CaspianJournalofAppliedSciencesResearch2(7),pp.
36-43,2013JournalHomepage:www.
cjasr.
comISSN:2251-9114EstimationofParametersforFrechetDistributionBasedonType-IICensoredSamplesKamranAbbas1,2,*,YincaiTang11SchoolofFinanceandStatistics,EastChinaNormalUniversity,Shanghai200241,China2DepartmentofStatistics,UniversityofAzadJammuandKashmir,Muzaffrabad,PakistanInthispaperweconsidermaximumlikelihoodestimatorsandleastsquaresestimatorsoftwo-parameterFrechetdistributionbasedontype-IIcensoredsample.
Themaximumlikelihoodestimatorsandleastsquaresestimatorsaredevelopedforestimatingtheunknownparameters.
TheobservedFisherinformationmatrixandconfidenceintervalsoftheparametersbasedonasymptoticnormalityarealsoderived.
Anextensivesimulationstudyiscarriedouttocomparetheperformancesofdifferentmethods.
2013CaspianJournalofAppliedSciencesResearch.
Allrightsreserved.
Keywords:Maximumlikelihoodestimator;Leastsquaresestimator;Rootmeansquarederror;Frechetdistribution;Type-IIcensoring1.
IntroductionThelengthofthelifetestsofitemscannotbeobservedfailuretimesexactly.
Generallythereareconstraintsonthelengthoflifetestsorotherreliabilitystudies.
Duringtheanalysisofhighlyreliableitems,thetestinghastobestoppedbeforealloftheitemshavefailedasthereislimitedavailabilityoftesttime.
Lifeteststerminatedafteraspecifiednumberoffailuresareknownastype-IIcensoringorfailurecensoring(MeekerandEscober1998).
Intype-IIcensoring,weobserve1,2,.
.
.
,rxxx,whererisspecifiedinadvance.
ThetestendsattimerXX=and()nrunitshavebeensurvived.
Inthisarticleweconsidertype-IIcensoredlifetimedata,whenthelifetimeoftheexperimentalunitfollowsaFrechetdistribution.
FrechetdistributionwasintroducedbyFrenchmathematicianMauriceFrechet(1878-1973)whoidentifiedpossiblelimitdistributionforthelargestorderstatisticduring1927.
TheFrechetdistributionhavebeenusedasanusefulmethodformodelingand*Correspondingaddress:SchoolofFinanceandStatistics,EastChinaNormalUniversity,Shanghai200241,ChinaE-mailaddress:kamiuajk@gmail.
com(KamranAbbas)2013CaspianJournalofAppliedSciencesResearch;www.
cjasr.
com.
Allrightsreserved.
analyzingseveralextremeeventssuchasacceleratedlifetesting,earthquake,flood,rainfall,seacurrentandwindspeed.
ThereforeFrechetdistributioniswellsuitedtocharacterizerandomvariablesoflargefeatures.
Inthispaper,thelifetimesofthetestitemsareassumedtofollowaFrechetdistributionwiththecumulativedistributionfunction(CDF)asfollows:()exp,0,,0Fxxxαβαβ=>>(1)Therefore,probabilitydensityfunction(PDF)oftheFrechetdistributionisgivenby1(,,)exp,0fxxxxααββααββ+=>(2)Wheretheparameterαdeterminestheshapeofthedistributionandβisthescaleparameter.
Thisdistributiondoesnotseemtohavereceivedenoughattention.
ItisworthnotingthatFrechetdistributionisequivalenttotakingthereciprocalofvaluesfromastandardWeibulldistribution.
ApplicationsoftheFrechetdistributioninvariousfieldsaregiveninKamranAbbas;YincaiTang/EstimationofParametersforFrechetDistributionBasedonType-IICensoredSamples2(7),pp.
36-43,201337Harlow(2002)reportedthatitisimportantformodelingthestatisticalbehaviorofmaterialspropertiesforavarietyofengineeringapplications.
NadarajahandKotz(2008)discussedthesociologicalmodelsbasedonFrechetrandomvariables.
Further,applicationsofFrechetdistributionaregiveninZaharimetal.
(2009),andMubarak(2012).
Severalestimationmethodshavebeenproposedtoestimatetheparametersofdistributions.
Amethodofestimationmustbechosenwhichminimizessamplingerrors.
Amethodissuitabletoestimatetheparametersofonedistributionmightnotnecessarilybeasefficientforanotherdistribution.
Moreover,amethodisefficientinestimatingtheparametersmaynotbeefficientinpredictingisgivenbyAl-BaidhaniandSinclair(1987).
Themethodofmaximumlikelihood(ML)isthemostpopularintermsofthetheoriticalprospectiveandtheleastsquares(LS)methodiscomputationallyeasier.
HossainandZimmer(2003)carriedoutastudyonthecomparisonofestimationmethodforcompleteandcensoredsamplebasedonWeibulldistribution.
Similarly,HossainandHowlader(1996)comparedLSEandMLEforcompletesamples.
Moreover,Gumbel(1965)estimatedtheparameterofFrechetdistribution.
Further,AbbasandTang(2012)studieddifferentestimationmethodsforFrechetdistributionwithknownshape.
Moreover,Mann(1984)discussedtheestimationproceduresfortheFrechetandthethree-parameterWeibulldistribution.
TherelationshipsbetweenFrechet,WeibullandtheGumbeldistributionwerealsodiscussed.
Further,themaximum-likelihoodandmomentestimatorsaswellaslinearlybasedestimatorsinvolvingonlyafeworderstatisticsandpropertiesforlargeandsmallsampleswerealsodiscussed.
Inthispaper,comparisonamongtheMLEandLSEaremadeforthecaseofcensoreddataintermsofthebiasandtherootmeansquarederror(RMSE)oftheestimates.
Theplanofthepaperisasfollows.
InSection2,theMLEsandtheobservedFisherinformationmatrixfortheparametersundertype-IIcensoredarederived.
InSection3ofthisarticle,wederivetheLSEs.
InSection4,simulationstudyisdiscussedandfinallyconclusionsaregiveninSection5.
2.
MaximumLikelihoodEstimationLet(),.
.
.
,12XXXXr<=<Thelikelihoodfunctionofrfailuresand()nrcensoredvaluesisgivenby11(,)exp1expnrriLiirXXXαααααβββββ+==∏Then,()11lnlnln(1)ln1explnrriiiLrrnrirXXXααααβαββ==TheMLE'sofαandβsayαandβcanbeobtainedasthesolutionsof()11explnlnlnln,1explnrrriiiinrrrLrrirXXXXXXXααααβββααββββ==(3)()11lnexp.
1expriLrnrirrrXXXXαααααααββββββββ=(4)KamranAbbas;YincaiTang/EstimationofParametersforFrechetDistributionBasedonType-IICensoredSamples2(7),pp.
36-43,201338From(3)and(4),themaximumlikelihoodestimatesare()11,explnlnln1explnrrriiiirnrrrrirXXXXXXXαααααβββββββ===+()11.
1expexprriirXrrXXnrXαααβαβββ==However,itisnoteasytoobtainaclosedformsolutionfortheaboveequations;thereforeweuseLaplaceapproximationtocomputeMLEs.
TheobservedFisherinformationmatrixisobtainedbytakingthesecondandmixedpartialderivativesoflnLlnLwithrespecttoαandβ.
So,theobservedFisherinformationmatrixcanbewrittenas:()222,222lnlnlnlnLLLLIαβααββαβ=Where22221expln11explnrirrLrUiirrXXXXXXαααααααββββββ=12()expln1expUnrrrrrXXXXαααββββ=And()221expln1(1)1exprirLVrWWWirXXXααααααααβββαβββ=KamranAbbas;YincaiTang/EstimationofParametersforFrechetDistributionBasedonType-IICensoredSamples2(7),pp.
36-43,201339()12,exp1expVWnrrrrXXXααααββββ==2111111lnln1expln11lnln1exp11rriiirrrrrLriirrWrrXXXXXXXXXXXXααααααααβααββββαβαββββββββ===+Atwosided()1001%γapproximateconfidencelimitsforαandβbasedontheasymptoticnormalitycanbeconstructedas,,LLzUUzLLzUUzαασααασαββσβββσβ==+==+3.
LeastSquaresEstimationFromtheFrechetCDFin(1),onecaneasilywrite[]lnln()lnlnyFxxαβαWhichislinearmodelinyversuslnxlnxwithaslopeofαandaninterceptoflnαβ.
Let()iXbetheithorderfailureandiYbetheestimateof()()iFX.
Theleastsquareestimatesarethenexpressedas()()()lnln122ln1()lnirYrXYirrXiiXXα===Where()()1lnlnriiXrX==and1riiYrY==,subsequentlyβisexplnYXβα=Inthepresentstudy,HerdJohnsonmethod(Nelson,1982)isusedtoestimatethefailureprobability()()iFXandiYcanbeestimatedas(1),1,2,.
.
.
,1iiiirRRirr==+and01,R=isthereliabilityattime0.
Moreover,iristhereverserankfortheithfailure.
Therefore,()()lnln1iiRY=4.
SimulationStudySimulationstudyisconductedinordertocomparetheperformanceofpresentedMLEsandLSEsusingvarioussamplesize()nandfailureofthefirstindividuals()r.
IncomputingtheestimatessamplesaregeneratedfromtheFrechetdistributionusingthetransformation1(ln)iiXUαβ=,whereiUisuniformlydistributedrandomvariableandwereplicatedtheprocess5000times.
Inthepresentstudysimulationswerecarriedoutfordifferentchoicesofthevaluesofparametersineachcase.
Onlyonevalueofscaleparameter()βneedstobeconsidered,becausechangingthevalueofβisequivalenttomultiplythesamplevaluesbyaconstant.
ComparisonaremadeintermsofmeansandRMSEs(withinparenthesis)andresultsarepresentedinTable1forcomparisonpurpose.
Further,confidenceintervalsofαandβbasedonmaximumlikelihoodestimatorsalongwithcoverageprobabilitiesareconstructedusingtheasymptoticnormality.
TheresultsaresummarizedinTables2-3.
CaspianJournalofAppliedSciencesResearch2(7),pp.
36-43,2013JournalHomepage:www.
cjasr.
comISSN:2251-9114Table1:AverageestimatesandRMSEs(withinparenthesis)ofαandβnrMLLSαβαβ1032.
4335(1.
5174)1.
9210(0.
7077)0.
9315(0.
8191)3.
4047(1.
9930)51.
4585(0.
5528)2.
0995(0.
6088)1.
1547(0.
4771)1.
9585(0.
7555)71.
2779(0.
3758)2.
1587(0.
5794)1.
4251(0.
3191)1.
4938(0.
6800)91.
1980(0.
2948)2.
1957(0.
5538)1.
8071(0.
2944)0.
9344(1.
0826)1532.
5265(1.
5998)1.
7451(0.
6976)0.
7716(0.
3917)4.
2614(2.
6135)51.
4873(0.
5821)1.
9736(0.
5531)0.
9167(0.
3233)2.
5364(0.
8996)71.
2786(0.
3744)2.
0482(0.
4922)1.
0689(0.
2989)2.
0389(0.
4919)91.
1871(0.
2837)2.
0958(0.
4798)1.
2627(0.
2344)1.
4786(0.
6209)2032.
5335(1.
6130)1.
7013(0.
7377)0.
6945(0.
3305)4.
7459(3.
0448)51.
4875(0.
5807)1.
9263(0.
5464)0.
8084(0.
2519)2.
9055(1.
1511)71.
2902(0.
3830)1.
9869(0.
4734)0.
9164(0.
1980)2.
4215(0.
7350)91.
1984(0.
2937)2.
0458(0.
4350)1.
0521(0.
1936)1.
8252(0.
4993)3032.
5633(1.
6423)1.
6239(0.
7817)0.
6029(0.
4039)5.
4807(3.
6743)51.
5095(0.
6029)1.
8462(0.
5608)0.
6851(0.
3219)3.
4519(1.
6455)71.
3019(0.
3955)1.
9403(0.
4756)0.
7670(0.
2561)2.
9275(1.
0522)91.
2164(0.
3074)1.
9640(0.
4067)0.
8503(0.
1966)2.
2920(0.
5826)5032.
8013(1.
6623)1.
5085(0.
8987)0.
5290(0.
4814)6.
5922(4.
3206)51.
5426(0.
6285)1.
7677(0.
6186)0.
5800(0.
4201)4.
1993(2.
2008)71.
3006(0.
3977)1.
8813(0.
5023)0.
6302(0.
3683)3.
5238(1.
5686)91.
2237(0.
3117)1.
9035(0.
4268)0.
6880(0.
3106)2.
8340(0.
9530)8032.
7524(1.
8364)1.
5585(0.
9706)0.
4592(0.
5417)7.
7469(5.
3026)51.
5543(0.
6502)1.
7729(0.
7015)0.
5084(0.
4941)4.
8078(2.
9205)71.
3126(0.
4064)1.
8413(0.
5508)0.
5464(0.
4531)4.
1234(2.
1406)91.
2322(0.
3239)1.
8748(0.
4736)0.
5868(0.
4058)3.
3405(1.
4061)10032.
5542(1.
6326)1.
5316(0.
9829)0.
4362(0.
5602)7.
5373(5.
7916)51.
5647(0.
6553)1.
7322(0.
7157)0.
4797(0.
5241)5.
1514(3.
0976)71.
3210(0.
4170)1.
8294(0.
5723)0.
5140(0.
4849)4.
3783(2.
4050)91.
2251(0.
3208)1.
8793(0.
4891)0.
5494(0.
4475)3.
5626(1.
6036)Table2:Confidenceintervalsandcoverageprobabilities(CP)forαKamranAbbas;YincaiTang/EstimationofParametersforFrechetDistributionBasedonType-IICensoredSamples2(7),pp.
36-43,201341nr90%CICP95%CICP103(0.
4832,4.
0239)0.
7760(0.
5385,4.
3285)0.
90645(0.
6871,2.
2299)0.
8520(0.
5393,2.
3776)0.
93387(0.
6946,1.
8612)0.
8654(0.
5828,1.
9729)0.
93809(0.
7089,1.
6870)0.
8728(0.
6152,1.
7807)0.
9378153(1.
1117,3.
4914)0.
6290(0.
8400,4.
2130)0.
77725(0.
7666,2.
2080)0.
7860(0.
6286,2.
3460)0.
89607(0.
7271,1.
8301)0.
8244(0.
6215,1.
9358)0.
92549(0.
7231,1.
6511)0.
8726(0.
6342,1.
7400)0.
9366203(1.
3038,3.
7632)0.
5144(1.
0682,3.
9987)0.
63505(0.
8367,2.
1382)0.
7240(0.
7120,2.
2629)0.
83537(0.
7710,1.
8095)0.
7992(0.
6715,1.
9090)0.
89369(0.
7526,1.
6441)0.
8382(0.
6672,1.
7295)0.
9128303(1.
5640,3.
5627)0.
3922(1.
7326,3.
7541)0.
48745(0.
9597,2.
0594)0.
5992(0.
8543,2.
1648)0.
71007(0.
8500,1.
7539)0.
7156(0.
7634,1.
8405)0.
81329(0.
8128,1.
6200)0.
7690(0.
7355,1.
6974)0.
8614503(1.
8145,3.
3485)0.
2700(1.
6675,3.
4955)0.
32005(1.
1099,1.
9752)0.
4544(1.
0271,2.
0581)0.
53727(0.
9479,1.
6533)0.
5544(0.
8803,1.
7208)0.
65069(0.
8976,1.
5498)0.
6336(0.
8351,1.
6123)0.
7306803(2.
1014,3.
4035)0.
2198(1.
9767,3.
5282)0.
27065(1.
2118,1.
8968)0.
3368(1.
1462,1.
9624)0.
40627(1.
0326,1.
5926)0.
4404(0.
9790,1.
6463)0.
52049(0.
9729,1.
4915)0.
5060(0.
9232,1.
5412)0.
59281003(2.
0109,3.
0975)0.
2088(1.
9068,3.
2016)0.
25205(1.
2550,1.
8743)0.
3070(1.
1957,1.
9337)0.
36727(1.
0689,1.
5731)0.
3790(1.
0206,1.
6214)0.
45069(0.
9955,1.
4547)0.
4448(0.
9515,1.
4987)0.
5292Table3:Confidenceintervalsandcoverageprobabilities(CP)forβnr90%CICP95%CICP103(1.
3164,2.
5256)0.
5032(1.
2006,2.
6415)0.
60065(1.
7683,2.
4306)0.
6777(1.
7049,2.
4941)0.
77407(1.
4463,2.
8712)0.
6912(1.
3098,3.
0076)0.
78909(1.
5342,2.
8573)0.
7358(1.
4074,2.
9841)0.
8054153(1.
0203,2.
4700)0.
5450(0.
8814,2.
6089)0.
63585(1.
4399,2.
5073)0.
5594(1.
3377,2.
6096)0.
64027(1.
7774,2.
3081)0.
5694(1.
7266,2.
3590)0.
65889(1.
6328,2.
5588)0.
6030(1.
5441,2.
6475)0.
6812203(1.
0225,2.
3801)0.
4996(0.
8925,2.
5106)0.
60865(1.
4220,2.
4306)0.
5372(1.
3254,2.
5272)0.
6324KamranAbbas;YincaiTang/EstimationofParametersforFrechetDistributionBasedonType-IICensoredSamples2(7),pp.
36-43,2013427(1.
3034,2.
6704)0.
6396(1.
1724,2.
8013)0.
72489(1.
5749,2.
5167)0.
7834(1.
4847,2.
6069)0.
8646303(1.
3566,1.
8911)0.
2186(1.
3054,1.
9423)0.
26705(1.
5278,2.
1646)0.
3234(1.
4668,2.
2256)0.
38547(1.
5464,2.
3342)0.
5162(1.
4709,2.
4097)0.
59889(1.
5143,2.
4137)0.
6334(1.
4281,2.
4998)0.
7224503(0.
3216,2.
7500)0.
2680(0.
0939,2.
2822)0.
34205(1.
1636,2.
3717)0.
5346(1.
0479,2.
4874)0.
64007(0.
9596,2.
8031)0.
5415(0.
7830,2.
9796)0.
57009(1.
5547,2.
2524)0.
8946(1.
4879,2.
3192)0.
9452803(0.
6953,2.
4218)0.
4448(0.
5299,2.
5872)0.
58185(1.
4257,2.
1201)0.
2684(1.
3592,2.
1866)0.
31907(1.
6525,2.
0300)0.
3140(1.
6164,2.
0661)0.
36849(1.
3686,2.
3966)0.
6178(1.
2701,2.
4951)0.
72001003(1.
3164,1.
7468)0.
1946(1.
2752,1.
7880)0.
23185(0.
8458,2.
6185)0.
2182(0.
6760,2.
7883)0.
26047(1.
6568,2.
0020)0.
2406(1.
6238,2.
0350)0.
28749(1.
6926,2.
0659)0.
2634(1.
6569,2.
1016)0.
31505.
ConclusionFromtheresultsofthesimulationstudypresentedinTables1-3,weobservethefollowing:1.
ItcanbeseenthatLSmethodtendstounderestimateαandMLmethodtendstooverestimateαforvarioussamplesizesandoveralllevelsofcensoring.
Forfixedleveloftype-IIcensoring,MLEsofαdecreasewithsamplesizesothatthebiastendstobeworseforthelargersamplesizes.
Withinfixedlevelsofcensoring,theRMSEdecreaseswithsamplesizeforallmethodsofestimationdiscussedinthisstudy.
ItisalsoobservedthatCPsareincreasingwithinthefixedlevelofcensoring.
Moreover,thelengthofconfidenceintervalsdecreaseassamplesizeincreasesforfixedlevelofcensoring.
2.
Forestimatingαincaseoftype-IIcensoringitisrecommendedthatoneshouldusetheLS(HerdJohnson)estimationbecauseitprovidesthesmallestRMSEforallsamplesizesandalllevelsoftype-IIcensoring.
3.
Forβ,MLEshavesmallerRMSEthanLSEsforallsamplesizesinfixedleveloftype-IIcensoring.
IncaseofMLEsofβwithinthefixedleveloftype-IIcensoring,assamplesizeincreasesthebiasesandRMSEoftheestimatesdecrease.
Thisindicatedthattheestimatorsareconsistentandapproachestrueparametervalueassamplesizeincreases.
IntermsoftheRMSE,theMLEisslightlybetterforalllevelsoftype-IIcensoringandallsamplesizes.
Finally,inthepresentstudyweconsiderMLandLSestimationofFrechetdistributionbasedontype-IIcensoredsamplesandMLestimatescannotbeobtainedinexplicitform.
ReferencesAbbasK,TangY(2012).
ComparisonofestimationmethodsforFrechetdistributionwithknownshape.
CaspianJournalofAppliedSciencesResearch.
1(10):58-64.
Al-BaidhaniFA,SinclairCD(1987).
ComparisonofmethodsofestimationofparametersoftheWeibulldistribution.
Commun.
Statist.
Simula.
16:373-384.
FrechetM(1927).
Surlaloideprobabilitedelecartmaximum.
Ann.
Soc.
Polon.
Math,6(93).
GumbelEJ(1965).
AquickestimationoftheparametersinFrechet'sdistribution.
ReviewoftheInternationalStatisticalInstitute.
33(3).
HarlowDG(2002).
ApplicationsoftheFrechetdistributionfunction.
InternationalJournalofMaterialandProductTechnology.
5(17):482-495.
KamranAbbas;YincaiTang/EstimationofParametersforFrechetDistributionBasedonType-IICensoredSamples2(7),pp.
36-43,201343HossainA,HowladerHA(1996).
UnweightedleastsquaresestimationofWeibullparameters.
JournalofStatisticalComputationandSimulation.
54:265-271.
HossainAM,ZimmerWJ(2003).
ComparisonofestimationmethodsforWeibullparameters:completeandcensoredsamples.
JournalofStatisticalComputationandSimulation.
73(2):145-153.
MannNR(1984).
StatisticalestimationofparametersoftheWeibullandFrechetdistributions.
StatisticalExtremesandApplication.
NATOASISeries,131,81-89.
MeekerWQ,EscobarLA(1998).
StatisticalMethodsforReliabilityData.
JohnWileyandSons,INC.
MubarakM(2012).
ParameterestimationbasedontheFrechetprogressivetype-IIcensoreddatawithbinomialremovals.
InternationalJournalofQuality,StatisticsandReliability,2012,ArticleID245910.
NadarajahS,KotzS(2008).
SociologicalmodelsbasedonFrechetrandomvariables.
QualityandQuantity.
42:89-95.
NelsonW(1982).
AppliedLifeDataAnalysis.
JohnWileyandSons,NewYork.
ZaharimA,NajidiSK,RazaliAM,SopianK(2009,February,24-26).
AnalyzingMalaysianwindspeeddatausingstatisticaldistribution.
Proceedingsofthe4thIASME/WSEASInternationalConferenceonEnergyandEnvironment.
UniversityofCambridge.
美国高防服务器提速啦专业提供美国高防服务器,美国高防服务器租用,美国抗攻击服务器,高防御美国服务器租用等。我们的海外高防服务器带给您坚不可摧的DDoS防护,保障您的业务不受攻击影响。HostEase美国高防服务器位于加州和洛杉矶数据中心,均为国内访问速度最快最稳定的美国抗攻击机房,带给您快速的访问体验。我们的高防服务器配有最高层级的DDoS防护系统,每款抗攻击服务器均拥有免费DDoS防护额度,让您...
Virtono是一家成立于2014年的国外VPS主机商,提供VPS和服务器租用等产品,商家支持PayPal、信用卡、支付宝等国内外付款方式,可选数据中心共7个:罗马尼亚2个,美国3个(圣何塞、达拉斯、迈阿密),英国和德国各1个。目前,商家针对美国圣何塞机房VPS提供75折优惠码,同时,下单后在LET回复订单号还能获得双倍内存的升级。下面以圣何塞为例,分享几款VPS主机配置信息。Cloud VPSC...
在刚才更新Vultr 新年福利文章的时候突然想到前几天有网友问到自己有在Vultr 注册账户的时候无法用支付宝付款的问题,当时有帮助他给予解决,这里正好顺带一并介绍整理出来。毕竟对于来说,虽然使用的服务器不多,但是至少是见过世面的,大大小小商家的一些特性特征还是比较清楚的。在这篇文章中,和大家分享如果我们有在Vultr新注册账户或者充值购买云服务器的时候,不支持支付宝付款的原因。毕竟我们是知道的,...
xx53xx.com为你推荐
淘宝门户分析淘宝网、三大门户网站、易趣、阿里巴巴属于哪种电子商务模式京沪高铁上市首秀哪些企业建设京沪高铁?关键字数据库:什么是关键字?lunwenjiancepaperfree论文检测安全吗rawtools佳能单反照相机的RAW、5.0M 是什么意思?www.522av.com我的IE浏览器一打开就是这个网站http://www.522dh.com/?mu怎么改成百度啊 怎么用注册表改啊777k7.comwww 地址 777rv怎么打不开了,还有好看的吗>com51sese.comwww.51xuanh.com这是什么网站是骗人的吗?www.544qq.COM跪求:天时达T092怎么下载QQbbs2.99nets.com西安论坛、西安茶馆网、西安社区、西安bbs 的网址是多少?
域名管理 vps是什么意思 免费注册网站域名 电影服务器 免备案cdn 流媒体服务器 koss 免费ftp空间 shopex空间 网通代理服务器 镇江联通宽带 三拼域名 好看qq空间 有奖调查 qq云端 免费美国空间 万网空间购买 www789 韩国代理ip cdn网站加速 更多