichardsonTB,BoxallKetal.
(2008).
AchemicalinhibitorofPPM1DthatselectivelykillscellsoverexpressingPPM1D.
Oncogene27:1036–1044.
ReinhardtHC,AslanianAS,LeesJA,YaffeMB.
(2007).
p53-decientcellsrelyonATM-andATR-mediatedcheckpointsignalingthroughthep38MAPK/MK2pathwayforsurvivalafterDNAdamage.
CancerCell11:175–189.
ReinhardtHC,HasskampP,SchmeddingI,MorandellS,vanVugtMATM,WangXetal.
(2010).
DNAdamageactivatesaspatiallydistinctlatecytoplasmiccell-cyclecheckpointnetworkcontrolledbyMK2-mediatedRNAstabilization.
MolCell40:34–49.
Saito-OharaF,ImotoI,InoueJ,HosoiH,NakagawaraA,SugimotoTetal.
(2003).
PPM1Disapotentialtargetfor17qgaininneuroblastoma.
CancerRes63:1876–1883.
SanchezY,WongC,ThomaRS,RichmanR,WuZ,Piwnica-WormsHetal.
(1997).
ConservationoftheChk1checkpointpathwayinmammals:linkageofDNAdamagetoCdkregulationthroughCdc25.
Science277:1497–1501.
SantraMK,WajapeyeeN,GreenMR.
(2009).
F-boxproteinFBXO31mediatescyclinD1degradationtoinduceG1arrestafterDNAdamage.
Nature459:722–725.
SartoriAA,LukasC,CoatesJ,MistrikM,FuS,BartekJetal.
(2007).
HumanCtIPpromotesDNAendresection.
Nature450:509–514.
SatohN,ManiwaY,BermudezVP,NishimuraK,NishioW,YoshimuraMetal.
(2011).
OncogenicphosphataseWip1isanovelprognosticmarkerforlungadenocarcinomapatientsurvival.
CancerSci102:1101–1106.
SecchieroP,BoscoR,CeleghiniC,ZauliG.
(2011).
Recentadvancesinthetherapeuticperspectivesofnutlin-3.
CurrPharmDes17:569–577.
SekiA,CoppingerJA,JangC-Y,YatesJR,FangG.
(2008).
BoraandthekinaseauroraAcooperativelyactivatethekinasePlk1andcontrolmitoticentry.
Science320:1655–1658.
ShangaryS,QinD,McEachernD,LiuM,MillerRS,QiuSetal.
(2008).
Temporalactivationofp53byaspecicMDM2inhibitorisselectivelytoxictotumorsandleadstocompletetumorgrowthinhibition.
ProcNatlAcadSciUSA105:3933–3938.
ShenH,MakiC.
(2011).
Pharmacologicactivationofp53bysmall-moleculeMDM2antagonists.
CurrPharmDes17:560–568.
ShibataA,BartonO,NoonAT,DahmK,DeckbarD,GoodarziAAetal.
(2010).
RoleofATMandthedamageresponsemediatorproteins53BP1andMDC1inthemaintenanceofG2/Mcheckpointarrest.
MolCellBiol30:3371–3383.
ShouseGP,NobumoriY,PanowiczMJ,LiuX.
(2011).
ATM-mediatedphosphorylationactivatesthetumor-suppressivefunctionofB56[gamma]-PP2A.
Oncogene30:3755–3765.
ShreeramS,DemidovO,HeeW,YamaguchiH,OnishiN,KekC.
(2006a).
Wip1phosphatasemodulatesATM-dependentsignalingpathways.
MolCell23:757–764.
ShreeramS,HeeWK,DemidovON,KekC,YamaguchiH,FornaceJrAJ.
etal.
(2006b).
RegulationofATM/p53-dependentsuppres-sionofmyc-inducedlymphomasbyWip1phosphatase.
JExpMed203:2793–2799.
SmitsVAJ,KlompmakerR,ArnaudL,RijksenG,NiggEA,MedemaRH.
(2000).
Polo-likekinase-1isatargetoftheDNAdamagecheckpoint.
NatCellBiol2:672–676.
SmitsVAJ,ReaperPM,JacksonSP.
(2006).
RapidPIKK-dependentreleaseofChk1fromchromatinpromotestheDNA-damagecheckpointresponse.
CurrBiol16:150–159.
StevensC,SmithL,LaThangueN.
(2003).
Chk2activatesE2F-1inresponsetoDNAdamage.
NatCellBiol5:401–409.
StuckiM,ClappertonJ,MohammadD,YaffeM,SmerdonS,JacksonS.
(2005).
MDC1directlybindsphosphorylatedhistoneH2AXtoregulatecellularresponsestoDNAdouble-strandbreaks.
Cell123:1213–1226.
SunY,JiangX,ChenS,FernandesN,PriceBD.
(2005).
ArolefortheTip60histoneacetyltransferaseintheacetylationandactivationofATM.
ProcNatlAcadSciUSA102:13182–13187.
SunY,JiangX,XuY,AyrapetovMK,MoreauLA,WhetstineJRetal.
(2009).
HistoneH3methylationlinksDNAdamagedetectiontoactivationofthetumoursuppressorTip60.
NatCellBiol11:1376–1382.
SunY,XuY,RoyK,PriceBD.
(2007).
DNADamage-InducedAcetylationofLysine3016ofATMActivatesATMKinaseActivity.
MolCellBiol27:8502–8509.
SyljuasenRG,SorensenCS,HansenLT,FuggerK,LundinC,JohanssonFetal.
(2005).
InhibitionofhumanChk1causesincreasedinitiationofDNAreplication,phosphorylationofATRtargets,andDNAbreakage.
MolCellBiol25:3553–3562.
TakaiH,NakaK,OkadaY,WatanabeM,HaradaN,SaitoS.
(2002).
Chk2-decientmiceexhibitradioresistanceanddefectivep53-mediatedtranscription.
EMBOJ21:5195–5205.
TakaiH,TominagaK,MotoyamaN,MinamishimaY,NagahamaH,TsukiyamaT.
(2000).
AberrantcellcyclecheckpointfunctionandearlyembryonicdeathinChk1(/)mice.
GenesDev14:1439–1447.
TakekawaM,AdachiM,NakahataA,NakayamaI,ItohF,TsukudaHetal.
(2000).
p53-inducibleWip1phosphatasemediatesanegativefeedbackregulationofp38MAPK–p53signalinginresponsetoUVradiation.
EMBOJ19:6517–6526.
TanDSP,IravaniM,McCluggageWG,LambrosMBK,MilaneziF,MackayAetal.
(2011).
Genomicanalysisrevealsthemolecularheterogeneityofovarianclearcellcarcinomas.
ClinCancerRes17:1521–1534.
TanDSP,LambrosMBK,RayterS,NatrajanR,VatchevaR,GaoQetal.
(2009).
PPM1Disapotentialtherapeutictargetinovarianclearcellcarcinomas.
ClinCancerRes15:2269–2280.
ToczyskiDP,GalgoczyDJ,HartwellLH.
(1997).
CDC5andCKIIcontroladaptationtotheyeastDNAdamagecheckpoint.
Cell90:1097–1106.
Toyoshima-MorimotoF,TaniguchiE,NishidaE.
(2002).
Plk1promotesnucleartranslocationofhumanCdc25Cduringprophase.
EMBORep3:341–348.
TsvetkovL,SternD.
(2005).
PhosphorylationofPlk1atS137andT210isinhibitedinresponsetoDNAdamage.
CellCycle4:166–171.
vanVugtMATM,BrasA,MedemaRH.
(2004).
Polo-likekinase-1controlsrecoveryfromaG2DNAdamage-inducedarrestinmammaliancells.
MolCell15:799–811.
vanVugtMATM,GardinoAK,LindingR,OstheimerGJ,ReinhardtHC,OngS-Eetal.
(2010).
AmitoticphosphorylationfeedbacknetworkconnectsCdk1,Plk1,53BP1,andChk2toinactivatetheG2/MDNAdamagecheckpoint.
PLoSBiol8:e1000287.
VassilevLT,VuBT,GravesB,CarvajalD,PodlaskiF,FilipovicZetal.
(2004).
Invivoactivationofthep53pathwaybysmall-moleculeantagonistsofMDM2.
Science303:844–848.
WangP,RaoJ,YangH,ZhaoH,YangL.
(2011).
PPM1Dsilencingbylentiviral-mediatedRNAinterferenceinhibitsproliferationandinvasionofhumangliomacells.
JHuazhongUnivSciTechnologMedSci31:94–99.
WangQ,FanS,EastmanA,WorlandPJ,SausvilleEA,O0ConnorPM.
(1996).
UCN-01:apotentabrogatorofG2checkpointfunctionincancercellswithdisruptedp53.
JNatlCancerInst88:956–965.
WangXW,ZhanQ,CoursenJD,KhanMA,KontnyHU,YuLetal.
(1999).
GADD45inductionofaG2/Mcellcyclecheckpoint.
ProcNatlAcadSciUSA96:3706–3711.
WangY,LiJ,BooherRN,KrakerA,LawrenceT,LeopoldWRetal.
(2001).
Radiosensitizationofp53mutantcellsbyPD0166285,anovelG2checkpointabrogator.
CancerRes61:8211–8217.
WatanabeN,AraiH,NishiharaY,TaniguchiM,WatanabeN,HunterTetal.
(2004).
M-phasekinasesinducephospho-dependentubiquitinationofsomaticWee1bySCFI2–TrCP.
ProcNatlAcadSciUSA101:4419–4424.
CheckpointcontrolandcancerRHMedemaandLMacurek2612OncogeneWilskerD,PetermannE,HelledayT,BunzF.
(2008).
EssentialfunctionofChk1canbeuncoupledfromDNAdamagecheckpointandreplicationcontrol.
ProcNatlAcadSciUSA105:20752–20757.
XiaoZ,ChenZ,GunasekeraAH,SowinTJ,RosenbergSH,FesikSetal.
(2003).
Chk1mediatesSandG2arreststhroughCdc25AdegradationinresponsetoDNA-damagingagents.
JBiolChem278:21767–21773.
YamaguchiH,DurellSR,ChatterjeeDK,AndersonCW,AppellaE.
(2007).
TheWip1phosphatasePPM1DdephosphorylatesSQ/TQmotifsincheckpointsubstratesphosphorylatedbyPI3K-likekinases.
Biochemistry46:12594–12603.
YamaguchiH,DurellSR,FengH,BaiY,AndersonCW,AppellaE.
(2006).
Developmentofasubstrate-basedcyclicphosphopeptideinhibitorofproteinphosphatase2Cd,Wip1.
Biochemistry45:13193–13202.
ZachosG,BlackEJ,WalkerM,ScottMT,VagnarelliP,EarnshawWCetal.
(2007).
Chk1isrequiredforspindlecheckpointfunction.
DevCell12:247–260.
ZhanQ,AntinoreMJ,WangXW,CarrierF,SmithML,HarrisCCetal.
(1999).
AssociationwithCdc2andinhibitionofCdc2/cyclinB1kinaseactivitybythep53-regulatedproteinGadd45.
Oncogene18:2892–2900.
ZhangX,LinL,GuoH,YangJ,JonesSN,JochemsenAetal.
(2009).
PhosphorylationanddegradationofMdmXisinhibitedbyWip1phosphataseintheDNAdamageresponse.
CancerRes69:7960–7968.
ZhangX,WanG,MlotshwaS,VanceV,BergerFG,ChenHetal.
(2010).
OncogenicWip1phosphataseisinhibitedbymiR-16intheDNAdamagesignalingpathway.
CancerRes70:7176–7186.
ZhaoH,WatkinsJL,Piwnica-WormsH.
(2002).
Disruptionofthecheckpointkinase1/celldivisioncycle25Apathwayabrogatesionizingradiation-inducedSandG2checkpoints.
ProcNatlAcadSciUSA99:14795–14800.
ZhouB-BS,BartekJ.
(2004).
Targetingthecheckpointkinases:chemosensitizationversuschemoprotection.
NatRevCancer4:216–225.
ZouL,ElledgeSJ.
(2003).
SensingDNAdamagethroughATRIPrecognitionofRPA–ssDNAcomplexes.
Science300:1542–1548.
CheckpointcontrolandcancerRHMedemaandLMacurek2613Oncogene
蓝竹云怎么样 蓝竹云好不好蓝竹云是新商家这次给我们带来的 挂机宝25元/年 美国西雅图云服务器 下面是套餐和评测,废话不说直接开干~~蓝竹云官网链接点击打开官网江西上饶挂机宝宿主机配置 2*E5 2696V2 384G 8*1500G SAS RAID10阵列支持Windows sever 2008,Windows sever 2012,Centos 7.6,Debian 10.3,Ubuntu1...
全球领先的IDC服务商华纳云“美国服务器”正式发售啦~~~~此次上线的美国服务器包含美国云服务器、美国服务器、美国高防服务器以及美国高防云服务器。针对此次美国服务器新品上线,华纳云也推出了史无前例的超低活动力度。美国云服务器低至3折,1核1G5M低至24元/月,20G DDos防御的美国服务器低至688元/月,年付再送2个月,两年送4个月,三年送6个月,且永久续费同价,更多款高性价比配置供您选择。...
享有云怎么样?享有云是一家新的国内云服务器商家,目前提供国内、香港及海外地区的云服务器,拥有多线路如:BGP线路、CN2线路、高防等云服务器,并且提供稳定、安全、弹性、高性能的云端计算服务,实时满足您的多样性业务需求。目前,美国bgp云服务器,5M带宽,低至20元/月起,270元/年起,首月打折;香港2核2G2M仅50元/月起,450元/年起!点击进入:享有云官方网站地址享有云优惠活动:一、美国B...
4444kkkcom为你推荐
沙滩捡12块石头价值近百万捡块石头价值一亿 到底是什么石头能价值一亿美国互联网瘫痪美国网络大瘫痪到底是怎么发生的今日油条油条的由来及历史云计算什么叫做“云计算”?蓝色骨头手机宠物的一个蓝色骨头代表多少级,灰色又代表多少级,另外假如有骨头又代表多少级18comic.fun贴吧经常有人说A站B站,是什么意思啊?haole018.comhttp://www.haoledy.com/view/32092.html 轩辕剑天之痕11、12集在线观看同一服务器网站一个服务器放多个网站怎么设置?336.com求那个网站 你懂得 1552517773@qqjavbibitreebibi是什么牌子的
asp主机空间 草根过期域名 联通c套餐 圣迭戈 la域名 申请空间 福建天翼加速 日本bb瘦 七夕快乐英文 老左正传 腾讯实名认证中心 国外代理服务器软件 福建铁通 idc查询 四核服务器 测试网速命令 如何登陆阿里云邮箱 七牛云存储 广州主机托管 香港博客 更多