aspectwisediskcleaner

wisediskcleaner  时间:2021-04-01  阅读:()
Received:17September,2008.
Accepted:29September,2009.
InvitedReviewDynamicBiochemistry,ProcessBiotechnologyandMolecularBiology2010GlobalScienceBooksEnvironmentalBiotechnology:Achievements,OpportunitiesandChallengesMariaGavrilescu*"GheorgheAsachi"TechnicalUniversityofIasi,FacultyofChemicalEngineeringandEnvironmentalProtection,DepartmentofEnvironmentalEngineeringandManagement,71MangeronBlvd.
,700050Iasi,RomaniaCorrespondence:*mgav@ch.
tuiasi.
roABSTRACTThispaperdescribesthestate-of-the-artandpossibilitiesofenvironmentalbiotechnologyandreviewsitsvariousareastogetherwiththeirrelatedissuesandimplications.
Consideringthenumberofproblemsthatdefineandconcretizethefieldofenvironmentalbiotechnology,theroleofsomebioprocessesandbiosystemsforenvironmentalprotection,controlandhealthbasedontheutilizationoflivingorganismsareanalyzed.
Environmentalremediation,pollutionprevention,detectionandmonitoringareevaluatedconsideringtheachievements,aswellastheperspectivesinthedevelopmentofbiotechnology.
Variousrelevanttopicshavebeenchosentoillustrateeachofthemainareasofenvironmentalbiotechnology:wastewatertreatment,soiltreatment,solidwastetreatment,andwastegastreatment,dealingwithboththemicrobiologicalandprocessengineeringaspects.
Thedistinctroleofenvironmentalbiotechnologyinthefutureisemphasizedconsideringtheopportunitiestocontributewithnewsolutionsanddirectionsinremediationofcontaminatedenvironments,minimizingfuturewastereleaseandcreatingpollutionpreventionalternatives.
Totakeadvantageoftheseopportunities,innovativenewstrategies,whichadvancetheuseofmolecularbiologicalmethodsandgeneticengineeringtechnology,areexamined.
Thesemethodswouldimprovetheunderstandingofexistingbiologicalprocessesinordertoincreasetheirefficiency,productivity,andflexibility.
Examplesofthedevelopmentandimplementationofsuchstrategiesareincluded.
Also,thecontributionofenvironmentalbiotechnologytotheprogressofamoresustainablesocietyisrevealed.
Keywords:biologicaltreatment,bioremediation,contaminatedsoil,environmentalbiotechnology,heavymetal,naturalattenuation,organiccompound,phytoremediation,recalcitrantorganic,remediationAbbreviations:BOD5,five-daybiologicaloxygendemand;CNT,carbonnanotube;MBR,membranebioreactor;MSAS,membraneseparationactivatedsludgeprocess;MTBE,methyltert-butylether;TCE,trichloroethylene;VOC,volatileorganiccompoundsCONTENTSINTRODUCTION.
1ROLEOFBIOTECHNOLOGYINDEVELOPMENTANDSUSTAINABILITY.
2ENVIRONMENTALBIOTECHNOLOGY-ISSUESANDIMPLICATIONS.
3ENVIRONMENTALREMEDIATIONBYBIOTREATMENT/BIOREMEDIATION4Microbesandplantsinenvironmentalremediation.
6Factorsaffectingbioremediation7Wastewaterbiotreatment10Soilbioremediation16Solidwastebiotreatment17Biotreatmentofgaseousstreams18Biodegradationofhydrocarbons.
19Biosorption.
19Biodegradationofrefractorypollutantsandwaste20ENVIRONMENTALBIOTECHNOLOGYINPOLLUTIONDETECTIONANDMONITORING.
22Bioindicators/biomarkers.
22Biosensorsforenvironmentalmonitoring23ENVIRONMENTALBIOTECHNOLOGYFORPOLLUTIONPREVENTIONANDCLEANERPRODUCTION24Roleofbiotechnologyinintegratedenvironmentalprotectionapproach24Processmodificationandproductinnovation.
25ENVIRONMENTALBIOTECHNOLOGYANDECO-EFFICIENCY.
29CONCLUDINGREMARKS-ENVIRONMENTALBIOTECHNOLOGYCHALLENGESANDPERSPECTIVES30ACKNOWLEDGEMENTS30REFERENCES.
30INTRODUCTIONBiotechnology"istheintegrationofnaturalsciencesandengineeringinordertoachievetheapplicationoforganisms,cells,partsthereofandmolecularanaloguesforproductsandservices"(vanBeuzekomandArundel2006).
Biotech-nologyisversatileandhasbeenassessedakeyareawhichhasgreatlyimpactedvarioustechnologiesbasedontheapplicationofbiologicalprocessesinmanufacturing,agri-culture,foodprocessing,medicine,environmentalprotec-DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBookstion,resourceconservation(Fig.
1)(ChistiandMoo-Young1999;EC2002;EvansandFurlong2003;Gavrilescu2004a;GavrilescuandChisti2005).
Thisnewwaveoftech-nologicalchangeshasdetermineddramaticimprovementsinvarioussectors(productionofdrugs,vitamins,steroids,interferon,productsoffermentationusedasfoodordrink,energyfromrenewableresourcesandwaste,aswellasgeneticengineeringappliedonplants,animals,humans)sinceitcanprovideentirelynovelopportunitiesforsus-tainableproductionofexistingandnewproductsandser-vices(Johnston2003;Das2005;GavrilescuandChisti2005).
Inaddition,environmentalconcernshelpdrivetheuseofbiotechnologynotonlyforpollutioncontrol(decon-taminationofwater,air,soil),butpreventpollutionandminimizewasteinthefirstplace,aswellasforenviron-mentallyfriendlyproductionofchemicals,biomonitoring.
ROLEOFBIOTECHNOLOGYINDEVELOPMENTANDSUSTAINABILITYTheresponsibleuseofbiotechnologytogeteconomic,soci-alandenvironmentalbenefitsisinherentlyattractiveanddeterminesaspectacularevolutionofresearchfromtradi-tionalfermentationtechnologies(cheese,bread,beermaking,animalandplantbreeding),tomoderntechniques(genetechnology,recombinantDNAtechnologies,biochemistry,immunology,molecularandcellularbiology)toprovideefficientsynthesisoflowtoxicityproducts,renewablebio-energyandyieldingnewmethodsforenvironmentalmoni-toring.
Thestartofthe21stcenturyhasfoundbiotechnologyemergingasakeyenablingtechnologyforsustainableenvi-ronmentalprotectionandstewardship(Cantor2000;Gavri-lescu2004b;Arai2006).
Therequirementforalternativechemicals,feedstocksforfuels,andavarietyofcommercialproductshasgrowndramaticallyintheearlyyearsofthe21stCentury,drivenbythehighpriceofpetroleum,policiestopromotealternativesandreducedependenceonforeignoil,andincreasingeffortstoreducenetemissionsofcarbondioxideandothergreenhousegases(Hettenhaus2006).
Thesocial,environmentalandeconomicbenefitsofenviron-mentalbiotechnologygohand-in-handtocontributetothedevelopmentofamoresustainablesociety,aprinciplewhichwaspromotedintheBrundtlandReportin1987,inAgenda21oftheEarthSummitinRiodeJaneiroin1992,theReportoftheWorldSummitonSustainableDevelop-mentheldinJohannesburgin2002andwhichhasbeenwidelyacceptedintheenvironmentalpolicies(EIBE2000;OECD2001).
Regardingthesedomainsofapplication,fourmainsub-fieldsofbiotechnologyareusuallytalkedabout:-greenbiotechnology,theoldestuseofbiotechnologybyhumans,dealswithplantsandgrowing;-redbiotechnology,appliedtocreatechemicalcom-poundsformedicaluseortohelpthebodyinfightingdiseasesorillnesses;-whitebiotechnology(oftengreenbiotech),focusingonusingbiologicalorganismstoproduceormanipulateproductsinabeneficialwayfortheindustry;-bluebiotechnology–aquaticuseofbiologicaltech-nology.
Themainactionareasforbiotechnologyasimportantinresearchanddevelopmentactivitiescanbeseenasfallingintothreemaincategories(Kryl2001;Johnston2003;GavrilescuandChisti2005):-industrialsupplies(biochemicals,enzymesandrea-gentsforindustrialandfoodprocessing);-energy(fuelsfromrenewableresources);-environment(pollutiondiagnostics,productsforpol-lutionprevention,bioremediation).
Thesearesuccessfullyassistedbyvariousdisciplines,suchasbiochemicalbioprocessesandbiotechnologyengi-neering,geneticengineering,proteinengineering,metabolicengineering,requiredforcommercialproductionofbiotech-nologyproductsanddeliveryofitsservices(OECD1994;EFB1995;OECD1998;EvansandFurlong2003;Gavri-lescuandChisti2005).
Thisreviewfocusesontheachievementsofbiotechno-logicalapplicationsforenvironmentalprotectionandcon-trolandfutureprospectsandnewdevelopmentsinthefield,consideringtheopportunitiesofenvironmentalbiotechno-logytocontributewithnewsolutionsanddirectionsinremediationandmonitoringofcontaminatedenvironments,minimizingfuturewastereleaseandcreatingpollutionpre-ventionalternatives.
BIOTECHNOLOGYENVIRONMENTALBIOTECHNOLOGYDecontaminationofenvironmentalcomponents(water,air,soil)ProductionofchemicalsBiosensorsPollutionpreventionandwasteminimizationFOODTECHNOLOGYProductsoffermentation(wine,beer,cheese,yoghurt,yeastsetc.
)AGRICULTUREEnergyfromrenewableresources,agriculturalwasteGENETICTECHNOLOGYGeneticengineeringappliedonplantsandanimalsGeneticengineeringappliedonhumansMEDICINEProductionofantibiotics,vitamins,steroids,insulin,interferonFig.
1Applicationofbiotechnologyinanthropogenicactivities(industry,agriculture,medicine,health,environment).
(AdaptedfromSukumaranNair2006).
2Environmentalbiotechnology.
MariaGavrilescuENVIRONMENTALBIOTECHNOLOGY-ISSUESANDIMPLICATIONSAsarecognitionofthestrategicvalueofbiotechnology,in-tegratedplansareformulatingandimplementinginmanycountriesforusingbiotechnologyforindustrialregenera-tion,jobcreationandsocialprogress(Rijaux1977;Gavri-lescuandChisti2005).
Withtheimplementationoflegislationforenvironmen-talprotectioninanumberofcountriestogetherwithsettingofstandardsforindustryandenforcementsofcompliance,environmentalbiotechnologygainedinimportanceandbroadnessinthe1980s.
Environmentalbiotechnologyisconcernedwiththeap-plicationofbiotechnologyasanemergingtechnologyinthecontextofenvironmentalprotection,sincerapidindustriali-zation,urbanizationandotherdevelopmentshaveresultedinathreatenedcleanenvironmentanddepletednaturalresources.
Itisnotanewareaofinterest,becausesomeoftheissuesofconcernarefamiliarexamplesof"old"techno-logies,suchas:composting,wastewatertreatmentetc.
Initsearlystage,environmentalbiotechnologyhasevolvedfromchemicalengineering,butlater,otherdisciplines(bioche-mistry,environmentalengineering,environmentalmicro-biology,molecularbiology,ecology)alsocontributetoen-vironmentalbiotechnologydevelopment(HasimandUjang2004).
Thedevelopmentofmultiplehumanactivities(inindus-try,transport,agriculture,domesticspace),theincreaseinthestandardoflivingandhigherconsumerdemandhaveamplifiedpollutionofair(withCO2,NOxSO2,greenhousegasses,particulatematters),water(withchemicalandbio-logicalpollutants,nutrients,leachate,oilspills),soil(duetothedisposalofhazardouswaste,spreadingofpesticides),theuseofdisposablegoodsornon-biodegradablematerials,andthelackofproperfacilitiesforwaste(Fig.
2).
Studiesandresearchesdemonstratedthatsomeofthesepollutantscanbereadilydegradedorremovedthankstobiotechnologicalsolutions,whichinvolvetheactionofmic-robes,plants,animalsundercertainconditionsthatenvisageabioticandbioticfactors,leadingtonon-aggressivepro-ductsthroughcompoundsmineralization,transformationorimmobilization(Fig.
3).
Advancedtechniquesortechnologiesarenowpossibletotreatwasteanddegradepollutantsassistedbylivingorg-anismsortodevelopproductsandprocessesthatgeneratelesswasteandpreservethenaturalnon-renewableresourcesandenergyasaresultof(Olguin1999;EIBE2000;Gavri-lescuandChisti2005;Chisti2007):-improvedtreatmentsforsolidwasteandwastewater;-bioremediation:cleaningupcontaminationandphytoremediation;-ensuringthehealthoftheenvironmentthroughbio-monitoring;-cleanerproduction:manufacturingwithlesspollutionorlessrawmaterials;-energyfrombiomass;-geneticengineeringforenvironmentalprotectionandcontrol.
Unfortunately,someenvironmentalcontaminantsarerefractorywithacertaindegreeoftoxicityandcanaccumu-lateintheenvironment.
Furthermore,thetreatmentofsomepollutantsbyconventionalmethods,suchaschemicaldeg-radation,incinerationorlandfilling,cangenerateothercon-taminants,whichsuperimposedonthelargevarietyofnoxi-ouswastepresentintheenvironmentanddetermineincrea-singconsiderationtobeplacedonthedevelopmentofcom-binationwithalternative,economicalandreliablebiologicaltreatments(OECD1994;EFB1995;Krieg1998;OECD1998;Futrell2000;EvansandFurlong2003;Kuhnetal.
2003;Chenetal.
2005;Gavrilescu2005;BetianuandGavrilescu2006a,2006b).
Atleastfourkeypointsareconsideredforenvironmen-talbiotechnologyinterventionstodetect(usingbiosensorsINDUSTRYTRANSPORTAGRICULTUREDOMESTICParticulatepollutantsNOX,SO2,CO2OthergreenhousegasesChemicalandbiologicalpollutantsLeakagefromdomesticwastetipsEutrophicationcausedbynitrogenandphosphoroussourcesOilspillsHazardouswasteOilspillsPersistentorganicpollutantsIncreaseinsoilactivityduetomassivespreadingAIRSOILWATERFig.
2Thespiderofenvironmentalpollutionduetoanthropogenicactivities.
(AdaptedfromEIBE2000).
3DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBooksandbiomonitoring),preventinthemanufacturingprocess(bysubstitutionoftraditionalprocesses,singleprocessstepsandproductswiththeuseofmodernbio-andgenetechnologyinvariousindustries:food,pharmaceutical,tex-tiles,productionofdiagnosticproductsandtextiles),controlandremediatetheemissionofpollutantsintotheenviron-ment(Fig.
4)(bydegradationofharmfulsubstancesduringwater/wastewatertreatment,soildecontamination,treat-mentandmanagementofsolidwaste)(Olguin1999;Chenetal.
2005;Das2005;Gavrilescu2005;GavrilescuandNicu2005).
Othersignificantareaswhereenvironmentalbiotechnologycancontributetopollutionreductionarepro-ductionofbiomolecules(proteins,fats,carbohydrates,lipids,vitamins,aminoacids),yieldimprovementinoriginalplantproducts.
Theproductionprocessesthemselvescanassistinthereductionofwasteandminimizationofpol-lutionwithintheso-calledcleantechnologiesbasedonbio-technologicalissuesinvolvedinreuseorrecyclewastestreams,generateenergysources,orproducenew,viableproducts(EvansandFurlong2003;GavrilescuandChisti2005;Gavrilescuetal.
2008).
Byconsideringalltheseissues,biotechnologymayberegardedasadrivingforceforintegratedenvironmentalprotectionbyenvironmentalbioremediation,wasteminimi-zation,environmentalbiomonitoring,biomaintenance.
ENVIRONMENTALREMEDIATIONBYBIOTREATMENT/BIOREMEDIATIONEnvironmentalhazardsandrisksthatoccurasaresultofaccumulatedtoxicchemicalsorotherwasteandpollutantscouldbereducedoreliminatedthroughtheapplicationofbiotechnologyintheformof(bio)treatment/(bio)remedia-tinghistoricpollutionaswellasaddressingpollutionresul-tingfromcurrentindustrialpracticesthroughpollutionpre-ventionandcontrolpractices.
BioremediationisdefinedbyUSEnvironmentalProtectionAgency(USEPA)as"aman-agedorspontaneouspracticeinwhichmicrobiologicalpro-cessesareusedtodegradeortransformcontaminantstolesstoxicornontoxicforms,therebyremediatingoreliminatingenvironmentalcontamination"(USEPA1994;Talley2005).
Biotreatment/bioremediationmethodsarealmosttypical"end-of-pipeprocesses"appliedtoremove,degrade,ordetoxifypollutioninenvironmentalmedia,includingwater,air,soil,andsolidwaste.
Fourprocessescanbeconsideredasactingonthecontaminant(Asante-Duah1996;FRTR1999;Khanetal.
2004;DobleandKumar2005;Gavrilescu2006):1.
removal:aprocessthatphysicallyremovestheconta-minantorcontaminatedmediumfromthesitewithouttheneedforseparationfromthehostmedium;2.
separation:aprocessthatremovesthecontaminantfromthehostmedium(soilorwater);3.
destruction/degradation:aprocessthatchemicallyorbiologicallydestroysorneutralizesthecontaminanttoproducelesstoxiccompounds;4.
containment/immobilization:aprocessthatimpedesorimmobilizesthesurfaceandsubsurfacemigrationofthecontaminant;Removal,separation,anddestructionareprocessesthatreducetheconcentrationorremovethecontaminant.
Con-tainment,ontheotherhand,controlsthemigrationofacon-taminanttosensitivereceptorswithoutreducingorre-movingthecontaminant(Watson1999;Khanetal.
2004;Gavrilescu2006).
Removalofanypollutantfromtheenvironmentcantakeplaceonfollowingtworoutes:degradationandim-mobilizationbyaprocesswhichcausesittobebiologicallyunavailablefordegradationandsoiseffectivelyremoved(EvansandFurlong2003).
Asummaryofprocessesin-volvedinbioremediationasagenericprocessispresentedinFig.
5(Gavrilescu2004).
Immobilizationcanbecarriedoutbychemicalsreleasedbyorganismsoraddedintheadjoiningenvironment,whichcatchorchelatethecontaminant,makingitinsoluble,thusunavailableintheenvironmentasanentity.
Sometimes,immobilizationcanbeamajorprobleminremediationbecauseitcanleadtoagedcontaminationandalotofre-searcheffortneedstobeappliedtofindmethodstoturnovertheprocess.
Destruction(biodegradationandbiotransformation)iscarriedoutbyanorganismoracombinationoforganisms(consortia)andisthecoreofenvironmentalbiotechnology,sinceitformsthemajorpartofappliedprocessesforenvi-ronmentalcleanup.
BiotransformationprocessesusenaturalMineralsFossilfuelsXenobioticsAbioticfactors(temperature,pH,redoxpotential)Bioticfactors(toxicity,specificity,activity)MicrobesPlantsAnimalsMineralizationTransformationImmobilizationFig.
3Sourcesofenvironmentalpollutantsandfactorsthatinfluencetheirremovalfromtheenvironment.
(AdaptedfromChenetal2005).
EnvironmentalbiotechnologyManufacturingprocessPollutionprevention/cleanerproductionWastemanagementPollutioncontrolFig.
4Keyinterventionpointsofenvironmentalbiotechnology.
4Environmentalbiotechnology.
MariaGavrilescuandrecombinantmicroorganisms(yeasts,fungi,bacteria),enzymes,wholecells.
Biotransformationplaysakeyroleintheareaoffoodstuff,pharmaceuticalindustry,vitamins,specialtychemicals,animalfeedstock(Fig.
6)(TrejoandQuintero1999;Dobleetal.
2004;SinghalandShrivastava2004;Chenetal.
2005;DaleandKim2006;Willkeetal.
2006).
Metabolicpathwaysoperatewithinthecellsorbyenzymeseitherprovidedbythecelloraddedtothesystemaftertheyareisolatedandoftenimmobilized.
Biologicalprocessesrelyonusefulmicrobialreactionsincludingdegradationanddetoxificationofhazardousorga-nics,inorganicnutrients,metaltransformations,appliedtogaseous,aqueousandsolidwaste(Eglit2002;EvansandFurlong2003;Gavrilescu2004a).
Acompletebiodegradationresultsindetoxificationbymineralizingpollutantstocarbondioxide,waterandharm-BioremediationDefinition:completemineralizationofcontaminantsthroughbiologicalactivityRequirements:microorganisms,plants,substrate(food)andnutrients(nitrogen,phosphorous,potassium),electronacceptors(aerobic:O2;anaerobic:nitrate,sulphate,etc.
)Advantages-mosthydrocarbonsandorganiccompoundswillbemineralized-intrinsicmicrobes(thosealreadyfoundinthesoil)willmostlybeabletoacclimatizetothecontaminants-insteadoftransferringcontaminantsfromoneenvironmentalmediumtoanother,thecompletedestructionoftargetpollutantsispossible-itusuallydoesnotproducetoxicby-products-isusuallylessexpensivethanothertechnologies-itcanbeusedwheretheproblemislocated,oftenwithoutcausingamajordisruptionofnormalactivitiesLimitations-islimitedtothosecompoundsthatarebiodegradable-shortsupplyofsubstrate,electronacceptors,ornutrientswillhinderbioactivity-highlevelsoforganiccontaminantsmaybetoxictothemicrobes-heavymetalsmayinhibitthemicrobialactivity-thecontaminantmustbeprovidedinanaqueousenvironment-thelowerthetemperature,theslowerthedegradation-theprocessmustbecarefullymonitoredtoensuretheeffectiveness-itisdifficulttoextrapolatefrombenchandpilot-scalestudiestofull-scalefieldoperations-oftentakeslongerthanotheractionsMethodsofmicrobialbioremediationinsitu:type:biosparging,bioventing,bioaugumentation,insitubiodegradationbenefits:mostcostefficient,noninvasive,relativelypassive,naturalattenuationprocess,treatssoilandwaterlimitations:environmentalconstraints,extendedtreatmenttime,monitoringdifficultiesfactorstoconsider:biodegradativeabilitiesofindigenousmicroorganisms,presenceofmetalsandotherinorganics,environmentalparameters,biodegradabilityofpollutants,chemicalsolubility,geologicalfactors,distributionofpollutantsex-situ:type:landfarming,composting,biopilesbenefits:costefficient,lowcost,canbedoneonsitelimitations:spacerequirements,extendedtreatmenttime,needtocontrolabioticloss,masstransferproblem,bioavailabilitylimitationsbioreactors:type:slurryreactors,aqueousreactorsbenefits:rapiddegradationkinetic,optimizedenvironmentalparameters,enhancedmasstransfer,effectiveuseofinoculantsandsurfactantslimitations:soilrequiresexcavation,relativelyhighcostcapital,relativelyhighoperatingcostsfactorstoconsider:bioaugumentation,toxicityofamendaments,toxicconcentrationofcontaminantsMicroorganismsandprocessesAerobic:-(requiressufficientoxygen:Pseudomonas,Alcaligenes,Sphingomonas,Rhodococcus,Mycobacterium)-degradepesticidesandhydrocarbons,bothalkanesandpolyaromaticcompounds-bacteriausethecontaminantasthesolesourceofcarbonandenergy-nogenerationofmethane-itisafasterprocessAnaerobic:-(intheabsenceofoxygen,thustheenergyinputisslow)-anaerobicbacteriaarenotasfrequentlyusedasaerobicbacteria-anaerobicbacteriaareusedforbioremediationofpolychlorinatedbiphenyls(PCBs)inriversediments,dechlorinationofthesolventtrichloroethylene(TCE),chloroform-itmaygeneratemethaneLigninolyticfungi:-havetheabilitytodegradeanextremelydiverserangeofpersistentortoxicenvironmentalpollutants(aswhiterotfungusPhanaerochaetechrysosporium)-commonsubstratesusedincludestraw,sawdust,orcorncobsMethylotrophs-growutilizingmethaneforcarbonandenergy-areactiveagainstawiderangeofcompounds,includingthechlorinatedaliphaticstrichloroethyleneand1,2-dichloroethaneMethodsofphytoremediationPhytoextractionorphytoaccumulation-theplantsaccumulatecontaminantsintotherootsandabovegroundshootsorleaves-savestremendousremediationcostbyaccumulatinglowlevelsofcontaminantsfromawidespreadarea-producesamassofplantsandcontaminants(usuallymetals)thatcanbetransportedfordisposalorrecyclingPhytotransformationorphytodegradation-uptakeoforganiccontaminantsfromsoil,sediments,orwaterand,subsequently,theirtransformationtomorestable,lesstoxic,orlessmobileformPhytostabilization-plantsreducethemobilityandmigrationofcontaminatedsoil-leachableconstituentsareadsorbedandboundintotheplantstructuresothattheyformastablemassofplantfromwhichthecontaminantswillnotreentertheenvironmentPhytodegradationorrhizodegradation-breakdownofcontaminantsthroughtheactivityexistingintherhizosphere,duetothepresenceofproteinsandenzymesproducedbytheplantsorbysoilorganismssuchasbacteria,yeast,andfungi-isasymbioticrelationshipthathasevolvedbetweenplantsandmicrobes:plantsprovidenutrientsnecessaryforthemicrobestothrive,whilemicrobesprovideahealthiersoilenvironmentRhizofiltration-isawaterremediationtechniquethatinvolvestheuptakeofcontaminantsbyplantroots-isusedtoreducecontaminationinnaturalwetlandsandestuaryareaPhytovolatilization-plantsevaportranspirateselenium,mercury,andvolatilehydrocarbonsfromsoilsandgroundwaterVegetativecap-rainwaterfromsoilisevaportranspiratedbyplantstopreventleachingcontaminantsfromdisposalsitesFig.
5Characteristicsandparticularitiesofbioremediation.
(AdaptedfromVidali2001;Gavrilescu2004a).
5DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBookslessinorganicsalts.
Incompletebiodegradationwillyieldbreakdownpro-ductswhichmayormaynotbelesstoxicthantheoriginalpollutantandcombinedalternativeshavetobeconsidered,suchas:dispersion,dilution,biosorption,volatilizationand/orthechemicalorbiochemicalstabilizationofcontami-nants(Lloyd2002;Gavrilescu2004a).
Inaddition,bioaugmentationinvolvesthedeliberateadditionofmicroorganismsthathavebeencultured,adap-ted,andenhancedforspecificcontaminantsandconditionsatthesite.
Biorefiningentailstheuseofmicrobesinmineralpro-cessingsystems.
Itisanenvironmentallyfriendlyprocessand,insomecases,enablestherecoveryofmineralsanduseofresourcesthatotherwisewouldnotbepossible.
Currentresearchonbioleachingofoxideandsulfideoresaddressesthetreatmentofmanganese,nickel,cobalt,andpreciousmetalores(SuklaandPanchanadikar1993;Smithetal.
1994).
Fig.
7providessomebioprocessalternativesforheavymetalsremovalfromtheenvironment(Lloyd2002;Gavri-lescu2004a).
Biologicaltreatmentprocessesarecommonlyappliedtocontaminantsthatcanbeusedbyorganismsascarbonorenergysources,butalsoforsomerefractorypollutants,suchas:xorganics(petroleumproductsandothercarbon-basedchemicals);xmetals(arsenic,cadmium,chromium,copper,lead,mercury,nickel,zinc);xradioactivematerials.
MicrobesandplantsinenvironmentalremediationAllformsoflifecanbeconsideredashavingapotentialfunctioninenvironmentalbiotechnology.
However,mic-robesandcertainplantsareofinterestevenasnormallypresentintheirnaturalenvironmentorbydeliberateintro-duction(EvansandFurlong,2003).
Thegenericterm"microbe"includesprokaryotes(bac-teriaorarcaea)andeukariotes(yeasts,fungi,protozoa,andunicellularplants,rotifers).
BiotransformationFoodstuffAnimalfeedsuplementPharmaceuticals/vitaminsWastetreatmentSpecialtychemicals/chiraldrugintermediatesFig.
6Applicationsofbiotransformations.
MicrobialCellBiosorption2L-2L-2L-M2+M2+M2+Bioleachinge.
g.
HeterotrophicleachingInsolublemetalOrganicacid+SolublemetalchelateMetal(oxidizedsoluble)Metal(oxidizedinsoluble)2e-MO22+MO2HPO42-+M2+MHPO4BiomineralizationH2S+M2+MSEnzyme-catalysedtransformationse.
g.
BioreductionFig.
7Mechanismsofmetal-microbeinteractionsduringbioremediationapplications.
(Lloyd2002;Gavrilescu2004a).
6Environmentalbiotechnology.
MariaGavrilescuSomeoftheseorganismshavetheabilitytodegradesomeofthemosthazardousandrecalcitrantchemicals,sincetheyhavebeendiscoveredinunfriendlyenvironmentswheretheneedsforsurvivalaffecttheirstructureandmetaboliccapability.
Microorganismsmayliveasfreeindividualsorascom-munitiesinmixedcultures(consortia),whichareofparticu-larinterestinmanyrelevantenvironmentaltechnologies,likeactivatedsludgeorbiofilminwastewatertreatment(GavrilescuandMacoveanu1999;GavrilescuandMaco-veanu2000;MetcalfandEddy1999).
Oneofthemostsig-nificantkeyaspectsinthedesignofbiologicalwastewatertreatmentsystemsisthemicrobialcommunitystructuresinactivatedsludges,constitutedfromactivatedsludgeflocs,whichenclosevariousmicroorganismtypes(Fig.
8,Table1)(WagnerandAmann1997;Wagneretal.
2002).
Theroleofplantsinenvironmentalcleanupisexertedduringtheoxygenationofamicrobe-richenvironment,fil-tration,solid-to-gasconversionorextractionofcontami-nants.
Theuseoforganismsfortheremovalofcontaminationisbasedontheconceptthatallorganismscouldremovesubstancesfromtheenvironmentfortheirowngrowthandmetabolism(Hamer1997;Saval1999;Wagneretal.
2002;Dobleetal.
2004;Gavrilescu2004;Gavrilescu2005):-bacteriaandfungiareverygoodatdegradingcom-plexmolecules,andtheresultantwastesaregenerallysafe(fungicandigestcomplexorganiccompoundsthatarenormallynotdegradedbyotherorganisms);-protozoa-algaeandplantsprovedtobesuitabletoabsorbnitrogen,phosphorus,sulphur,andmanymineralsandmetalsfromtheenvironments.
Microorganismsusedinbioremediationincludeaerobic(whichusefreeoxygen)andanaerobic(whichliveonlyintheabsenceoffreeoxygen)(Fig.
5)(Timmisetal.
1994;Hamer1997;Cohen2001;Wagneretal.
2002;Gray2004;Brinzaetal.
2005a,2005b;Moharikaretal.
2005).
Somehavebeenisolated,selected,mutatedandgeneticallyengi-neeredforeffectivebioremediationcapabilities,includingtheabilitytodegraderecalcitrantpollutants,guaranteebet-tersurvivalandcolonizationandachieveenhancedratesofdegradationintargetpollutedniches(GavrilescuandChisti2005).
Theyarefunctionalinactivatedsludgeprocesses,lag-oonsandponds,wetlands,anaerobicwastewatertreatmentanddigestion,bioleaching,phytoremediation,land-farming,slurryreactors,tricklingfilters(Burtonetal.
2002;Mul-ligan2002).
Table1proposesashortsurveyofmicrobialgroupsinvolvedinenvironmentalremediation(Rigaux1997;Pandey2004;Wangetal.
2004;Bitton2005).
FactorsaffectingbioremediationTwogroupsoffactorscanbeidentifiedthatdeterminethesuccessofbioremediationprocesses(Saval1999;NazaroffandAlvarez-Cohen2001;Beaudetteetal.
2002;Wagneretal.
2002;SasikumarandPapinazath2003;Bitton2005;Gavrilescu2005):-natureandcharacterofcontaminant/contamination,whichreferstothechemicalnatureofcontaminantsandtheirphysicalstate(concentration,aggregationstate:solid,liquid,gaseous,environmentalcomponentthatcontainsit,oxido-reductionpotential,presenceofhalo-gens,bondstypeinthestructureetc.
);-environmentalconditions(temperature,pH,water/air/soilcharacteristics,presenceoftoxicorinhibitingsubstancestothemicroorganism,sourcesofenergy,sourcesofcarbon,nitrogen,tracecompounds,tempera-ture,pH,moisturecontent.
Also,bioremediationtendstorelyonthenaturalabili-tiesofmicroorganismstodeveloptheirmetabolismandtooptimizeenzymesactivity(Fig.
9).
Theprimecontrollingfactorsareair(oxygen)availabi-lity,moisturecontent,nutrientlevels,matrixpH,andam-bienttemperature(Table2)(Vidali2001).
Usually,forensuringthegreatestefficiency,theidealrangeoftemperatureis20-30°C,apHof6.
5-7.
5or5.
9-9.
0(dependentonthemicrobialspeciesinvolved).
Othercir-cumstances,suchasnutrientavailability,oxygenationandthepresenceofotherinhibitorycontaminantsareofgreatimportanceforbioremediationsuitability,foracertaintypeofcontaminatandenvironmentalcompartment,therequiredremediationtargetsandhowmuchtimeisavailable.
Theselectionofacertainremediationmethodentailsnon-engi-neeredsolutions(naturalattenuation/intrinsicremediation)oranengineeredone,basedonagoodinitialsurveyandriskassessment.
Anumberofinterconnectedfactorsaffectthischoice(asisalsoillustratedinFigs.
5,10):xcontaminantconcentrationxcontaminant/contaminationcharacteristicsandtypexscaleandextentofcontaminationxtherisklevelposedtohumanhealthorenvironmentxthepossibilitytobeappliedinsituorexsituxthesubsequentuseofthesitexavailableresourcesBioremediationtechnologiesofferanumberofadvan-tagesevenwhenbioremediationprocesseshavebeenestab-lishedforbothinsituandexsitutreatment(Fig.
10),suchas(EIBE2000;SasikumarandPapinazath2003;Gavrilescu2005;GavrilescuandChisti2005):-operationalcostsavingscomparativetoothertech-nologies-minimalsitedisturbance-lowcapitalcosts-destructionofpollutants,andnottransferringtheproblemelsewhere-exploitationofinteractionswithothertechnologiesTheseadvantagesarecounterbalancedbysomedis-NutrientsSewagebacteriaSludgebacteriaFlagellateprotozoaAttachedandcrawlingciliateprotozoaAttachedcarnivorousciliateprotozoaFreeswimmingciliateprotozoaFreeswimmingcarnivorousciliateprotozoaFig.
8Structureofmicrobialcommunityinactivatedsludge.
(AdaptedfromWagneretal.
2002;Bitton2005).
7DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBooksadvantages(Boopathy2000;SasikumarandPapinazath2003):-influenceofpollutantcharacteristicsandlocalcondi-tionsonprocessimplementation-viabilityneedstobeimproved(timeconsumingandexpensive)-communitydistressforsafetyoflarge-scaleon-sitetreatment-othertechnologiesshouldbenecessary-mayhavelongtime-scaleThebiotreatmentisappliedaboveallinwastewatertreatment,soilbioremediation,solidwastetreatment,bio-treatmentofgaseousstreams.
(Bio)treatmentofmunicipalwastewaterbyactivatedTable1Surveyofmicrobialgroupsinvolvedinenvironmentalremediation.
MicroorganismsTypeShapeExampleAbilitiesReferencescoccisphericalshapeStreptococcushydrocarbon-degradingbacteriaheavyoildegradedairyindustrywaste(whey)Atlas1981LeahyandColwell1990Ince1998Donkin1997Gradyetal.
1999Marques-Rochaetal.
2000BlonskayaandVaalu2006Kumaretal.
2007Mohanaetal.
2007Xuetal.
2009bacillirodsBacilliussubtilisdegradecrudeoilbioremediationofchlorpyrifos-contaminatedsoilGallertandWinter1999Eglit2002DasandMukherjee2007Lakshmietal.
2009spiralformsVibriocholeraSpirillumvolutansheavymetalsBitton2005sheatedbacteriafilamentous(gram-negativerodsthatbecomeflagellated)SphaeratilusLeptothrixCrenothrixreduceirontoferrichydroxide(Sphaeratilusnatans,Crenothrix)reducemanganesetomanganeseoxide(Leptothrix)foundinpollutedstreamsandwastewatertreatmentplantsSuklaandPanchanadikar1993Smithetal.
1994Sasakietal.
2001Gray2004Bitton2005Fitzgiblonetal.
2007Caulobacteraerobic,aquaticenvironmentswithloworganiccontentPoindexteretal.
2000Bitton2005ptalkedbacteriaflagellatedGallionellaG.
ferruginea,presentinironrichwatersandoxidizesFe2+toFe3+.
canbeformedinwaterdistributionsystemsBenzetal.
1998Blanco2000Smithetal.
2004Bitton2005Hyphomicrobiumsoilandaquaticenvironmentsrequiresone-carboncompoundstogrow(e.
g.
methanol)TrejoandQuintero1999GallertandWinter2001Burtonetal.
2002DuncanandHoran2003buddingbacteriafilamentsorhyphaeRhodomicrobiumphototrophicBitton2005glidingbacteriafilamentous(gram-negative)BeggiatoaThiothrixoxidizeH2StoS0Droste1997GuestandSmith2002Reddyetal.
2003bdellovibrioflagellated(predatory)B.
bacteriovorusgrowindependentlyoncomplexorganicmediaBitton2005Sarataleetal.
2009actinomycetesfilamentous(gram-positive)mycelialgrowthMicromonosporaStreptomycesNocordia(Gordonia)xmostarestrictaerobesxfoundinwater,wastewatertreatmentplants,soils(neutralandalkaline)xdegradepolysaccharides(starch,cellulose),hydrocarbons,ligninxcanproduceantibiotics(streptomycin,tetracycline,chloramphenicol)xGordoniaisasignificantconstituentoffoamsinactivatedsludgeunitsGradyetal.
1999Lemaetal.
1999Olguin1999Saval1999DuncanandHoran2003Gavrilescu2004Bitton2005Dashetal.
2008Joshietal.
2008Bacteriacyanobacteria(blue-greenalgae)unicellular,colonialorfilamentousorganismsAnabaenaxprokaryoticorganismsxabletofixnitrogenxhaveahighresistancetoextremeenvironmentalconditions(temperature,dessication)sothatarefoundindesertsoilandhotspringsxresponsibleforalgalbloomsinlakesandotheraquaticenvironmentsxsomearequitetoxicBlanco2000Burtonetal.
2002Bitton2005Brinzaetal.
2005aEl-Sheekhetal.
2009Archeacrenarchaeoteseuryarchaeoteskorarchaeotes(morecloselyrelatedtoeukaryotesthantobacteria)extremophylesthermophileshyperthermophilespsychrophilesacidophilesalkaliphileshalophilesxprokaryoticcellsxuseorganiccompoundsasasourceofcarbonandenergy(organotrophs)xuseCO2asacarbonsource(chemoautothrophs)Eglit2000Burtonetal.
2002Gavrilescu2002Dunnetal.
2003Bitton2005DobleandKumar20058Environmentalbiotechnology.
MariaGavrilescusludgemethodwasperhapsthefirstmajoruseofbiotech-nologyinbioremediationapplications.
Municipalsewagetreatmentplantsandfilterstotreatcontaminatedgasesweredevelopedaroundtheturnofthecentury.
Theyprovedveryeffectivealthoughatthetime,thecausefortheiractionwasunknown.
Similarly,aerobicstabilizationofsolidwastethroughcompostinghasalonghistoryofuse.
Inaddition,bioremediationwasmainlyusedincleanupoperations,in-cludingthedecompositionofspilloilorslagloadscon-tainingradioactivewaste.
Then,bioremediationwasfoundasthemethodofchoicewhensolvents,plasticsorheavymetalsandtoxicsubstanceslikeDDT,dioxinsorTNTneedtoberemoved(EIBE2000;BetianuandGavrilescu2006a).
Generaladvantagesassociatedwiththeuseofbiologi-Table1(Cont.
)MicroorganismsTypeShapeExampleAbilitiesReferenceslongfilaments(hiphae)whichformamasscalledmycelliumxuseorganiccompoundsascarbonsourceandenergy,andplayanimportantroleinnutrientrecyclinginaquaticandsoilenvironmentsxsomeformtrapsthatcaptureprotozoaandnematodesxgrowunderacidicconditionsinfoods,waterorwastewater(pH5)ximplicatedinseveralindustrialapplication(fermentationprocessesandantibioticproduction)Hamer1997Burtonetal.
2002BrinzaandGavrilescu2003Guptaetal.
2004Bitton2005Phycomycetes(watermolds)xoccuronthesurfaceofplantsandanimalsinaquaticenvironmentssomeareterrestrial(commonbreadmold,Rhizopus)DuncanandHoran2003Bitton2005Ascomycetes(Neurosporacrassa,Saccharomycescerevisiae)someyeastsareimportantindustrialmicroorganismsinvolvedinbread,wine,beermakingBitton2005fungiBasidiomycetes(mushrooms-Agaricus,Amanita(poisonous))wood-rottingfungiplayasignificantroleinthedecompositionofcelluloseandligninHernández-Lunaetal.
2007Bitton2005Fungiiimperfecti(ex.
Penicillium)cancauseplantdiseasesGadd2007floatingunicellularmicroorganismsphyloplanktonChavanandMukherji2010filamentousUhlothrixTuzenetal.
2009Volvoxxplaytheroleofprimaryproducersinaquaticenvironments(oxidationpondsforwastewatertreatment)xcarryoutoxygenicphotosynthesisandgrowinmineralmediawithvitaminsupplements(providebysomebacteria)andwithCO2asthecarbonsourcexsomeareheterotrophicanduseorganiccompounds(simplesugarsandorganicacids)assourceofcarbonandenergyDuncanandHoran2003FengandAldrich2004algaecolonialPhylumChlorophyta(greenalgae)PhylumChrysophyta(golden-brownalgae)PhylumEuglenophytaPhylumPyrrophyta(dinoflagellates)PhylumRhodophyta(redalgae)PhylumPhaeophyta(brownalgae)Bitton2005Gadd2007ProtozoaunicellularorganismsimportantforpublichealthandprocessmicrobiologyinwaterandwastewatertreatmentEukaryotesSarcodina(amoeba)Mastigophora(flagellates)Ciliophora(ciliates)Sporozoaxresistanttodesiccation,starvation,hightemperature,lackofoxygen,disinfectioninwatersandwastewatersxfoundinsoilsandaquaticenvironmentsxsomeareparasitictoanimalsandhumansBitton2005VirusesBelongneithertoprokaryotesnortoeukaryotes(carryoutnocatabolicoranabolicfunctions)AnimalvirusesAlgalvirusesBacterialphagesxsomeareindicatorsofcontaminationxdistructhostcellsxinfectawiderangeoforganisms(animals,algae,bacteria)DuncanandHoran20039DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBookscalprocessesforthetreatmentofhazardouswastesrefertotherelativelylowcosts,simpleandwell-knowntechnolo-gies,potentialforcompletecontaminantdestruction(Naza-roffandAlvarez-Cohen2001;SasikumarandPapinazath2003;Gavrilescu2005).
WastewaterbiotreatmentTheuseofmicroorganismstoremovecontaminantsfromwastewaterislargelydependentonwastewatersourceandcharacteristics.
EnvironmentTemperatureMoisturecontentpHElectronacceptorsNutrientsContaminantToxicityConcentrationAvailabilitySolubilitySorptionMicroorganismsMetabolicallycapableDegradingpopulationIndigenousGeneticallyengineeredbioremediationFig.
9Mainfactorsofinfluenceinbioremediationprocesses.
(AdaptedfromBeaudetteetal.
2002;Bitton2005).
InsitutechniquesExsitutechniquesTechnologytransitionrelativelyunrestrictedlessthanayearfreewidespreadlocalizedlowtomediummediumtohighdeepwithinsiterelativelynearsurfacetimecontaminationconcentrationdepthFig.
10Factorsinvolvedinthechoiceofaremediationtechnology.
Table2Environmentalfactorsaffectingbiodegradation.
ParametersConditionrequiredformicrobialactivityOptimumvalueforanoildegradationSoilmoisture25-28%ofwaterholdingcapacity30-90%SoilpH5.
5-8.
86.
5-8.
0OxygencontentAerobic,minimumair-filledporespaceof10%10-40%NutrientcontentNandpformicrobialgrowthC:N:P=100:10:1Temperature(oC)15-4520-30ContaminantsNottootoxicHydrocarbon5-10%ofdryweightofsoilHeavymetalsTotalcontent2000ppm700ppmTypeofsoilLowclayorsiltcontent10Environmentalbiotechnology.
MariaGavrilescuWastewateristypicallycategorizedintooneofthefol-lowinggroups(Wiesmannetal.
2007):xmunicipalwastewater(domesticwastewatermixedwitheffluentsfromcommercialandindustrialworks,pre-treatedornotpre-treated)xcommercialandindustrialwastewater(pre-treatedornotpre-treated)xagriculturalwastewatersTheeffluentcomponentsmaybeofchemical,physicalorbiologicalnatureandtheycaninduceanenvironmentalimpact,whichincludeschangesinaquatichabitatsandspe-ciesstructureaswellasinbiodiversityandwaterquality.
Somecharacteristicsofmunicipalandindustrialwaste-watersarepresentedinTables3and4.
Itisevidentthatthequalityparametersareverydiverse,sothatthebiologicalwastewatertreatmenthastobeade-quatetopollutionloading.
Therefore,itisadifficulttasktofindthemostappropriatemicroorganismconsortiaandtreatmentschemeforacertaintypeofwastewater,inordertoremovethenon-settleablecolloidalsolidsandtodegradespecificpollutantssuchasorganic,nitrogenandphosphoruscompounds,heavymetalsandchlorinatedcompoundscon-tainedinwastewater(Fig.
11)(MetcalfandEddy1991;Bitton2005).
Sincemanyofthesecompoundsaretoxictomicroor-ganisms,pretreatmentmayberequired(Burtonetal.
2002).
Biologicaltreatmentrequiresthattheeffluentsberichinunstableorganicmatter,sothatmicrobesbreakuptheseun-stableorganicpollutantsintostableproductslikeCO2,CO,NH3,CH4,H2S,etc.
(Cheremisinoff1996;GuestandSmith2002;Dunnetal.
2003).
Toanincreasingextent,wastewatertreatmentplantshavechangedfrom"end-of-pipe"unitstowardmodulesys-tems,mostofthemfullyintegratedintotheproductionTable3Typicalcharacteristicsofwastewaterfromvariousindustries.
Parameters(mg/L)Process/sourcepHTSSBOD5CODNPSCarbo-hydrateAceticacidMetha-nolCl-Na+Ca2+K+ReferencesPulpandpaperindustryThermomechanicalpulping(TMP)4.
281028005600122.
372270023525PokhrelandViraghavan2004Chemi-thermomecha-nicalpulping-5003000-40006000-9000--16710001500-Bajpai2000Kraftbleaching10.
137-74128-1841124-173840-76Bajpai2000;PokhrelandViraghavan2004Spentliguor-25313,30039,80086363156210320090Bajpai2000;DasandJain2001Chipwash-609512,00020,6008636315321082070Bajpai2000Papermill-80016005020110.
697610549Bajpai2000;PokhrelandViraghavan2004Pharmaceuticalindustry3.
98407342010asPO43-160asSO42-1,9002800200020Sirtarietal.
2009Syntheticdrugplant(1)2.
3-11.
111-1262980-37805480-7465262-5127.
95-45.
82900-4500Murthyetal.
1984Chemicalsynthesis-basedpharmaceutical7-8800-90040,000-60,0003-6PO4-POktemetal.
2007Syntheticdrugplant(2)7-871305900123703200asNO32--9000asSO42----1150--Dairyindustry5.
5-7.
5250-600350-6001500-3000Sarkaretal.
2006Cheeseindustry6.
2-11.
3326-3560565-5722785-761929-181263-12651.
4-58.
5Danalevichetal.
1998;HwangandHansen1998Milkprocessingplant8-11350-11001200-14002000-600020-50PO4-P170-20035-4035-40Ince1998;SamkuttiandGough2002Butter/milkpowderplant5-71500190835560813Donkui1997;Strydometal.
1997TextileindustryTextilefinishingindustry8.
6-8.
8250-750150-17017005-45N-NH414-30525-590SO42-1650-1750Eremektaretal.
2007Cottontextilewastewater9.
12-9.
60500-900800-12007-21NH4-N1.
95-2.
4915-3217750-34000KapdanandAlparslan2005Textilewastewater101501701150680SO42-1820Selcuk200511DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBooksprocess(productionintegrateenvironmentalprotection)(Rosenwinkeletal.
1999).
Thethreemajorgroupsofbiologicalprocesses:aerobic,anaerobic,combinationofaerobicandanaerobiccanberunincombinationorinsequencetooffergreaterlevelsoftreatment(Gradyetal.
1999;Burtonetal.
2002;Gavrilescu2004a).
Themainobjectivesofwastewatertreatmentpro-cessescanbesummarizedas:xreductionofbiodegradableorganicscontent(BOD5)xreduction/removalofrecalcitrantorganicsxremovalofheavy/toxicmetalsxremoval/reductionofcompoundscontainingpandn(nutrients)xremovalandinactivationofpathogenicmicroorga-nismsandparasites1.
AerobicbiotreatmentAerobicprocessesareoftenusedformunicipalandindus-trialwastewatertreatment.
Easilybiodegradableorganicmattercanbetreatedbythissystem(Wagneretal.
2002;DobleandKumar2005;GallertandWinter2005;Russell2006).
Thebasicreactioninaerobictreatmentplantisrepre-sentedbythereactions(1,2):(1)Microbialcellsundergoprogressiveauto-oxidationofthecellmass:(2)Lagoonsandlowratebiologicalfiltershaveonlylimi-tedindustrialapplications.
Theprocessescanbeexploitedassuspended(activatesludge)orattachedgrowth(fixedfilm)systems(GavrilescuandMacoveanu1999;Gradyetal.
1999;Gavrilescuetal.
2002a;Lupasteanuetal.
2004;Paveletal.
2004)(Fig.
12).
Aerationtanksusedfortheactivatedsludgeprocessallowssuspendedgrowthofbacterialbiomasstooccurduringbio-logical(secondary)wastewatertreatment,whiletricklingfilterssupportattachedgrowthofbiomass(Burtonetal.
2002;GavrilescuandMacoveanu2000;Gavrilescuetal.
2002b;GavrilescuandUngureanu2002;GallertandWinter2005)(Fig.
12).
Advancedtypesofactivatedsludgesystemsusepureoxygeninsteadofairandcanoperateathigherbiomassconcentration.
Biofilmreactorsareappliedforwastewatertreatmentinvariantssuchas:tricklefilters,rotatingdiskreactors,airliftreactors.
Domesticwastewatersareusuallytreatedbyaero-bicactivatedsludgeprocess,sincetheyarecomposedmainlyofproteins(40-60%),carbohydrates(25-50%),fatsandoils(10%),urea,alargenumberoftracerefractoryorganics(pesticides,surfactants,phenols(Bitton2005)(Table4).
cellsnewOHCOnutrientsothercellsOmaterialOrganico2223222NHOHCOOCellsoBIOLOGICALWASTEWATERTREATMENTACTIVATEDSLUDGEPROCESSBIOFILMPROCESSActivatedsludgetreatmentplantSingletanktechniqueCombinedprocessContinuousfeedDiscontinuousfeed(Sequencingbatchreactors)SubmergedbiofilmSprayedbiofilmTricklingfilterFixedbedreactorsFluidizedbedreactorsTricklingfilterSoilfilterSnady/gravelfilterSnady/gravelfilterConstructedwetlandFig.
12Processesandequipmentinvolvedinbiologicalwastewatertreatment.
Table4Typicalloadingofmunicipalwastewater(Bitton2005).
Concentration(mg/L)WastewatercharacteristicsStrongMediumWeakSuspendedsolids350220100Totalsolids1200720350BiochemicalOxygenDemand(BOD5)400220110ChemicalOxygenDemand(COD)1000500250NH3-N502512TotalN854020OrganicN35158TotalP1584SuspendedsolidsBiodegradableorganiccompoundsPathogensandparasitesNutrientsPrioritypollutantsDissolvedinorganicsHeavymetalsRefractoryorganicsWASTEWATERCONTAMINANTSFig.
11Categoriesofcontaminantsinwastewater.
(AdaptedfromMet-calfandEddy1991;Bitton2005).
12Environmentalbiotechnology.
MariaGavrilescu2.
AnaerobicbiotreatmentAnaerobictreatmentofwastewaterdoesnotgenerallyleadtolowpollutionstandards,anditisoftenconsideredapre-treatmentprocess,devotedtominimizationofoxygendemandandexcessiveformationofsludge.
Highlyconcen-tratedwastewatersshouldbetreatedanaerobicallyduetothepossibilitytorecoverenergyasbiogasandlowquantityofsludge(GallertandWinter1999).
Researchandpracticeshavedemonstratedthathighloadsofwastewatertreatedbyanaerobictechnologiesgene-rateslowquantitiesofbiologicalexcesssludgewithahightreatmentefficiency,lowcapitalcosts,nooxygenrequire-ments,methaneproduction,lownutrientrequirements(Fig.
13)(BlonskayaandVaalu2006).
NewdevelopmentsinanaerobicwastewatertreatmentHighrateanaerobicwastewatertreatmenttechnologiescanbeappliedtotreatdiluteconcentratedliquidorganicwaste-waterswhicharedischargedfromdistilleries,breweries,papermills,petrochemicalplantsetc.
Evenmunicipalwaste-watercanbetreatedusinghighrateanaerobictechnologies.
Therearealsoanumberofestablishedandemergingtech-nologieswithvariousapplications,suchas:-sulphatereductionforremovalandrecoveryofheavymetalsandsulphatedenitrificationfortheremovalofnitrates-bioremediationforbreakdownoftoxicprioritypol-lutantstoharmlessproducts.
SulphatereducingprocessThecharacteristicsofsomesulphur-richwastewaters(tem-perature,pH,salinity)aredeterminedbydischargingpro-cess.
Often,theyhavetomeetconstraintsimposedbyres-trictiveenvironmentalregulationssothatagrowinginteresttoextendtheapplicationofsulphatereducinganaerobicre-actionsinconditionsfarfromtheoptimalgrowthconditionsofmostbacteriaisobvious(Droste1997;GuestandSmith2002).
Themechanismofthesulphatereductionforremovaloforganics,heavymetalsandsulphurisillustratedbyreac-tions(3–5):(3)(4)(5)sulphateorganicsubstratedisulfidecarbondioxidesulfideheavymetal[soluble]metalsulfide[insoluble]disulfideoxygenelementalsulfur[insoluble]water2bacteriareducingsulfate24COHSCODSOopoMSMS22OHSOHS20)lusThilobacil.
eg(bacteriacchemotropi2poAerobictreatmentAnaerobictreatmentInlet100kgCODInlet100kgCODOutlet10kgCODSludge60kgCODOutlet10kgCODEnergy100kWhEnergy10kWhSludge10kgCODCO2,H2OMethane,CO2Fig.
13Comparisonofaerobicandanaerobicbiologicaltreatment.
(BlonskayaandVaalu2006).
OrganicsubstancesinwastewaterGreenhouseGas(CO2)GreenhouseGas(CH4)EnergySludgeDisposalOrganicsubstancesinwastewaterGreen-houseGas(CO2)BiomassReuseWastewaterTreatmentbyPhotosyntheticBacteriaConventionalWastewaterTreatmentFig.
14Comparisonofcarbonconversionpathwaysduringconventionalwastewatertreatmentandwastewatertreatmentbyphotosyntheticbacteria(Nakajimaetal.
2001).
13DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBooksUpflowanaerobicsludgeblanket(UASB)reactorscanbeusedtotreatsulphur-richwastewaters(Tuppurainenetal.
2002;Lensetal.
2004).
Wastewatertreatmentusingpurplenonsulphurbacteria,asortofphotosyntheticbacteriaunderlightandanaerobicconditionsisappliedtoproducealargeamountofusefulbiomasswithlittlecarbondioxide,oneofthemajorgreen-housegases(Fig.
14)(Nakajimaetal.
2001).
Thebiomassofthesebacteriacanbeutilizedforagriculturalandindus-trialpurposes,suchasafeedforfishandanimals,fertilizers,polyhydroxyalkanoates.
3.
AdvancedbiotreatmentAdvancedwastewaterbiotreatmentmustbeconsideredinaccordancewithvariousbeneficialreusepurposesaswellastheaspectofhumanandenvironmentalhealth.
Thisisespeciallyimportantwhenthetreatedwastewaterisaimedtousefortherehabilitationofurbancreakandcreationofwaterenvironmentalongit.
Membranetechnologyisconsideredoneoftheinnova-tiveandadvancedtechnologieswhichrationallyandeffec-tivelysatisfytheabovementionedneedsinwaterandwastewatertreatmentandreuse,sinceitcombinesbiologi-calwithphysicalprocesses(Yamamoto2001;Bitton2005).
Incombinationwithbiologicaltreatment,itisreason-ablyappliedtoorganicwastewaters,alargepartofwhichisbiodegradable.
Infact,thisisthecombinationofamem-braneprocesslikemicrofiltrationorultrafiltrationwithasuspendedgrowthbioreactor(BenAimandSemmens2003;Bitton2005)(Fig.
15).
Itiswidelyandsuccessfullyappliedinaneverincrea-singnumberoflocationsaroundtheworldformunicipalandindustrialwastewatertreatmentwithplantsizesupto80,000populationequivalent(MembraneSeparationActi-vatedSludgeProcess,MSAS).
Theprocessefficiencyisde-pendentonseveralfactors,suchasmembranecharacteris-tics,sludgecharacteristics,operatingconditions(Bitton2005;Judd2006).
AnewgenerationofMSASisthesubmergedtypewheremembranemodulesaredirectlyimmersedinanaera-tiontank(Fig.
15).
ThisaimstosignificantlyreducetheenergyconsumptionbyeliminatingabigcirculationpumptypicallyinstalledinaconventionalMSAS(Judd2006).
Membranebioreactors(MBR)canbeappliedforremo-valofdissolvedorganicsubstanceswithlowmolecularweights,whichcannotbeeliminatedbymembranesepara-tionalone,canbetakenup,brokendownandgasifiedbymicroorganismsorconvertedintopolymersasconstituentsofbacterialcells,therebyraisingthequalityoftreatedwater.
Also,polymericsubstancesretainedbythemembranescanbebrokendowniftheyarestillbiodegradable,whichmeansthattherewillbenoendlessaccumulationofthesubstanceswithinthetreatmentprocess.
This,however,re-quiresthebalancebetweentheproductionanddegradationrates,becausetheaccumulationofintermediatemetabolitesmaydecreasethemicrobialactivitiesinthereactor(Yama-AerationtankAerationtankA.
ExternalMembraneModuleB.
SubmergedMembraneModuleWastesludgeMembraneModulePermeateConcentratereturnPermeateWastesludgeQQMembraneModuleFig.
15Membranebioreactorswith(a)externalmoduleand(b)inter-nal(submerged)module.
(Bitton2005;BenAimandSemmens2003).
Table5ExpectedperformanceofMBRforwastewatertreatment.
WastewaterloadingExpectedperformanceSuspendedsolids(SS)CompleteremovalNoinfluenceofsludgesettleabilityoneffluentqualityRemovalofparticle-boundmicropollutantsVirus,bacteria,protozoaReliableremovalbysizeexclusion,retentionbydynamicmembrane,ahighremovalalongwithSSretentionNitrogenStablenitrificationduetohighretentionofnitrifyingbacteriaLowtemperaturenitrificationisattainedAhigheffectivenessfactorintermsofnitrificationduetorelativelysmallsizeflocEndogenousdenitrificationishighlyexpectedduetohighconcentrationofbiomassSludgestabilizationMinimizeexcesssludgeproductionduetolongSRTSludgetreatmentispossibletogetherwithwastewatertreatmentUseofhighertropicleveloforganismisexpectedtocontrolsludgeDegradationofhazardoussubstancesSelectivegrowthofspecificmicroorganismsisexpectedforhardlydegradablehazardoussubstancesAlmostpureculturesystemiseasilyoperatedTable6SustainabilitycriteriaforMBRtechnology(Balkemaetal.
2002;Fane2007).
CriteriaIndicatorsImprovementneededAppliednowwithgoodresultsEconomicCostandaffordabilityXXXEffluentwaterqualityMicroorganismSuspendedsolidsBiodegradableorganicsXNutrientremovalXChemicalusageXEnergyXEnvironmentalLanduseXReliabilityXEaseofusexFlexibleandadaptableXTechnicalSmall-scalesystemsXInstitutionalrequirementsXAcceptanceXSocio-culturalEpertiseX14Environmentalbiotechnology.
MariaGavrilescumoto2001).
MBRscanbeoperatedaerobicallyoranaerobicallyfororganiccompoundsandnutrientsremoval.
Duetoitshybridnature,MBRsofferadvantagesandgainmerits(Table5)(Yamamoto2001).
Thetechnologymeetswatersustainabilitycriteria,dis-cussesbyBitton(2005)andshowninTable6(Balkemaetal.
2002;Fane2007).
Themainadvantagesofbiologicalprocessesincompa-risonwithchemicaloxidationare:noneedtoseparatecol-loidsanddispersedsolidparticlesbeforetreatment,lowerenergyconsumption,theuseofopenreactors,resultinginlowercosts,andnoneedforwastegastreatment(Lang-waldtandPuhakka2000;Wiesmannetal.
2007).
4.
MoleculartechniquesinwastewatertreatmentAlthoughmoleculartechniqueapplicationsinwastewaterbiotreatmentarequitenew,beingdevelopedduringthe1990sandnotappearingtobemoreeconomicallythantheestablishedtechnologies,majorapplicationsmayincludetheenhancementofxenobioticsremovalinwastewatertreatmentplantsandtheuseofnucleicacidprobestodetectpathogensandparasites(COST6242001;Khanetal.
2004;Bitton2005;SanzandKochlung2007).
Amongthesetech-niques,themostinterestingprovedtobecloningandcrea-tionofgenelibrary,denaturantgradientcellelectrophoresis(DGGE),fluorescentinsituhybridizationwithDNAprobes(FISH)(SanzandKochlung2007).
Wastewatertreatmentprocessescanbeimprovedbyselectionofnovelmicroorganismsinordertoperformacer-tainaction.
However,theuseofDNAtechnologyinpol-lutioncontrolshowedtohavesomedisadvantagesandlimitations(Timmisetal.
1994;Bitton2005),suchas:multisteppathwaysinxenobioticsbiodegradation,limiteddegradation,instabilityoftherecombinantstrainsofinter-estintheenvironment,publicconcernaboutdeliberateoraccidentalreleaseofgeneticmodifiedmicroorganismsetc.
5.
MetalsremovalbymicroorganismsfromwastewatersHeavymetalscomeinwastewatertreatmentplantsfromindustrialdischarges,stormwateretc.
Toxicmetalsmaydamagethebiologicaltreatmentprocess,beingusuallyin-hibitorytobothareobicandanaerobicprocesses.
However,therearemicroorganismswithmetabolicactivityresultinginsolubilization,precipitation,chelation,biomethylation,volatilizationofheavymetals(BremerandGeesey1991;Bitton2005;Gerardi2006).
Metalsfromwastewatersuchasiron,copper,cadmium,nickel,uraniumcanbemostlycomplexedbyextracellularpolymersproducedbyseveraltypesofbacteria(B.
licheni-formis,Zooglearamigera).
Subsequently,metalscanbeac-cumulatedandthenreleasedfrombiomassbyacidictreat-ment.
Nonlivingimmobilizedbacteria,fungi,algaeareabletoremoveheavymetalsfromwastewater(EcclesandHunt1986;Bitton2005)(Table7).
Themechanismsinvolvedinmetalremovalfromwaste-waterinclude(Kulbatetal.
2003;Bitton2005;Gerardi2006):adsorptiontocellsurface,complexationandsolubi-lizationofmetals,precipitation,volatilization,intracellularaccumulationofmetals,redoxtransformationofmetals,useofrecombinantbacteria.
Forexample,Cd2+canbeaccumu-latedbybacteria,suchasE.
coli,B.
cereus,fungi(Asper-gillusniger).
Thehexavalentchromium(Cr6+)canbere-ducedtotrivalentchromium(Cr3+)bytheEnterobacterclo-acaestrain;subsequentlyCr3+precipitatesasametalhydro-xide(OhtakeandHardoyo1992).
SomemicroorganismscanalsotransformHg2+andseveralofitsorganiccom-pounds(methylmercury,ethylmercuricphosphate)tothevolatileformHg0,whichisinfactadetoxificationmecha-nism(SilverandMisra1988).
Themetabolicactivityofsomebacteria(Aeromonas,Flavobacterium)canbeexploitedtotransformSeleniumtovolatilealkylselenidesasaresultofmethylation(Bitton2005).
Table7Organismsinvolvedinmetalremoval/recoveryfromwaste-waters.
MetalOrganismYeastsSaccharomycescerevisiaeA.
pullulansCr.
laurentiiCy.
capitatumH.
anomalaP.
fermentansR.
rubraS.
cerevisiaeSp.
roseusS.
cerevisiaeentrappedinpolyurethanefoamCd(II)S.
cerevisiaemodifiedbycrosslinkingcystinewithglutaraldehydeCr(VI)Pb(II)Ni(II)S.
cerevisiaeCr(VI)CandidautilisCr(VI)S.
cerevisiaeCr(III)S.
cerevisiaeLivingmicroalgaefreeinsolutionChlorellavulgarisChlorellasalinaChlorellahomosphaeraScenedesmusobliquusChlamydomonasreinhardtiiAsterionellaformosaFragilariacrotonensisThalassiosirarotulaCd(II)CricosphaereelongateChlorellavulgarisPb(II)Euglenasp.
ChlorellavulgarisChlorellaregularisChlorellasalinaChlorellahomosphaeraZn(II)Euglenasp.
Au(I)ChlorellavulgarisChlorellaregularisChlorellasp.
ScenedesmusobliquusScenedesmussp.
Chlamydomonassp.
DunaliellatertiolectaU(II)Ankiistrodesmussp.
,Selenastrumsp.
ChlorellaregularisEuglenasp.
Cu(I)CricosphaereelongateChlorellaregularisNi(I)ThalassiosirarotulaChlorellaregularisCo(II)ChlorellasalinaChlorellaregularisChlorellasalinaMn(II)Euglenasp.
ChlorellaregularisScenedesmussp.
Mo(I)ChlamydomonasreinhardtiiChlorellaemersoniiScenedesmusobliquusTc(II)ChlamydomonasreinhardtiiChlorellaemersoniiScenedesmusobliquusZr(II)Chlamydomonassp.
Hg(II)Chlorellasp.
Al(III)Euglenasp.
15DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBooksSoilbioremediationSoilbiotreatmenttechnologiesuselivingorganismstodeg-radesoilcontaminants,eitherexsitu(i.
e.
,aboveground,inanotherplace)orinsitu(i.
e.
,inplace,inground),andin-cludebiotreatmentcells,soilpiles,andpreparedtreatmentbeds(TrejoandQuintero1999;Khanetal.
2004;Gavri-lescu2006).
Forbioremediationtobeeffective,microorganismsmustenzymaticallyattackthepollutantsandconvertthemtoharmlessproducts.
Sincebioremediationcanbeeffectiveonlywhereenvironmentalconditionspermitmicrobialgrowthandactivity,itsapplicationofteninvolvesthemani-pulationofenvironmentalparameterstoallowmicrobialgrowthanddegradationtoproceedatafasterrate.
Table2reviewssomeenvironmentalconditionsfordegradationofcontaminants(Vidali2001).
Oilbioremediationistypicallybasedontheprinciplesofsoilcompostingthatmeanscontrolleddecompositionofmatterbybacteriaandfungiintoahumus-likeproduct.
Thisprocesscanbeperformedinanexsitusystem,whencon-taminatedsoilsareexcavated,mixedwithadditionalsoiland/orbacteriatoenhancetherateofdegradation,andplacedinabovegroundareasortreatmentcompartments.
Anothertypeofsoilbiotreatmentconsistsofaninsituprocess,whenacarbonsourcesuchasmanureisadded,inanactiveorpassiveproceduredependinguponwhetherthecarbonsourceisapplieddirectlytotheundisturbedsoilsur-face(i.
e.
,passive)orphysicallymixedintothesoilsurfacelayer(i.
e.
,active).
Table8summarizessomeoftheadvantagesanddisad-vantagesofsoilbioremediationtechniques(Vidali2001;Gavrilescu2006;Gavrilescuetal.
2008;PavelandGavri-lescu2008).
Bothinsituandexsitumethodsarecommerciallyex-ploitedforthecleanupofsoilandtheassociatedground-water(LangwaldtandPuhakka2000).
Theeffectivenessofbothalternativesisdependentuponcarefulmonitoringandcontrolofenvironmentalfactorssuchasmoisture,tempera-ture,oxygen,andpH,andtheavailabilityofafoodsourceforthebacteriatoconsume(Saval1999).
Bioremediationofland(biorestoration)isoftencheaperthanphysicalmethodsanditsproductsareharmlessifcom-pletemineralizationtakesplace.
Itsactioncan,however,betime-consuming,tyingupcapitalandland.
Bioremediationusingplants,identifiedasphytoreme-diation(Fig.
5)ispresentlyusedtoremovemetalsfromcontaminatedsoilsandgroundwaterandisbeingfurtherexploredfortheremediationofotherpollutants.
Certainplantshavealsobeenfoundtoabsorbtoxicmetalssuchasmercury,leadandarsenicfrompollutedsoilsandwater,andscientistsarehopefulthattheycanbeusedtotreatindus-trialwaste.
Vidali(2001)describedfivetypesofphytoremediationtechniques,classifiedbasedonthecontaminantfate:phyto-extraction,phytotransformation,phytostabilization,phyto-Table7(Cont.
)MetalOrganismMacroalgalbiomassSargassumnatansAscophyllumnodosumHalimedaopuntiaCd(II)FucusvesiculosusSargassumnatansSargassumfluitansSargassumvulgarisAscophyllumnodosumPalmariapalmateChondrusCrispusFucusvesiculosusPadinagymnosporaPb(II)CodiumtayloriSargassumnatansAscophyllumnodosumPalmariapalmateChondrusCrispusAu(I)PorphyrapalmataAg(I)SargassumnatansU(II)SargassumnatansZn(II)SargassumnatansSargassumnatansCu(I)VaucheriaSargassumnatansAscophyllumnodosumChondrusCrispusPorphyrapalmataCo(II)HalimedaopuntiaSr(II)VaucheriaTable8Summaryofsomebioremediationstrategies.
TechnologyExamplesBenefitsLimitationsFactorstoconsiderInsituInsitubioremediationBiospargingBioventingBioaugmentationMostcostefficientNoninvasiveRelativelypassiveNaturalattenuationprocessesTreatssoilandwaterEnvironmentalconstrainsExtendedtreatmenttimeMonitoringdifficultiesBiodegradativeabilitiesofindigenousmicroorganismsPresenceofmetalsamdotherinorganicsEnvironmentalparametersBiodegradabilityofpollutantsChemicalsolubilityGeologicalfactorsDistributionofpollutantsExsituLandfarmingCompostingBiopilesCostefficientLowcostCanbedoneonsiteSpacerequirementsExtendedtreatmenttimeNeedtocontrolabioticlossMasstransferproblemBioavailabilitylimitationSeeaboveBioreactorsSlurryreactorsAqueousreactorsRapiddegradationkineticOptimizedenvironmentalparametersEnhancesmasstransferEffectiveuseofinoculantsandsurfactantsSoilrequiresexcavationRelativelyhighcostcapitalRelativelyhighoperatingcostSeeaboveBioaugmentationToxicityofamendmentsToxicconcentrationofcontaminantsBiopilesex-situmethodsitedundercoveredstructures,bundedtomanageleachategenerationthephysicalcharacteristicsofbiopilesaredifficulttoengineerusingvariousmethodstoenhancethegrowthandviabilityofthemicrobesWindrowsex-situmethodpilesofcontaminatedsolids,fashionedtomaximiseoxygenavailability,coveredwithreadily-removablestructures,andbundedtomanageleachategenerationthemethodisoftenpreferredsinceeaseofengineeringensuresthemicroorganismsareindirectcontactwithcontaminantsmoisturecontent,nutrientlevels,pHadjustment,andbiologicalmaterialmaintenanceisfacilitatedbyrecirculationofgeneratedleachate,withanynecessarysupplements16Environmentalbiotechnology.
MariaGavrilescudegradation,rhizofiltration,andsummarizessomephyto-remediationmechanismsandapplications(Table9).
Togetherwithothernear-naturalprocessesandthemonitorednaturalattenuationprocedures,sustainablestra-tegieshavetobedevelopedtoovercomethecomplexprob-lemsofcontaminatedsites(GallertandWinter2005).
SolidwastebiotreatmentTheimplementationofincreasinglystringentstandardsforthedischargeofwastesintotheenvironment,aswellastheincreaseincostofhabitualdisposalortreatmentoptions,hasmotivatedthedevelopmentofdifferentprocessesfortheproductionofgoodsandforthetreatmentanddisposalofwastes(Nicell2003;Hameretal.
2007;MazzantiandZoboli2008).
Theseprocessesaredevelopedtomeetoneormoreofthefollowingobjectives(EvansandFurlong2003;Gavrilescuetal.
2005,BanksandStentiford2007):(1)toimprovetheefficiencyofutilizationofrawmaterials,there-byconservingresourcesandreducingcosts;(2)torecyclewastestreamswithinagivenfacilityandtominimizetheneedforeffluentdisposal;(3)toreducethequantityandmaximizethequalityofeffluentwastestreamsthatarecre-atedduringproductionofgoods;and(4)totransformwastesintomarketableproducts.
Themultitudesofwaysinwhichthetransformationofwastesandpollutantscanbecarriedoutcanbeclassifiedasbeingchemicalorbiologicalinnature.
Biotreatmentcanbeusedtodetoxifyprocesswastestreamsatthesource–beforetheycontaminatetheenvironment–ratherthanatthepointofdisposal.
Infact,wasterepresentsoneofthekeyinterventionpointsofthepotentialuseofenvironmen-talbiotechnology(EvansandFurlong2003).
Biowasteisgeneratedfromvariousanthropogenicacti-vities(households,agriculture,horticulture,forestry,waste-watertreatmentplants),andcanbecategorizedas:manures,rawplantmatter,processwaste.
Forexample,inEurope,40–60%ofmunicipalsolidwastes(MSW)consistofbio-waste,mostofitcollectedseparatelyandusedformanyap-plicationssuchasaerobicdegradationorcomposting,whichcanprovide(throughanaerobicdegradationorfer-mentation)nutrientsandhumuscompoundsforimprovingthesoilstructureandcompostqualityforagricultureusesprovidesnutrientsinsoilandcompostforagricultureuses.
Theenergyoutputisbiogas,whichcanbeusedasenergysourcee.
g.
togenerateelectricityandheat(Fischer2008).
Thepotentialfornutrientandhumusrecyclingfrombio-wastebackintothesoil,viacomposted,digestedorother-wisebiologicallytreatedmaterialwasoftenmentioned.
Thisapproachinvolvescarefullyselectingorganisms,knownasbiocatalysts,whichareenzymesthatdegradespe-cificcompounds,anddefinetheconditionsthatacceleratethedegradationprocess.
Biologicalwastetreatmentaimstothedecompositionofbiowastebyorganismsinmorestable,bulk-reducedmate-rial,whichcontributesto:-reducingthepotentialforadverseeffectstotheenvi-ronmentorhumanhealth-reclaimingvaluablemineralsforreuse-generatingausefulendproductAdvantagesofthebiologicaltreatmentinclude:stabili-zationofthewaste,reducedvolumeinthewastematerial,destructionofpathogensinthewastematerial,andproduc-tionofbiogasforenergyuse.
Theendproductsofthebiolo-gicaltreatmentcan,dependingonitsquality,berecycledasfertilizerandsoilamendment,orbedisposed.
Solidwastecanbetreatedbybiochemicalmeans,eitherinsituorexsitu(Dobleetal.
2004).
Thetreatmentscouldbeperformedasaerobicoranaerobicdependingonwhe-thertheprocessrequiresoxygenornot.
1.
AnaerobicdigestionAnaerobicdigestionoforganicwasteacceleratesthenatu-raldecompositionoforganicmaterialwithoutoxygenbymaintainingthetemperature,moisturecontentandpHclosetotheiroptimumvalues.
GeneratedCH4canbeusedtopro-duceheatand/orelectricity(Mata-Alvarezetal.
2000;Sal-minenandRintala2002).
Themostcommonapplicationssolid-wastebiotreat-mentinclude(TBVGmbH2000):xtheanaerobictreatmentofbiogenicwastefromhumansettlementsxtheco-fermentationofseparatelycollectedbiode-gradablewastewithagriculturaland/orindustrialsolidandliquidwastexco-fermentationofseparatelycollectedbiodegrade-blewasteinthedigestingtowersofmunicipalwastetreatmentfacilitiesxfermentationoftheresidualmixedwastefractionwithinthescopeofamechanical-biologicalwaste-treat-mentconceptAnaerobicprocessesconsumelessenergy,producelowexcesssludge,andmaintainenclosureofodoroverconven-tionalaerobicprocess.
Thistechniqueisalsosuitablewhentheorganiccontentoftheliquideffluentishigh.
Theacti-vityofanaerobicmicrobescanbetechnologicallyexploitedunderdifferentsetsofconditionsandindifferentkindsofprocesses,allofwhich,however,relyontheexclusionofoxygen(TBVGmbH2000).
ImportantcharacteristicsandrequisitespecificationsforclassifyingthevariousfermentationprocessesandessentialstepsinthetreatmentoforganicwastewerepresentedinTable10(TBVGmbH2000).
2.
CompostingThebiologicaldecompositionoftheorganiccompoundsofwastesundercontrolledaerobicconditionsbycompostingislargelyappliedforwastebiotreatment.
Theeffectiverecyclingofbiowastethroughcompostingordigestioncantransformapotentiallyproblematic'waste'intoavaluable'product':compost.
Almostanyorganicwastecanbetreatedbythismethod(Haug1993;KrogmannandKrner2000;Kutzner2000;Schuchardt2005),whichresultsinendproductsasbiologicallystablehumus-likeproductforuseasasoilconditioner,fertilizer,biofiltermaterial,orfuel.
Degradationoftheorganiccompoundsinwasteduringcompostingisinitiatedpredominatelybyaverydissimilarcommunityofmicroorganisms:bacteria,actinomyctes,andfungi.
AnadditionalinoculumforthecompostingprocessisTable9Overviewofphytoremediationapplications.
TechniquePlantmechanismSurfacemediumPhytoextractionUptakeandconcentrationofmetalviadirectuptakeintotheplanttissuewithsubsequentremovaloftheplantsSoilsPhytotransformationPlantuptakeanddegradationoforganiccompoundsSurfacewater,groundwaterPhytostabilizationRootexudatescausemetaltoprecipitateandbecomelessavailableSoils,groundwater,minetailingPhytodegradationEnhancesmicrobialdegradationinrhizosphereSoils,groundwaterwithinrhizosphereRhizofiltrationUptakeofmetalsintoplantrootsSurfacewaterandwaterpumpedPhytovolatilizationPlantsevapotranspirateselenium,mercury,andvolatilehydrocarbonsSoilsandgroundwaterVegetativecapRainwaterisevapotranspiratedbyplantstopreventleachingcontaminantsfromdisposalsitesSoils17DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBooksnotgenerallynecessary,becauseofthehighnumberofmicroorganismsinthewasteitselfandtheirshortgenera-tiontime.
Alargefractionofthedegradableorganiccarbon(DOC)inthewastematerialisconvertedintocarbondioxide(CO2).
CH4isformedinanaerobicsectionsofthecompost,butitisoxidizedtoalargeextentintheaerobicsectionsofthecompost.
TheestimatedCH4releasedintotheatmosphererangesfromlessthan1%toafewpercentoftheinitialcarboncontentinthematerial(Beck-Friis2001).
Compostingcanleadtowastestabilization,volumeandmassreduction,drying,eliminationofphytotoxicsubstan-cesandundesiredseedsandplantparts,andsanitation.
Compostingisalsoamethodforrestorationofcontami-natedsoils.
Sourceseparatedbio-wastescanbeconvertedtoavalu-ableresourcebycompostingoranaerobicdigestion.
Inre-centyears,bothprocesseshaveseenremarkabledevelop-mentsintermsofprocessdesignandcontrol.
Inmanyres-pects,compostinganddigestiondifferfromotherwastemanagementprocessesinthattheycanbecarriedoutatvaryingscalesofsizeandcomplexity.
Therefore,thisen-ablesregionstoimplementarangeofdifferentsolutions:largeandsmall-scalesystems,acentralizedordecentralizedapproach(Gilbertetal2006).
3.
Mechanical-biologicaltreatmentMechanical-biological(MB)treatmentofwasteisbecomingpopularinEurope(Steiner2005).
InMBtreatment,thewastematerialundergoesaseriesofmechanicalandbiolo-gicaloperationsthataimtoreducethevolumeofthewasteaswellasstabilizeittoreduceemissionsfromfinaldispo-sal.
BiotreatmentofgaseousstreamsInthewastegastreatments(odoursandvolatileorganiccompounds,VOC)biotechnologyhasbeenappliedtofindgreenandlowcostenvironmentalprocesses(Devinnyetal.
1999;PenciuandGavrilescu2003;LeCloirecetal.
2005).
Odorousemissionsrepresentaseriousproblemrelatedtobiowastetreatmentfacilitiesastheymaybeatroubletothelocalresidentssincetheymayresultincomplaintsandalackofacceptanceofthefacilitybecauseodoursmaybecarriedawayseveralkilometers,dependingonweatherandtopographicalconditions(Hérouxetal.
2004).
Table11showsthesubstancesanalyzedintheexhaustairofanenclosedcompostingfacility.
AscanbeseenfromTable11theexhaustairmainlycontainsalcohols,esters,ketonesandaldehydes,aswellasterpenes(Schlegelmilchetal.
2005).
Mostofthemareproductsofbiologicaldegra-dation,withalcohols,esters,ketones,holdingthemainpor-Table10Systematicoverviewoffermentationprocessesandessentialstepsinthetreatmentoforganicwaste(TBVGmbH2000).
1.
Requirementsconcerningthecompositionoftheinputmaterial(s)i.
e.
:limits,e.
g.
,TScontent,fibercontentandlength,particlesize,viscosity,foreign-substancecontent2.
Pretreatmentforreducingthepollutantandinert-materialcontentse.
g.
:manualsorting,mechanical/magneticseparation,wetprocessing3.
Pretreatmentrequiredfortheprocesse.
g.
:sizereductionandsubstanceexclusion:mechanical,chemical,enzymatic,thermal,bacteriological[methods,employedprocessadditives]TS-contentrange:admixtureofprocesswater[dry/wetfermentationprocesses],monochargesrequiringadmixtureofotherfermentablestartingmaterials4.
Processesa1)Single-phasefermentationa2)Two-phasefermentationSingle-stageprocessMultiple-stageprocessStationarysolidphase/mobileliquidphaseMobilesolidphase/StationaryliquidphaseUpgrading(concentration)Downgrading(deconcentration)b)Fermentationtemperaturerange(s)(mesophilic/thermophilic)c)Stirring/mixing-stirring/mixingsystemd)Interstageconveyance[e.
g.
,pump,gravimetric]e)In-processseparationofsediments/floatingmatterf)Retentiontime(s)g)Equipmentforcontrollingtheprocessmilieuh)Phaseseparationattheendoffermentation5.
Post-treatmentprocessesSecondaryfermentation(e.
g.
,timespanfordegreeoffermentationV,timehistoryoftemperatureduringsecondaryfermentation),drying,disinfection,reductionof(nutrient)salinity,wastewatertreatment6.
Endproduct(s)i.
e.
:specificationaccordingtorecognizedcriteriae.
g.
,degreeoffermentation,degreeofhygienization,nitrate/saltcontentTable11Chemicalcompositionofwastegasofcompostingplant(Heroldetal.
2002).
AlcoholsEstersKetones/aldehydesTerpenesOthersEthanolEthylacetateAcetone-PineneAceticacidButanol(2)EthylpropionateButanoneCamphene2-Ethylfurane2-Me-propanolPropylacetate3-Me-butanal-PhellandreneToulenen-ButanolEthylbutyrate3-Me-butanone(2)-PineneXyleneCyclopentanoli-ButylacetatePentanone(2)-MyrceneDibutylphthalate3-Me-butanol(1)MethylbutyrateMe-isobutylketone3-CareneBis-2-Ethylhexyl-adipinate2-Me-butanol(1)PropylpropionateHexanone(2)Limonenen-PentanolMethylpentoate5-Me-Hexanone(2)Thujonen-HexanolEt-2-Me-butyrateBenzaldehydeCamphorPropylbutyrateNonanalThymolEthylpentanoateDecanalThujopreneMethylhexanoateBornylacetateEthylhexanoatePropylhexaonateEthylheptanoate18Environmentalbiotechnology.
MariaGavrilescution(Heroldetal.
2002;Schlegelmilchetal.
2005).
Biofiltersareoneofthemainbiologicalsystemsused,whichworkatnormaloperatingconditionsoftemperatureandpressure.
Thereforetheyarerelativelycheap,withhighefficiencieswhenthewastegasischaracterizedbyhighflowandlowpollutantconcentration(Gavrilescuetal.
2005;Andresetal.
2006).
Biologicalwasteairtreatmentusingbiofiltersandbiotricklingfilterswasdevelopedasareliableandcost-effectivetechnologyfortreatmentofpol-lutedairstreams(Cohen2001;Coxetal.
2001;Iranpouretal.
2002;Penciuetal.
2004).
Thebiodegradationofpol-lutantsbymicroorganismsleadstoharmlessend-products(KennesandThalasso1998;PenciuandGavrilescu2004).
Becausemicrobialpopulationsinbiofiltersandbiotricklingfiltersgenerallyareverydiverse,thesetypesofreactorscansimultaneouslyremovecomplexmixturesofpollutants,whichwouldotherwiserequireaseriesofalternativetech-nologies(Deshusses1997;CoxandDeshusses1998;CoxandDeshusses2001;KennesandVeiga2001;Shareefdeenetal.
2005).
Bioscrubber/biofiltercombinationsalsoprovedtobeanefficientsystemtotreatodorousoff-gasesfromcompostingprocesses.
Resultsrevealedthatthemainpartoftheodourloadwasdegradedwithinthebiofilter(Schlegelmilchetal.
2005).
BiodegradationofhydrocarbonsHydrocarbonscangeneratesignificantpollutionbecausetheyareamongthemostcommoncontaminantsofground-water,soilandseawhenoilisspilled(Mohn1997;Staple-tonetal.
1998).
Thedamagecausedbyoilspillsinmarineorfreshwatersystemsisusuallycausedbythewater-in-oilemulsion.
Varioustypesofmicroorganismscandegradehydrocar-bons:bacteria,yeasts,filamentousfungi,butnoneofthemdegradeallofthepossiblehydrocarbonmoleculesatthesamerate.
Eachorganismmayhaveadifferentspectrumofactivityandadefinitepreferentialuseofcertainchainlengthshydrocarbonstructures.
Almostallpetroleumhydrocarbonscanbeoxidizedtomainlywaterandcarbondioxide,buttherateatwhichtheprocesstakesplaceisdependentontheirnature,amountandthephysicalandchemicalpropertiesthatinfluencetheirpersistenceandbiodegradability(Atlas1981;LeahyandColwell1990;EIBE2000;BaheriandMeysami2002;Tor-kianetal.
2003).
Hydrocarbonsaresubjecttobothaerobicandanaerobicoxidation.
Usually,thefirststageofbiodeg-radationofinsolublehydrocarbonsispredominantlyaero-bic,whiletheorganiccarboncontentisreducedbytheac-tionofanaerobicorganisms.
Table12presentssomegroupsofmicroorganismsthatcandegradevarioushydrocarbons,whileinTable13theadequacyofaerobicoranaerobicdeg-radationisdoneaccordingtovarioustypesofcontaminantsfrompetroleumderivatives.
Theprevailingenvironmentalfactorsandthetypes,numbersandcapabilitiesofthemicroorganismspresentaf-fectthebiodegradationoccurrenceandrate.
Factorsaffec-tinghydrocarbonbiodegradationincontaminatedsoilscanbe:theoccurrenceofoptimalenvironmentalconditionstostimulatebiodegradativeactivity;thepredominanthydro-carbontypesinthecontaminatedmatrix;thebioavailabilityofthecontaminantstomicroorganisms;dispersionandemulsificationenhancingratesinaquaticsystemsandab-sorptionbysoilparticulates(LeahyandColwell1990;Kastneretal.
1998;Marques-Rochaetal.
2000).
Hydrocarbonshavedifferentsolubilityinwaterwheretheyareonlydegraded.
Duetodifferenthydrophobicityandlowsolubilityinwaterofthehydrocarbons,theprocessshouldbeintensifiedbyenhancingphysicalcontactbetweenmicroorganismsandoilbyaddingadjuvantstoimprovethecontactareasorbyinjectingofmixturesofmicroorganisms,duringtheso-calledbioaugmentation(BaheriandMeysami2002;Baptistaetal.
2006;MalinaandZawierucha2007).
Itisalsoknownthattheactivityofbacteriaandfungiabletooxidizehydrocarbonscouldbeimprovedbysup-plementationwithvariousnutrients(sourcesofnitrogenandphosphorous).
Differentorganismsneeddifferenttypesofnutrients.
Bioenhancementisappliedtostimulatetheacti-vityofbacteriaalreadypresentinthesoilatawastesitebyaddingdifferentnutrients(BaheriandMeysami2002;GuptaandSeagren2005).
BiosorptionBiosorptionisafastandreversibleprocessfortheremovaloftoxicmetalionsfromwastewaterbyliveordriedbio-mass,whichresemblesadsorptionandinsomecasesionexchange(Volesky1990;Voleskyetal.
1993;Seideletal.
2002;Gavrilescu2004a).
Thebiosorptionoffersanalterna-tivetotheremediationofindustrialeffluentsaswellastherecoveryofmetalscontainedinothermedia.
Biosorbentsarepreparedfromnaturallyabundantand/orwastebiomass.
Duetothehighuptakecapacityandverycost-effectivesourceoftherawmaterial,biosorptionisaprogressiontowardsaperspectivemethod.
Ithasbeendemonstratedthatbothlivingandnon-livingbiomassmaybeutilizedinbiosorptiveprocesses,astheyoftenexhibitamarkedtolerancetowardsmetalsandotheradversecondi-tions(BrinzaandGavrilescu2003;Gavrilescu2004a,2005;Table12Degradationofpetroleumcompoundsandfuelcomponentsbydifferentgroupsofmicroorganisms(Riser-Roberts1998).
MicroorganismCompoundYeastsThrichosporon,Pichiarhodosporidium,Rhodotorula,Debraryomyces,Endomycopsis,Candidaparapsilasis,C.
tropicalis,C.
guilliermondii,C.
lipolytica,C.
maltosa,Debaramyceshansenii,Trichosporonsp.
,RhodosporiumtaruloidlesHexadecaneandkerosene(naphthalene,biphenyl,benzo(a)pyrene)ActinomycetesNocardiaspp.
n-Paraffins:pentane,hexane,heptane,octane,2-methylbutane,2-methylpentane,3-methylpentane,2,2,4-trimethylpentane,ethylbenzene,hexadecane,keroseneAlgaeSelanastrumcapricornatumBenzene,toluene,naphthalene,phenanthrene,pyreneCyanobacteria(blue-greenalgae)MicrocystisaeruginosaBenzene,toluene,naphthalene,phenanthrene,pyreneMixedcultures(yeasts,molds,protozoa,bacteria;activatedsludge)AcrylonitrileActivatedsludgeDibenzanthraceneSewagesludgeFluorantheneAcinetobactercalcoaceticusPetroleumderivatesStrainsofPseudomonasputidaPhenolcresolsTrichosporonpullulansParaffinsAeromoniumsp.
TotalpetroleumhydrocarbonsMycobacteriumsp.
n-Undecane19DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBooksKicsietal.
2006a,2006b;Brinzaetal.
2007).
Metalionscanbindtocellsbydifferentphysiochemicalmechanisms,dependingonthebacterialstrainandenviron-mentalconditions(Fig.
7).
Becauseofthisvariability,cur-rentknowledgeoftheseprocessesisincomplete.
Ingeneral,bacterialcellwallsarepolyelectrolytesandinteractwithionsinsolutionsoastomaintainelectroneutrality.
Themechanismsbywhichmetalionsbindontothecellsurfacemostlikelyincludeelectrostaticinteractions,vanderWaalsforces,covalentbonding,redoxinteractions,andextracel-lularprecipitation,orsomecombinationoftheseprocesses(Blanco2000;Gavrilescu2004a).
Biosorptionofheavymetalsbyalgalbiomassisanadvantageousalternative,anappropriateandeconomicallyfeasiblemethodusedforwastewaterandwastecleanup,becauseitusesalgalbiomasssometimesconsideredwastefromsomebiotechnologicalprocesses(Sandauetal.
1996;FengandAldrich,2004;Vilaretal.
2007)orsimplyitshighavailabilityincostalareasmakesitsuitablefordevelopingnewby-productsforwastewatertreatmentplants(Sandauetal.
1996;Brinzaetal.
2005a,2005b;Brinzaetal.
2007).
BiodegradationofrefractorypollutantsandwasteThebiodegradabilityofrefractorypollutantswasinvesti-gatedandappliedbynumerousresearchers,sincethisbecomesmoreandmoreastringentproblemoftheenviron-mentbecauseofpreviousorcurrentpollution.
1.
CyanideremovalEffluentscontainingcyanidefromvariousindustriesmustbetreatedbeforedischargingintotheenvironment.
Theconventionalphysico-chemicalprocessesforremovalofcyanidesfromwastewaterprovedtopresentadvantages,butalsodisadvantagesburdenedwithhighreagentandliabilitycosts.
Bioremoval/biotreatmentwasseenasanenvironmen-tallyfriendlyalternativetreatmentprocessabletoachievehighdegradationefficiencyatlowcosts(Camposetal.
2006;Dashetal.
2008;Chenetal.
2008;Dashetal.
2009).
Inbiologicaltreatmentofcyanide,bacteriaconvertfreeandmetal-complexcyanidestobicarbonateandammonia.
Thefreemetalsarefurtheradsorbedorprecipitatedfromsolu-tion.
Themicroorganismsresponsibleforcyanidedegrada-tioncouldbebacteriaorfungi,whichusecyanideasasourceofnitrogenandcarbon(Table14).
2.
DistilleryspentwashThisisaliquidwastegeneratedduringalcoholproduction,whichconfersunpleasantodorsforwastewater,posingaseriousthreattowaterquality.
Disposalofdistilleryspentwashonlandismoreoverhazardoustothevegetation,sinceitreducessoilalkalinityandmanganeseavailability,thusinhibitingseedregeneration(Kumaretal.
1997;Mohanaetal.
2009).
Anumberofcleanuptechnologiesareusedtoprocessthiseffluentefficientlyandeconomicallyandnovelbiore-mediationapproachesfortreatmentofdistilleryspentwasharebeingworkedout(Table14).
3.
RadionuclidesRadionuclidelikeuraniumorthoriumareofparticularcon-cerninenvironmentalimpactandremediationresearchesduetotheirhightoxicityandlonghalf-lives,thustheyareconsideredsevereecologicalandpublichealthhazards(Gavrilescuetal.
2008;Kazietal.
2008)(Table14).
Biosorptiveaccumulationofuraniumandotherradio-nuclidesisofgreatinterestforthedevelopmentofmicrobe-basedbioremediationstrategies(Kazietal.
2008).
4.
HeavymetalsTheapplicationofbiotechnologicalprocessesfortheeffec-tiveremovalofheavymetalsfromcontaminatedwaste-watershasemergedasanalternativetoconventionalreme-diationtechniques.
Heavymetalpollutionisusuallygene-ratedfromelectroplating,plasticsmanufacturing,fertilizers,pigments,mining,andmetalurgicalprocesses(Gavrilescu2004b;Zamboulisetal.
2004).
Theapplicationofconventionaltreatmentsissome-timesrestrictedduetotechnologicalandeconomicalcon-straints.
Metalaccumulationonbiomasscanbepassive(bio-sorptive),whennon-livingbiomassisusedasbiosorbent,orTable13Somecontaminantsaspetroleumderivativesremovablethroughbioremediation(Vidali2001).
ContaminantsBiotreatmentClassExamplesAerobicAnaerobicPotentialsourcesChlorinatedsolventsTrichloroethylenePerchloroethyleneinsitubioremediation-reductivedechlorationwithfreshcheesewheyasasubstrateDrycleanersChemicalmanufacturePolychlorinatedbiphenyls4-Chlorobiphenyl4,4-DichlorobiphenylyesElectricalmanufacturingPowerstationRailwayyardsChlorinatedphenolsPentachlorophenolTrichlorophenolTetrachlorophenolyesTimbertreatmentLandfillsinsituaerobicbiodegradation-indigenoussoilbacteriarespirationactivitystimulatedwithairinput(venting,airsparging)andnutirentsolutiondeliveryBTEXBenzeneTolueneEthylbenzeneXylenein-situbioremediation(i.
e.
aerobicenhancementbyfertilizerandnutrientadditionplusapplicationofchosenallochthonousbacterialstrains)yesOilproductionandstorageGasworksitesAirportsPaintmanufacturePortfacilitiesRailwayyardsChemicalmanufacturePolyaromatichydrocarbons(PAHs)NaphthaleneAntraceneFluorenePyreneBenzo(a)pyreneyesOilproductionandstorageGasworksitesCokeplantsEngineworksLandfillsTarproductionandstorageBoilerashdumpsitesPowerstations20Environmentalbiotechnology.
MariaGavrilescuTable14Removalmethodsforsomerefractorypollutantsandwaste.
CompoundsRemovalmethodAdvantagesDisadvantagesReferencesCyanideBiologicaloxidation/biodegradation-hydrolyticreactions-oxidativereactions-reductivereactions-substitution/transferreactionsNaturalapproach,receivedwellbypublicandbyregulatorsUseheapsasreactors,reducingtotalwashedvolume,andpossiblereachlowflowareasoftheheapmoreeffectivelyRelativelyinexpensiveNochemicalhandlingequipmentorexpensivecontrolneededBiomasscanbeactivatedbyaerationNotoxicby-productsCantreatcyanideswithoutgeneratinganotherwastestreamInnovativetechnologynotwellestablishedTendstobeverysitespecificwithspecificevaluationandstudyrequiredforeachtypeofcompoundandsiteCannottreathighconcentrationPatilandPakniar2000Camposetal.
2006Chenetal.
2008Dashetal.
2008Dashetal.
2009DistilleryspentwashBiodegradation:-Anaerobicsystemsxsinglephase,biphasicsystemxanaerobiclagoonsxhighrateanaerobicreactors-Aerobicsystems(mayfollowtheanaerobictreatment)xfungalsystemsxbacterialsystemsxcyanobacterial/algalsystemsxphytoremediation/constructedwetlandsBiomethanationofdistilleryspentwashisawellestablishedtechnologyBiologicalaerobictreatmentemployingfungiandbacteriaisveryeffectiveforthedecolorizationofdistilleryspentwashResearchonadvancedanaerobictreatmenttechnologiesarefurthernecessarytobringintopracticeoutstandingtechnologiesforecologicalrestorationAerobictreatmentneedstobeimplementedwithadditionalnutrientsaswellasdilutingtheeffluentforobtainingoptimalmicrobialactivityNeedstobesometimescombinedsequentiallywithphysico-chemicaltreatmentKumaretal.
1997Fitzgibbonetal.
2007Kumaretal.
2007Mohanaetal.
2009SatyawaliandBalakrishanan2008Mohanaetal.
2009Radionuclides(Uranium,Thorium)Biosorption/microbebasedimmobilization-sequestrationInnovative/emergingtechnology,stilltobestudiedinmoredetailsGavrilescuetal.
2008HeavymetalsBiosorptionusingbiomaterials,bacteria,fungi,yeasts,algae,naturalmaterials,industrialandagriculturalwasteCost-effectivebiotechnologyforthetreatmentofhighvolumeandlowconcentrationcomplexwastewaters(1-100mg/L)MicroorganismsprovidealargecontactareathatcaninteractwithmetalBiosorptionisbasicallyatlabscaleinspiteofitsdevelopmentforyearsThemechanismisnotfullyunderstoodandshortcomingsofbiosorptiontechnologylimitapplicationBeolcini1977Gavrilescu2004Zouboulisetal.
2004WangandChen2006Gasoline,ethers,benzene,toluene,n-hexane,methyl-cyclopentane,mtthyltert-butylether(MTBE)Anaerobicbiodegradationusingelectronacceptors(nitrate,FeIII,sulfate,bicarbonate)AerobicbiodegradationofMTBEcombinedwithanothercarbonsource(tertiarybuthanol,buthylformate,isopropanol,acetone,pyruvate)(mixedandpurecultures)CosteffectiveandfeasibleEnvironmentallyfriendlyprocessSimpler,lessexpensivealternativetochemicalandphysicalprocessesAerobicbiodegradationofMTBEisstillarareoccurrencebecausepfthedifficultyoforganismstobiodegradeMTBECulturecompositionandreactorconfigurationarekeyfactorsFayolleetal.
2003Linetal.
2007RaynalandPruden2008Wauletal.
2009PolychlorinatedbiphenylsAerobicbiofilmdevelopedusingmixedmicrobialcultureisolatedfromPCB-contaminatedsoil,acclimatizedtoPCBsbyfeedingthereactoralternatelywithbiphenylandPCBsAccumulationofchlorobenzoicacidsandchlorophenylglyoxylicacidintheenvironmentSayleretal.
1982Borjaetal.
2006Trichloroethylene(TCE)Anaerobically(TCEactsasanelectronacceptorinreductivedehalogenationbymethanotropicorganisms)Aerobicbiodegradationusinginducersforcometabolismandenzymeproduction(astoluene)andelectronacceptors(hydrogenperoxide)Anaerobicbioremediationwhereelectronacceptors,othersthanoxygenareneededtobeusedisapotentialadvantageDegradationefficiencyhigherthan80%forTCEconcentrationsupto700mg/LMixedculturesaregenerallypreferredTheratesofTCEremovaldependontheconditions,reactors,electronacceptorsTheeffectofbiostimulationofmultiplegroupsofbacteriaonTCEmetabolismnotentirelyknownWilsonandWilson1985Leeetal.
1998LyewandGuiot2003CutrightandMeza2007Shuklaetal.
2009TextileazodyesAnaerobictreatment(whiterotfungi,duetoextracellularenzymestheyproduce)Aerobically,byusingbacterialconsortia,actinomycetes,fungi,algaeInexpensive,eco-friendly,produceslessamountofsludgecomparativetophysico-chemicalmethodsAerobictreatmentissaferbecausetoxicintermediatesdonotappearTheeffectivenessofmicrobialdecolorizationdependsontheadaptabilityandtheactivityofselectedmicroorganismsIndividualbacteriastrainusuallycannotdegradeazodyescompletelyandtheintermediateproductsareoftencarcinogenicandmutagenicaromateaminesThedecolorizationratedependsontheoxidationpotentialoftheazodyesLopezetal.
2004SenanandAbraham2004Steffanetal.
2005Joshietal.
2008Sarataleetal.
200921DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBooksbioaccumulative,byapplyinglivingcells(Veglioetal.
1996;Zamboulisetal.
2002;Zamboulisetal.
2004)(Table14).
5.
Gasolineethers,methyltert-butylether(MTBE)Thecontaminationofmethyltert-butylether(MTBE)inwaterandespeciallyinundergroundwaterhasbecomeaproblemofgreatconcernallovertheworld(FiorenzaandRifai2003;Linetal.
2007;Zhongetal.
2007).
ThemassiveproductionofMTBE,aprimaryconstituentofreformulatedgasoline,combinedwithitsmobility,persistenceandtoxi-city,makesitanimportantpollutant.
SomestudiesofMTBEnaturalattenuationhaveattrib-utedmasslosstobiodegradation,whileothersattributedmasslosstodilutionanddispersion(FiorenzaandRifai2003).
MTBEdegradationisknowntobedifficultinnatu-ralenvironments(Martienssenetal.
2006).
Currently,therearefewreportsintheliteraturewhichhavedocumentedanaerobicdegradationofgasolineoxygenates(FiorenzaandRifai2003;Wauletal.
2009).
Inparallel,aerobicdegrada-tionofMTBEandsimilarcompundswasalsodemonstratedwithbothmixedandpurecultures(Zanardinietal.
2002;FiorenzeandRifai2003;Zhongetal.
2007)(Table14).
Itwasdemonstratedthatmixedculturesaregenerallymoreeffectivethanpurecultures.
Supplementswithreadilymeta-bolizableorganicsubstrateswereinvestigatedtoincreasethebiomassandenhancedegradationofMTBE(Martien-ssenetal.
2006;Zhongetal.
2007)(Table14).
6.
Trichloroethylene(TCE)Pollutantsincludinghaloalkenes(astrichloroethylene)enterintothebiosphereandcontaminatethesoilandground-waters.
Trichloroethyleneisoneofthemostimportantvola-tilechlorinatedorganiccompoundsusedassolventinvari-ousindustries(LyewandGoniat2003;Shuklaetal.
2009).
Itisgenerallyresistanttobiodegradation,asmicroorga-nismsdonotuseitasacarbonandenergysource(WilsonandWilson1985;Shuklaetal.
2009).
Aerobicbacterialculturesthatutilizevariouscarbonandenergysourcescanbeused(Ferhan2003).
Also,anae-robicbioremediationcanbeappliedforTCEbiodegrade-tionathigherTCEmetabolicratesundermixedelectronacceptorconditions(BoopathyandPeters2001).
ThemixedpopulationofmicroorganismswiththeabilitytodegradevariousorganiccompoundssuchasTCEmayfollowdiversemetabolicwaysandphysiologicalcharacteristicsdependingonworkingconditions(CutrughtandMeza2007).
7.
TextileazodyesAzodyesareusedfornumeroustextiledyestuff,producedbecauseoftheircost-effectivesynthesisandtheirstabilityandvarietyofcolorscomparedtonaturaldyes.
Also,azodyesareusedinpaper,food,leather,cosmetics,pharmaceu-ticalindustries(Changetal.
2001;Sarataleetal.
2009).
Bacteria,fungi,yeasts,actinomycetes,algaeareabletodegradeazodyes,byamechanismwhichinvolvesthere-ductivebreakingofazobonds.
Theprocesscanbecarriedoutinanaerobicconditionswiththehelpofazoreductaze.
Theresultingintermediatemetabolitescanbefurtherdeg-radedaerobicallyoranaerobically(Changetal.
2000;Rar-shettietal.
2007;Sarataleetal.
2009).
Microbialdegrada-tionofazodyesusuallystartsinanaerobicconditionswithareductivecleavageoftheazobond,followedbyanaero-bicstepnecessaryforthedegradationofthearomaticaminesformed(Steffanetal.
2005;Joshietal.
2008;Sara-taleetal.
2009)(Table14).
ENVIRONMENTALBIOTECHNOLOGYINPOLLUTIONDETECTIONANDMONITORINGEnvironmentalmonitoringdealswiththeassessmentofenvironmentalquality,essentiallybymeasuringasetofselectedparametersonaregularbasis.
Ingeneral,twomethods–physicochemicalandbiological–areavailableformeasuringandquantifyingtheextentofpollution(Jamil2001;LamandGray2003;Haggeretal.
2006;HartandMartínez2006;Conti2007).
Inthepastdecadesenvironmentalmonitoringprog-rammesconcentratedonthemeasurementofphysicalandchemicalvariables,whilebiologicalvariableswereoc-casionallyincorporated.
Physicochemicalmethodsinvolvetheuseofanalyticalequipment,havingaslimitationstheircost(becauseofthecomplexityofthesamplesandtheex-pertiseoftheoperatorsneededtoconducttheanalysis)andthelackofhazardandtoxicologicalinformation(CannonsandHarwood2004;Guetal.
2004).
Environmentalmonitoringisofgreatimportanceforitsprotection.
Theharmfuleffectoftoxicchemicalsonnaturalecosystemshasledtoanincreasingdemandforearly-war-ningsystemstodetectthosetoxicantsatverylowconcen-trationslevels(Durrieuetal.
2006).
Typicallycontaminantmonitoringinvolvestheregularandfrequentmeasurementofvariouschemicalsinwater,soil,sedimentandairoverafixedtimeperiod,e.
g.
,ayear.
Integrationofenvironmentalbiotechnologywithinfor-mationtechnologyhasrevolutionedthecapacitytomonitorandcontrolprocessesatmolecularlevels"inordertoachievereal-timeinformationandcomputationalanalysisincomplexenvironmentalsystems"(HasimandUjang2004).
Bioindicators/biomarkersMorerecently,environmentalmonitoringprogrammeshave,apartfromchemicalmeasurementsinphysicalcompart-ments,includedthedeterminationofcontaminantlevelsinbiota,aswellastheassessmentofvariousresponses/para-metersofbiological/ecologicalsystems.
Nowadays,tempo-ralandspatialchangesinselectedbiologicalsystems/para-meterscanandareusedtoreflectchangesinenvironmentalquality/conditionsthroughbiomonitoring(Marketetal.
2003;Conti2007;Lam2009).
Inthiscontext,someorganismsorcommunitiesmayreacttoanenvironmentaleffectbychangingameasurablebiologicalfunctionand/ortheirchemicalcomposition.
Thiswayitispossibletoinfersignificantenvironmentalchangeandtheirresponsesarereferredtoasbioindicators/bio-markers(NRC1987;Jamil2001;Marketetal.
2003;Conti2007).
Biomarkersarethususedinbiomonitoringprog-rammestogivebiologicalinformation,i.
e.
theeffectsofpollutantsonlivingorganisms.
Threemaintypesofindi-cationscanbeobtained:onexposure,effect,andsuscepti-bility.
Biomarkersthathavepotentialforuseinbiomonitoringare:-molecular(geneexpression,DNAintegrity)-biochemical(enzymatic,specificproteinsorindica-torcompounds)-histo-cytopathological(cytological,histopathologi-cal)-physiological-behaviouralUnfortunately,fieldapplicationofbiomarkersissubjecttovariousconstraints(e.
g.
,theavailabilityoflivingmate-rial)thatcanlimitdataacquisitionandpreventtheuseofmultivariatemethodsduringstatisticalanalysis.
Besides,theyshouldhavethefollowingattributes:besensitive(sothatitcanactasanearly-warning),specific(eithertoasin-glecompoundoraclassofcompounds),broadapplicable,easytouse,reliableandrobust,goodforqualitycontrol,abletobereadilytaughttothepersonnel,providethedataandinformationnecessary(BeliaeffandBurgeot2002;Lam2009).
22Environmentalbiotechnology.
MariaGavrilescuBiosensorsforenvironmentalmonitoringResearchonbiosensingtechniquesanddevicesforenviron-ment,togetherwiththatingeneticengineeringforsensorcelldevelopmenthaveexpandedinthelatesttime.
Environmentalbiosensorsareanalyticaldevicescom-posedofabiologicalsensingelementorbiomarker(en-zyme,receptorantibodyorDNA)inintimatecontactwithaphysicaltransducer(optical,massorelectrochemical),whichtogetherrelatetheconcentrationofananalytetoameasurableelectricalsignal(ReisandHartmeier1999;Rodríguez-Mozazetal.
2004).
Thebiosensorsexploitbiologicalspecificitytoproducesignalsthatcanbeusedtomeasurepollutionlevels.
Gene-rallyspeaking,biosensorisabroadtermthatreferstoanysystemthatdetectsthepresenceofasubstratebyuseofabiologicalcomponentwhichthenprovidesasignalthatcanbequantified.
Thesignalmaybeelectrical(Fig.
16),orintheformofadyethatchangescolour.
Theycompriseabio-logicalrecognitionelementsuchasanenzyme,antibodyorcellthatwillreactwiththematerialtobedetected.
Biosensorsbasedonacombinationofabiologicalsensingelementandanelectronicsignal-transducingele-mentthatofferhighselectivity,highsensitivity,short-res-ponsetime,portabilityandlowcost,areidealformoni-toringpollutantsinenvironment(LamandGray2003;Rod-ríguez-Mozazetal.
2006).
AsitcanbeseenfromTable15,variousbiologicalreactionscanbeusedforpollutantdetec-tion.
Biosensorsusebothprotein(enzyme,metal-bindingproteinandantibody)-basedandwhole-cell(naturalandgeneticallyengineeredmicroorganisms)-basedapproachesTable15,Infact,biosensorsrepresentasynergisticcombi-nationofbiotechnologyandmicroelectronics(VermaandSingh2005).
Theyhavefoundaplaceinmonitoringforevaluationofasampleanditsecologicaltoxicity.
Thesensingelementcanbeenzymes,antibodies(asinimmunosensors),DNA,ormicroorganisms;andthetransducermaybeelectroche-mical,optical,oracoustic(Biotech,2000)(Fig.
17).
Useofbiosensorsenablesrepeatedmeasurementswiththesamerecognitionelementandcanbeappliedtoawiderangeofenvironmentalpollutantsaswellasbiologicalpro-ducts(Fig.
16).
Thebiocatalyst(3)convertsthesubstratetoproduct.
Thisreactionisdeterminedbythetransducer(5)whichconvertsittoanelectricalsignal.
Theoutputfromthetransducerisamplified(6),processed(7)anddisplayed(8).
Whole-cellbiosensorsbasedeitheronchlorophyllfluo-rescenceorenzyme(phosphataseandesterase)inhibitionareconstructedforreal-timedetectionandon-linemoni-toring.
Ageneticallymodifiedyeastwasusedasbiosensortodetectendocrinedisruptorssuchasoestrogenor17-oestra-diol.
Althoughitwasinitiallydevelopedforuseinhumantherapeutics,thereisthepotentialuseinpollutiondetection(TuckerandFields2001;EvansandFurlong2003).
Avarietyofwhole-cell-basedbiosensorshasbeendeve-lopedusingnumerousnativeandrecombinantbiosensingcells.
Thesebiosensorsutilizingmicroorganismsaddressandovercomemanyoftheconcernswhicharosewithotherconventionalmethods,becausetheyareusuallycheapandAI11234567Fig.
16Detectionchainforabiosensor(abiologicalsensingelementandanelectronicalsignal-transducingelement).
1–substrate;2–membrane;3–immobilizedbiodetectorforrecognitionofasystemofbiologicaloriginlikeenzymes,antibodies,microorganisms;4–productresultedfromthereactionofsubstratewiththebiodetector;5–transducer(detectstheproductandconvertsitinanelectricalsignal);6–amplifier;7–interfaceforsignalprocessing;8–displayerofoutputsignal.
(AdaptedfromMulchandaniandRogers1998).
Table15Somebiosensorsfordetectionofenvironmentalpollution.
PrinciplemodeofdetectionPollutantsdetectedReferencesHydrothermallygrownZnOnanorod/nanotubeandmetalbindingpeptideHeavymetalsJiaetal.
2007Proteinbased:SyntheticphytochelatinsHeavymetals(Hg2+,Cd2+,Pb2+,Cu2+,Zn2+)Bontideanetal.
2003ChloroplastD1proteinHerbicidePiletskaetal.
2006EnzymesimmobilizedbyelectropolymerizationHeavymetals(Hg2+:anestablishedglucosebiosensorbasedonglucoseoxidaseimmobilizedinpoly-o-phenylendiamine)MalitesteandGuasceto2005EnzymaticreactionormicrobialmetabolismPesticides,phenols,halogenatedhydrocarbonsRiedeletal.
1991Rogers1995RecombinantbioluminescentbacteriaOrganiccompounds(inair,water,soil),heavymetalsHyunetal.
1993TescioneandBelfort1993Gu2005EnzymeinhibitionPesticides,heavymetals,herbicidesMartietal.
1993Botrèetal.
2000KuswandiandMascini2005PhotosyntheticactivityHerbicidesDurrieuetal.
2006Giardietal.
2007Wangetal.
2007Campàsetal.
2008MolecularlyimprintedmembranesPesticidesSchelleretal.
1997HauptandMosbach2000Uluda÷etal.
2007Vo-Dinh2007ImmunochemistryOrganiccompounds,pesticides,herbicides,PCBsChemnitiusetal.
1996Martyetal.
1998Ashleyetal.
200823DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBookseasytomaintainwhileofferingasensitiveresponsetothetoxicityofasample(Guetal.
2004).
Resultsshowthatthesedevicesaresensitivetoheavymetalsandpesticides(Durrieuetal.
2006;Mauritzetal.
2006).
Averyhighselectiveandsensitivesensorwasdeve-lopedasa"microchip"bycombiningbiologicalactivitywithnanowireelectronics(Cuietal.
2001),whichisabletodetectanelectriccurrentequivalenttothebindingofasin-glemolecule(EvansandFurlong2003).
Plantsarealsousedasbiologicalindicators,namelysensitiveandresistantwhiteclover(Trifoliumrepens)clones(asdescriptorsofbiomassreductionincropsspe-cies)andCentaureajacea(brownknapweed)asamodelspecies,theleavesofBrassicaoleraceavar.
acephala,usedasbiosampler,commonspeciesoftrees(wildolive,holmoak,whitepoplar)(Bargagli1998;Mertensetal.
2005;Madejonetal.
2006;Nalietal.
2006;Zelanoetal.
2006).
Invertebratespecies(targetandnon-targetinsects),crustaceanscanbealsousedforbiomonitoring(Lagadicetal.
2004;Raeymaekers2006).
Biosensorscanbeappliedfor:-toxicityscreeningofsamplesusingbioluminescenceorfluorescence(Rabbowetal.
2002;Weitzetal.
2002;Guetal.
2004;Rodriguez-Mozazetal.
2004)-waterqualitymonitoring(Ramsden1999;Ashboltetal.
2001;CannonsandHarwood2004;Starodubetal.
2005;Mauritzetal.
2006;Mwinyihijaetal.
2006)-atmosphericqualitybiomonitoring(Nalietal.
2006;Zelanoetal.
2006)-soil-contaminationbiomonitoring(DoranandParkin1994;Tom-Petersenetal.
2003;Guetal.
2004;Ahnetal.
2005;Tarazonaetal.
2005).
ENVIRONMENTALBIOTECHNOLOGYFORPOLLUTIONPREVENTIONANDCLEANERPRODUCTIONRoleofbiotechnologyinintegratedenvironmentalprotectionapproachBiotechnologyisregardedasthemotorforintegratedenvi-ronmentalprotection.
Complementarytopollutioncontrolwhichstrugglesforthetailendoftheprocessesandmana-gespollutiononceithasbeengenerated,pollutionpreven-tionworkstostoppollutionatitssourcebyapplyinganum-berofpractices,suchas:-usingmoreefficientrawmaterials-substitutinglessharmfulsubstancesforhazardousmaterials-eliminatingtoxicsubstancesfromproductionprocess-changingprocesses-othersThestrengtheningofconcernsfortheglobalenviron-mentisresultinginincreasedpressureforeconomicalbran-ches(industry,agriculture,transport,market)tofocusonpollutionpreventionratherthanend-of-pipecleanup.
Fromanoverallmaterialconsumptionperspective,excessivequantitiesofwasteinsocietyresultfrominefficientproduc-tionprocesses(ontheindustrialside),andunsustainableconsumptionpatternscombinedwithlowsustainabilityofgoods(ontheconsumerside)(Cheremisinoff2003;Gavri-lescu2004b;GavrilescuandNicu2005).
Modernenviron-mentalprotectionstartswiththepreventionofharmfulsub-stancespriortoandduringindustrialproductionprocesses.
DobleandKruthiventi(2007)havecharacterizedanidealprocessasfollows:anidealprocessissimple,requiresonestep,issafe,usesrenewableresources,isenvironmentallyacceptable,hastotalyield,produceszerowaste,isatom-efficient,andconsistsofsimpleseparationsteps(Fig.
18).
Sincebiotechnologycancontributetotheeliminationofhazardouspollutantsattheirsourcebeforetheyentertheenvironment,industrialandenvironmentalbiotechnology-biotech'sthirdwave-usesbiologicalprocessestomakeindustriallyusefulproductsinamoreefficient,environ-mentallyfriendlyway,bycuttingwastebyproducts,airemissions,energyconsumptionandtoxicchemicalsinseve-ralindustries(Bull1995;Olguin1999;GavrilescuandChisti2005).
Althoughenvironmentalbiotechnologyhasprimarilyfocusedonthedevelopmentoftechnologiestotreataque-ous,solidandgaseouswastesatpresent,thebasicinforma-tiononhow"biotechnologycanhandlethesewasteshasEnvironmentalbiosensorsBiologicalrecognitionelementPhysicaltransducerENZYMEScatalytictransformationofpollutantsmodificationofenzymaticactivitybypollutantsspecificinhibitionofenzymaticactivitybypollutantMICROORGANISMSinhibitionofcellularrespirationbypollutantpromotorrecognitionbyspecificpollutantfollowedbygeneexpression,enzymesynthesis,catalyticactivityidentificationandenumerationofmicroorganismsbyimmunocaptureorDNAsequencehybridizationsensormethodANTIBODIEScompoundorclassspecificaffinitytowardthepollutantELECTROCHEMICALpotentiometricamperometricpotentiometricstrippinganalysisOPTICALELECTRONIClight-addressablepotentiometricsensorsurfaceplasmonresonanceOPTICALabsorbanceluminescencefluorescencetotalreflectancefluorescenceACOUSTICquartzcrystalmicrobalancesurfaceacousticwavesurfacetransversewaveFig.
17Structureofenvironmentalbiosensors.
(AdaptedfromMulchandaniandRogers1998;Rodriguez-Mozazetal.
2004,2006).
24Environmentalbiotechnology.
MariaGavrilescubeengainedandthefocalpointisnowontheimplementa-tionoftheseprocessesasBestAvailableTechnologyNotEntailingExcessiveCosts(BATNEEC)intheframeworkofstrictandtransparentenvironmentallegislation"(GrommenandVerstraete2002).
Theapplicationofbiotechnologyasanenvironmentallyfriendlyalternativeinconventionalmanufacturingprovestobeveryusefulforpollutionpreventionthroughsourcere-duction,wasteminimization,recyclingandreuse.
Inmostcases,thisresultsinlowerproductioncosts,lesspollutionandresourceconservationandmaybeconsideredastaskforceofbiotechnologyforsustainabilityinindustrialdeve-lopment.
Themainareasinwhichbiotechnologycontribu-tionmayberelevantfallintothreebroadcategories(EvansandFurlong2003):processchanges,biologicalcontrol,bio-substitutions.
Becausebiotechnologicalprocesses,oncesetupareconsideredcheaperthantraditionalmethods,changesinproductionprocesseswillnotonlycontributetoenviron-mentalprotection,butalsohelpcompaniessavemoneyandcontinuouslyimprovetheirpublicimage(Olguin1999;EvansandFurlong2003;GavrilescuandNicu2005;Willkeetal.
2006).
Inthecontextofpollutionpreventionpractices,biotech-nologycancontributetosubstitutemultistepchemicalpro-cesseswithaone-stepbiologicalprocessusinggeneticallymodifiedorganisms(GMOs)aswell(Reisetal.
2006).
Thisactionshouldhaveotherbeneficialresultsbecauselanddis-posalofhazardouswaste,wastewaterloadings,airemis-sionsandproductioncostsaregreatlyreduced.
Also,pre-ventionpracticesassistedbyenvironmentalbiotechnologymayproveinstrumentalinpermittingproceduralchanges.
ProcessmodificationandproductinnovationThetechniquesofmodernmolecularbiologyareappliedintheindustryandenvironmenttoimproveefficiencyanddiminishtheenvironmentalimpact.
Processinnovation,thedevelopmentofnewbiologicalprocesses,andthemodifica-tionorreplacementofexistingprocessesbytheintroduc-tionofbiologicalstepsbasedonmicrobialorenzymeactionareincreasinglybeingusedinindustrialoperationsasanimportantpotentialareaofprimarypollutionprevention(Olguin1999;Gavrilescu2004b;GavrilescuandNicu2005)(Table16).
Similarly,theuseofnewbiofuelsandbiomaterialsthathavelittleornoenvironmentalimpactisexpandingrapidly.
Biodegradation,biotransformationandbiocatalysisarethreeprocessesthatoccurasaresultofmicrobialmeta-bolism.
Amanufacturerusingmicrobialmetabolismissaidtobeconductingabiotransformationortobeusingbiocata-lysis.
Insomecases,theseinterestscanoverlap(Fig.
19).
Biotransformationinvolvesmodificationsoforganicmoleculesintoproductsofdefinedstructure,inthepresenceofmicrobe,plantoranimalcellsorenzymes.
Biotransformationsbymicrobesfurnishbothregio-andstereospecificproducts,thereactionscanberunundergen-tleandcontrolledconditionsandnewproductscanbebio-synthesized.
AsurveycarriedoutbytheFraunhoferInstituteforSystemsandInnovationResearchinKarlsruheonbehalfoftheMinistryoftheEnvironmentinStuttgartrevealedthatthepotentialofproduct-integratedenvironmentalbiotech-nologyisenormous:reducedenvironmentalpollution(70%),reducedprocesscosts(64%)andimprovedproductquality(22%).
Initsspecificuseinproductionandproductprocessing,biotechnologyhelpssaveenergyandrawmaterialsintheproductionoftextiles,food,washingdetergents,pharma-ceuticals,bymeansofgeneticallymodifiedenzymes.
Theyalsohelpavoidundesiredwasteproductsduringproduction.
Biotechnologicalprocessesgenerallyoperateundergentleconditions,usebiodegradablerawmaterialsandinter-mediatesandwaterisusuallythesolvent.
Asaresultofhighenzymaticspecificity,biologicalsynthesiscanleadtoincreasedyieldsandlessby-products,thussavingadditionalIdealprocessRenewableresourcesEnvironmentallyfriendly100%yieldZerowasteAtom-efficientSimpleseparationMinimumnumberofsteps(onestep)SafeFig.
18Criteriaforanidealproductionprocess.
BiodegradationBiotransformationBiocatalysisNewpathwaysNewenzymesImprovedbiodegradabilityWasteminimizationProcessdevelopmentNewreactionsNewtargetsFeasibilityofdesiredreactionsModifiedsubstraterangeReactionmechanismsMathematicalandphysicaldescriptionFig.
19Interdependenceofthethreemainapplicationareasofenzymecatalysis.
(Paralesetal.
2002).
25DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBooksTable16Industrialprocessesorproductschangedbyestablishingbiotechnologicalsteps.
ProcessorproductConventionalmanufacturingprocessNewindustrialbiotechprocessCostsandenvironmentalbenefitsDetergentPhosphatesaddedasabrighteningandcleaningagentsGeneticallyenhancedmicrobesorfungiengineeredtomakeenzymesAdditionofbiotechnologyenzymesasbrighteningandcleaningagents:ProteasesremoveproteinstainsLipasesremovegreasestainsAmylasesremovestarchstainsEliminationofwaterpollutionfromphosphatesBrighter,cleanerclotheswithlowertemperaturewashwaterEnergysavingsBreadPotassiumbromate,asuspectedcancer-causingagentatcertainlevels,addedasapreservativeandadoughstrengtheningagentMicroorganismsgeneticallyenhancedtoproducebakingenzymes(directedevolutionandrecombinantDNA)Additionofbiotechnologyenzymesto:enhancerisingstrengthendoughprolongfreshnessHigh-qualitybreadLongershelflifeNopotassiumbromatePolyesterbeddingPolyesterproducedchemicallyfrompetroleumfeedstockExistingbacillusmicrobeusedtofermentcornsugartolacticacid;lacticacidconvertedtoabiodegradablepolymerbyheating;polymermadeintoplasticproductsandpolyesterBiotechpolyester(PLA)producedfromcornstarchfeedstockPLApolyesterdoesnotharborbodyodorlikeotherfibersBiodegradableNotmadefrompetroleumDoesnotgiveofftoxicsmokeifburnedPlasticsPetroleumisusedasfeedstock,crackedinmonomersPolymerizationincludeseveralsteps,polymersareprocessedfurtherintoplasticsUseplantsugars,lignocellulosicbiomass,straworcornresiduesTheprocessharnessescarbonstoredinplantstocreatethePLApolymerPLAplasticsarebiodegradableUpto80%reductioninpetroleumusageAntibioticsChlorinatedsolventsandhazardouschemicalsusedtoproduceantibioticsthroughchemicalsynthesisGeneticallyenhancedorganismdevelopedtoproducethekeyintermediateofcertainantibiotics(recombinantDNA)One-stepbiologicalprocessusesdirectfermentationtoproduceantibioticintermediate65%reductioninenergyconsumptionOverallcostsavingsReducedenvironmentalimpactReducesgreenhousegasemissionsVitaminB2ProductionstartswithglucosefollowedbysixchemicalstepsusinghazardouschemicalsandgeneratinghazardouswasteToxicchemicals,suchasaniline,usedinchemicalsynthesisprocessGeneticallyenhancedmicrobedevelopedtoproducevitaminB2(directedevolution)One-stepfermentationprocessusesvegetableoilandglucoseasafeedstockCruderiboflavinisproduceddirectlyfromglucosewithageneticallymodifiedstrainofBacillussubtilis(agram-positivebacterium)A10-stepchemicalprocesswasreplacedbyasinglefermentationprocess,eliminatingtheuseofnumeroustoxicchemicalsandreducingtheacidityofthewastewaterproducedBiologicallyproducedwithoutchemicalsLesschemicallyintensiveBasedoftheuseonarenewablerawmaterial(glucose)Reducedlanddisposalofhazardouswaste,waste-to-waterdischargeby66%,airemissionsby50%,andcostsby50%TextilefinishingStonewashedBlueJeansTextilebleachingbyusinghydrogenperoxideChemicaltreatmentusinghotsodiumhydroxidetoremoveimpuritiesOpen-pitminingofpumicefabricwashedwithcrushedpumicestoneand/oracidtoscuffitTextileenzymesproducedbygeneticallyenhancedmicrobe(extremophilesandrecombinantDNA)EnzymesusedinhighlyspecializedtextilefinishingprocessFabricwashedwithbiotechnologyenzyme(cellulase)tofadeandsoftenjeansorkhakis(biostoning)LessminingSofterfabricSuperiorproductssuchasmoredurablecarpeting,lightweightbulletproofmaterial,strongersilkUpto18%reductionoftheamountofbleachingagentsandwaterReducedenergyconsumptionLowercostReducedenvironmentalimpactPaperbleachingDe-inkingrecycledpaperWoodchipsboiledinaharshchemicalsolutionthenbleachedwithchlorinetoyieldpulpforpapermakingWood-bleachingenzymesproducedbygeneticallyenhancedmicrobes(recombinantDNA)EnzymesselectivelydegradeligninandbreakdownwoodcellwallsduringpulpingReducesuseofchlorinebleachandreducestoxicdioxinintheenvironmentUpto15%reductionofchlorineinwastewaterUpto40%reductionofenergyusageCostsavingsduetolowerenergyandchemicalcostsFuelbasedonethanolFoodandfeedgrainsfermentedintoethanol(atechnologythatisthousandsofyearsold)Geneticallyenhancedorganismdevelopedtoproduceenzymesthatconvertagriculturalwastesintofermentablesugars(directedevolution,geneshuffling)Cellulaseenzymetechnologycanconvertcellulosetoitsconstituentsugars,whicharethenfermentedanddistilledtomakebioethanol(andotherchemicalsandproductsifdesired)Cellulaseenzymetechnologyallowsconversionofcropresidues(stems,leaves,straw,andhulls)tosugarsthatarethenconvertedtoethanolRenewablefeedstockIncreasesdomesticenergyproductionReducesgreenhousegasemissionsTheuseofcropresidueratherthanthegraincropitselfallowsforsignificantreductionsinenergyinputsandpollutionrelatedtobioethanolproductionBioethanolfromcellulosegenerates8to10timesasmuchnetenergyasisrequiredforitsproductionCosmeticsIsopropylmyristaleproduction,asmoisturingagent;Largeenergyrequirementprocess(hightemperatureandpressure);TheproductsneedsfurtherrefinementEnzyme-basedesterificationprocessReducingtheenvironmentalimpactbyderivingacleaner,odorfreeproductHighyieldsLowerenergyrequirementLesswastefordisposal26Environmentalbiotechnology.
MariaGavrilescucostsforfurtherpurification.
Biotechnologicalandgeneticengineeringmethodsarealsoabletoreducetheenviron-mentalloadinthefieldofrenewablerawmaterials("meta-bolicdesign").
Thepracticehasdemonstratedthatbiotechnologycan-notsolvealltheproblemsassociatedwithpollutionpreven-tionandcleanerproduction,butithasprovenitselftobeapowerfulandflexiblemeansinarangeofindustrysectors(pulpandpaper,finechemicals,plastics,mining,energy)(Table16).
Biotechnologicalprocessescancontributetosustaina-bility,providedtheyreplacechemicalproductionmethods.
PulpandpaperindustryPulpandpaperindustryhasachievedanimpressiverecordinbecominganenvironmentallycleanerindustry.
Alongtermobjectivereferstothegeneticengineeringthatcanex-ploititsabilitytorevolutionizetheforestssothattreeswithfibershavingoptimalpapermakingpropertieswillgrow(Pullmanetal.
1998).
Fungiareusedforlignindegradationduringbiopulping,thetreatmentofwoodchipsandotherlignocellulosicmaterialspriortothermomechanicalpulping.
Thisisawaytoreducetherequirementsforchemicalsandenergy,whichwouldalsodecreasetheenvironmentalim-pactofpulpingprocess.
In2004,twoindustriessponsoredconsortiaand22pulpandpaperandrelatedcompaniesofU.
S.
Ahavereportedthetechnicalandeconomicfeasibilityofbiopulping(Shuklaetal.
2004).
Also,thebiobleachingofpulpwithenzymes(laccase/mediator,xylanases,manga-neseperoxidase,lignolyticenzymes)hasgainedsignificantinterestbecauseofitsselectivityandthepossibilitytosaveupto25%ofchlorinecontainingbleachingchemicalsortoestablishachlorine-freebleachingprocess(Lemaetal.
1999;Balakshinetal.
2001;Sasakietal.
2001;ChakarandRagauskas2004;Shuklaetal.
2004).
Also,paperrecyclingtriestochangefromthechemical-baseddeinkingprocessthatcurrentlyusessodiumhydroxideandavarietyoffloc-culants,dispersants,andsurfactantstowardanalternativewhichisbasedonmicrobialenzymes.
Asidefromthat,thein-plantwastewaterbiotreatmentcouldremovedissolvedandcolloidalorganicmaterialandmetalionsinordertopreventdepositandslimeproblems(Ah-Youetal.
2000;Gavrilescuetal.
2008).
Enzymeshavefoundwideapplicationsinthetextileindustryforimprovingproductionmethodsandfabricfini-shing,forexampletoremovelubricants,whichareintro-ducedinnaturalfibersproductiontopreventsnaggingandreducethreadbreakageduringspinning(Novozymes2001;EvansandFurlong2003).
Theprocessofbioscouringforwoolandcottonwhichusesenzymestendstoreplacethetraditionalchemicaltreatment.
TechnicalsupportwasofferedtoanIndiantextilemillinordertoapplyabiolo-gicalscouringprocessforremovalofnon-cellulosiccom-ponentsandotherimpuritiesfoundinnativecotton,whichledtoa90%reductionofchemicals(Novozymes2001).
Biopolishinginvolvesenzymesinshearingoffcottonmicrofibrestoimprovematerialsoftness.
Acurrentapplicationofbiotechnologyisthebleachingofdenimfabrics.
Theuseofbiotechnologicalproceduresemployingenzymesreducesenergyconsumption,aswellaswastewaterpollution,becauseenzymesremovetheresidualbleachfromtextiles.
Intheleatherindustry,theuseofenzymesnotonlyleadstomoreconsistentquality,betterfinalcolor,butalsoconsiderablyreducesVOCandsurfactants.
Microbialdesulphurizationofcoalandoilisanimpor-tantsectorwhereenvironmentalbiotechnologyisinvolved.
Theuseofmicroorganismsmayincreasethesulphuroxida-tionrateinacertainbioreactorconfiguration.
Thedevelop-mentofbiocatalyticdesulphurizationprocessandbioreac-torsisanimportantadvanceinenvironmentalfriendlybio-technologicalprocesses(Monticello2000;Lietal.
2005;Killbane2006).
BiofuelsProductionofbioethanol,biodiesel,biogasusingagricultu-ralsubstrates,wastes(forestry,landfill,municipal,indus-trial,farming)vegetableoils(soybean,canola,sunflower)byenzymaticconversionordigestionisalreadyinforceasaresultofexcellentresearchanddevelopmentcapacitiesinindustry,universitiesandotherlaboratoriesinterestedinapplicationofbiotechnologyforenergysaving,resourceconservation,wastemanagementandenvironmentalprotec-tion(Ah-Youetal.
2000;DaleandKim2006;Willkeetal.
2006).
Anumberofdifferentapplicationshavedevelopedtheideaofanaerobicdigestionformethaneproduction,notablyinthewastemanagement,sewagetreatment,agriculturalandfoodprocessingindustries.
Biogasisamethane-richgasresultingfromtheactivitiesofanaerobicbacteria,res-ponsibleforthebreakdownofcomplexorganicmolecules,asshowninFig.
20.
Itiscombustible,withanenergyvaluetypicallyintherangeof21–28MJ/m3(Dobleetal.
2004).
ChemicalsBulkchemicalsynthesisfromrenewableresourcesisstilllimited,butitisconfirmedthatthebioconversionofrenew-ablebiomassfeedstocksuchasagriculturalandwoodwastesintoethanolorotherfuelscanleadtomajorenviron-mentalandeconomicbenefits(GavrilescuandChisti2005;Willkeetal.
2006;Chisti2007).
ThecompanyDuPontin-tendstoproduceanimportantvolumeofitsproducts(e.
g.
plastics)fromrenewableresources,startingwith2010(Willkeetal.
2006).
Currently,traditionalmethodsarestillusedinfineche-micalindustries,whichcontinuetogeneratesevereenviron-mentalproblems.
AnEco-EfficiencyAnalysis,performedbySaling(2005)withtheaimtoharmonizeeconomicalandecologi-calfeaturesofvitaminB2fabricationdemonstratedwhichvitaminB2productionprocess(biotechnologicalandche-mical)isthemosteco-efficient.
Thebiotechnologicalpro-cesswasmoreeco-efficient,sinceithadtheloweroverallenvironmentalimpactandthelowercost.
Progressinbio-andgeneticengineeringhasshownthatvitaminB2(riboflavin)canbeproducedusingbiotechnolo-gicaltools,atcostsreducedby50%,andalsoinmoreenvi-ronmentally-soundways(BIO–PRO2008).
Aonestep,purelyfermentativeprocessreplacedthetraditionalmethod,insixsteps.
Theremarkablepotentialofmicrobesinthetransforma-tionofsteroidsthroughhydroxylationledtothedevelop-mentofantiarthriticsteroids.
Variousstrainsweretested,suchas:Rhizopusarrhizus(DuttaandSamantha1997),BiowasteHydrolysisHydrolyticbacteriaAcidogenesisAcetogensAcetogenesisHydrogenotrophesAcetoclastsMethanogenesisMethaneandcarbondioxideFig.
20Schematicrepresentationofthereactionpathwaysforbiowastemethanisation.
(AdaptedformBlonskajaandVaalu2006).
27DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBooksSyncephalastrumracemosum(SenandSamantha1981).
Newsemisyntheticpenicillinswereproducedandusedinchemotherapy,6-aminopenicillanicacid(6-APA)beingthekeyintermediateusedforthesynthesisofthesepeni-cillins.
Thebiologicalsynthesisof6-APAis20%cheaperthanchemicalsynthesis.
InadditionitmeetssomecriteriaforanidealprocessshowninFig.
18.
DetergentenzymesEnzymeshavebeenusedindetergentssincethe1960s.
Theuseofenzymesindetergentsprovidesconsumerswithwellprovenbenefits.
Detergentenzymespresentnorisktocon-sumers,ortoemployeesinenzymeproduction.
Enzymescanreducetheenvironmentalloadofdeter-gentproductssincetheymeetthefollowingcriteria(Fig.
18):xSaveenergybyenablingalowerwashtemperaturexPartlyreplaceother,oftenlessdesirable,chemicalsindetergentsxArebiodegradable,leavingnoharmfulresiduesxHavenonegativeenvironmentalimpactonsewagetreatmentprocessesxDonotpresentarisktoaquaticlifeTheuseofenzymes,togetherwithdevelopmentsindetergents,hasreducedwashingtemperaturesto30-40deg-rees,temperatureswhichareexpectedtobereducedevenfurther.
Scarcityofwaterandincreasingoilandwaterpricesareexpectedtofurtherthedevelopment.
CalculationsshowthatinDenmarkwithfivemillioninhabitants,are-ductionofwashtemperaturefrom60to40°Cwouldleadtoanenergysavingequivalenttoapprox.
40,000tonnesofcoalayear.
Bycomparison,lessthan300tonnesofcoalayearwouldbeneededtoproducetheenzymesthatenablelowerwashtemperature.
Althoughtheirbiotechnologicalproductionismaterialandenergyconsuming,theresultsincleanlinessobtainedwithenzyme-containingdetergentsarefarsuperiortothoseobtainedwithtraditionalphosphate-containingwashingdetergents.
Also,duetotheirspecificcleansingeffect,en-zymesreducetheamountofwashingdetergentsandadditives,thewashingtemperatureandenergyconsumption.
Somecompaniesusedwild-typeandnaturalenzymes,butalsogeneticallymodifiedenzymesascomponentsofwashingdetergents.
BioplasticsPlasticsproductionfromsyntheticpolymersconsumesvastquantitiesofnon-renewableresources,whiletheyrepresentamajorenvironmentalproblemastheyarenon-biodegra-dable(Stevens2002;Chiellinietal.
2003;Reddyetal.
2003).
Theproductionofnewbiomaterialslikebioplasticsbasedonsugars,oils,proteins,fibersandothernaturalsub-stancesextractedfromplantsavoidstheuseofnon-renew-ableresourceslikefossilfuels,withlessenergy,fewerresources,andreducingglobalgreenhouse-gasesemissions.
Microbescanbeinducedtoproduceenzymesneededtoconvertplantandvegetablematerialsintobuildingblocksforbiodegradableplastics(Luengoetal.
2003;Reddyetal.
2003;Moldesetal.
2004).
Bothbioplasticproductionfromorganicwastematerialandplasticreductionwiththecontributionofenzymeshaveattainedtwoenvironmentalobjectives:-thereleaseofplasticproductionfromfossilfuels-biodegradationoftheplasticmaterialtoreducewaste,especiallyinfoodpackagingandfield-coveringplasticThereportreleasedbyOECD(2001)assessedthewide-spreadingofindustrialbiotechnologybasedon21com-paniescasestudydata,includingpharmaceutical,chemical,paper,textilesandenergysectors.
Thisreporthasshownthatindustrialbiotechnologyledtocleanerproductionandproducts,havinganenvironmentallysoundprofoundcha-racter.
ReducingtheenvironmentalimpactofagriculturalpesticidesTheexcessiveuseofchemicalherbicides,pesticides,fungi-cidesandfertilizersasanintegralpartofintensiveagri-culturecausedenvironmentalhazardsasaresultoflowbio-degradability.
Theuseofgeneticallymodifiedplantvarietieswhichareresistanttoinsectsand/ordiseasesmayconsiderablydiminishtheuseofpesticides.
Biopesticides(alsoknownasbiologicalpesticides)arederivedfromnaturalmaterials(animals,plants,bacteria,minerals)andareconsideredlesstoxicthanconventionalpesticides.
USEPA(2008)indicatesthatattheendof2001therewereapproximately195registeredbiopesticideactiveingredientsand780products(MennandHall1999).
Theycanbeclassifiedas(Fraser2005;USEPA2008):-microbialpesticides,containingamicroorganism(bacterium,fungus,virusorprotozoa)asactiveingre-dients(Table17).
-plant-incorporatedprotectants,whichmeansthattheactivepesticideisproducedbyplantsfromgeneticmaterialsaddedtotheplant.
-biochemicalpesticides,includesubstanceswhichTable17Organismgeneratingbiopesticidesandtheircontroltargets(MCD2008).
TargetOrganismExampleBacteriaBacillusthuringiensisBacillussphaericusPaenibacilluspopillaeSerratiaentomophilaVirusesnuclearpolyhedrosisvirusesgranulosisvirusesnon-occludedbaculovirusesFungiBeauveriaspp.
MetarhiziumEntomophagaZoopthoraPaecilomycesfumosoroseusNornuraeaLecanicilliumlecaniiProtozoaNosemaThelohaniaVairimorphaEntomopathogenicnematodesSteinernemaspp.
Heterorhabditidspp.
InsectsOtherspheromonesparasitoidspredatorsmicrobialbyproductsWeedcontrolFungiColletotrichumgloeosporioidesChondrostereumpurpureumCylindrobasidiumlaeveXanthomonascampestrisFungiAmpelomycesquisqualisCandidaspp.
ClonostachysroseaCompetitiveinnoculantsConiothyriumminitansPseudozymaflocculosaTrichodermaspp.
PlantdiseasecontrolComposts,soilinnoculantsBacillumpumilusBacillussubtilisPseudomonasspp.
StreptomycesgriseoviridisBurkholderiacepaciaNematodetrappingfungiMyrotheciumverrucariaPaecilomyceslilacinusBacteriaBacillusfirmusPasteruriapenetransNematicidesMolluscpanasiticnematodePhasmarhabitishermaphrodita28Environmentalbiotechnology.
MariaGavrilescucontrolpestsbynontoxicmechanismsBiopesticidesareofteneffectiveinverysmallquantitiesandoftendecomposequickly,andtheexposureislow(Boyetchkoetal.
1999),sothattheirusecouldresultinreducedrisktohumanhealthandtheenvironment.
Bio-pesticidesexhibitoneormoreofthefollowingcharacteris-tics(Fraser2005):lowtoxicitytonontargetorganisms,lowpotentialtocontaminateenvironmentalcomponentsandre-sources,lowrisktohumanhealth.
Examplesofbiopesti-cidesandtheirtargetsaregiveninTable17(MCD2008).
Theuseofgeneticallymodifiedplantvarietiesthatareresistanttoinsectsand/ordiseasesmayconsiderablydimi-nishtheuseofpesticides.
Insect-protectedcropsallowforlesspotentialexposureoffarmersandgroundwatertoche-micalresidues.
IntegrationofnanotechnologywithenvironmentalbiotechnologyThenanoscalebioscienceandbiotechnologyintegrationleadstopotentialandactualbreakthroughsinareassuchasmaterialsandmanufacturing,medicine,healthcare,energy,environment,chemicals,agriculture,informationtechno-logyetc.
(HasimandUjiang2004).
Theemergenceofnano-biotechnologyandtheincorporationoflivingmicroorga-nismsinbiomicroelectronicdevicesarerevolutionizinginterdisciplinaryopportunitiesformicrobiologistsandbio-technologiststoparticipateinunderstandingmicrobialprocessesinandfromtheenvironment.
Moreover,itoffersrevolutionaryperspectivestodevelopandexploitthesepro-cessesincompletelynewways.
"Biomedicalandbiotechnologicalapplicationsofnano-particleshavebeenofspecialrecentresearchanddevelop-mentinterest,withpotentialapplicationsthatincludeuseofnanoparticlesasdrug(orDNA)deliveryvehicles,andascomponentsinmedicaldiagnostickits,biosensorsandmembranesforbioseparations"(KohliandMartin2005).
Carbonnanotubes,anotherexcitingareaofresearchanddevelopmentinthenano-world,canbecoatedwithreac-tionspecificbiocatalystsandotherproteinsforspecializedapplications,makingthemevenmoreenvironmentallyfriendlyandeconomicallyattractive.
Scientistshavedeve-lopedversatilemethodsfortargetingcarbonnanotubestospecifictypesofcellsthatcouldspurthedevelopmentofnewanticanceragentsthatrelyontheuniquephysicalcha-racteristicsofcarbonnanotubes.
Suchbio-nano-systemsleadtoanewgenerationofintegratedsystemsthatcombineuniquepropertiesofthecarbonnanotube(CNT)withbiolo-gicalrecognitioncapabilities(Alivisatos2004;GaoandKong2004;WongShiKametal.
2005).
Though,highoperativecosts,expenditureforresearchanddevelopmentaswellasinvestmentstilllimittheestab-lishmentofbiotechnologicalprocesses.
BioenergyfrombiomassUsingbiomasstogenerateenergyhaspositiveenvironmen-talimplicationsandcreatesagreatpotentialtocontributeconsiderablymoretotherenewableenergysector,particu-larlywhenconvertedtomodernenergycarrierssuchaselectricityandliquidandgaseousfuels(IBEP2006;Gavri-lescu2008).
Bytheyear2120,3.
6%ofelectricpowerand6-7%ofthetotalenergywillcomefromrenewableresources(Lakoetal.
2008).
BiorefiningThebiorefiningconceptisananalogueoftoday'spetroleumrefineriesproducingmultiplefuelsandprodcutsfrompetro-leum.
Bycombiningchemistry,biotechnology,engineeringandsystemapproach,biorefinerycouldproducefood,ferti-lizers,industrialchemicals,fuels,powerfrombiomass(Gravitisetal.
1998;KammandKamm2004).
ENVIRONMENTALBIOTECHNOLOGYANDECO-EFFICIENCYEco-efficiencyanalysiscanoffercomprehensibleinforma-tionforalargenumberofapplicationsconcerningmultifac-torialproblemswithinrelativelyshorttimesandatrela-tivelylowcost,sinceitwasdiscernedasanimportantassessmentmethodforresearchanddevelopment,produc-tionandmarketing(Saling2005).
Thereisnodoubtthatenvironmentalbiotechnologyhasagreatpotentialtobeanecologicallybeneficialandatthesametimeeconomicallyprofitableinmanyareas.
Environ-mentalchallengesincreasinglyaffectthecompetitiveness,notonlyintermsofclean-upandpollution-controlcostsbutalsointhemarketplace.
WorldBusinessCouncilforSustainableDevelopment(WBCSD)developedeco-efficiencyasawayforanopera-tionalsustainabledevelopmentdrivingforcefromabusi-nessperspective(WBCDS2000).
Eco-efficiencyismoreandmorebecomingtheheartofsuccessintheeconomicworldasawaytomaximizeefficiency,whileminimizingtheimpactontheenvironment.
Itisachievedinpracticebymeansofthreekeyobjectivesthatregardincreasingproductorservicevalue,optimizingtheuseofresources,reducingenvironmentalimpact(GabrielandBraune2005;Gavri-lescuandChisti2005;Bidoki2006).
Becauseoftheoppor-tunityforcostsavingsassociatedwitheachoftheseobjec-tives,eco-efficienttechnologiesandpracticesdemonstratethateco-efficiencystimulatesproductivityandinnovation,increasescompetitivenessandimprovesenvironmentalper-formancethatmeanscreatingmorevaluewithlessimpact(Bidoki2006).
Biotechnology–ingeneral,andenviron-mentalbiotechnology–inparticularcanbeconsideredoneofthemostusefulmeanstoattaineco-efficiencyandfordecision-makingbecauseoffersanumberofpracticalbene-fits,illustratedin(Table18)(Wall-Markowskietal.
2004;Saling2005).
Forexample,minimizationofpesticideuseisoneofthemainpracticesforsustainablefarming,butalsoaproactiveconsiderationforthefutureofaneco-efficientagriculture,asanillustrationforoneelementofeco-effici-ency:reducetoxicdispersion.
Also,eco-efficiencygoeshand-in-handwithpollutionpreventionandeco-designpracticesthatessentiallyinvolvereductioninthematerialandenergyflowintensity,improvedrecyclability,maxi-mumuseofrenewableresourcesinordertoensuresus-tainableproductionandconsumption(Olguin1999;WBCSD2000;Gavrilescu2004b;GavrilescuandNicu2005).
AstudyofOECDemphasizesthatgreatindustrialcom-paniesarebecomingawareoftheimportanceofsustainabledevelopmentandofthegreatpotentialofbiotechnologythatcanhelpthemimprovetheenvironmentalfriendlinessofindustrialactivitiesandlowerbothcapitalexpenditureandoperatingcosts,operatingasanenvironmentally-soundbasisforeconomyandsociety(OECD2001).
SomecasestudiespresentedbyEuropaBioasaresultofTable18Someofthepracticalbenefitsoftheeco-efficiencybybiotechnology.
Eco-efficiencypracticalbenefitMeanstoachievereducedcoststhroughmoreefficientuseofenergyandmaterialsreducedriskandliabilitybydesigningouttheneedfortoxicsubstancesincreasedrevenuebydevelopinginnovativeproductsandincreasingmarketshareenhancedbrandimagethroughmarketingandcommunicatingtheimprovementeffortsincreasedproductivityandemployeeconfidencethroughcloseralignmentofcompanyvalueswiththepersonalvaluesoftheemployeesimprovedenvironmentalperformancebyreducingtoxicemissions,andincreasingtherecoveryandreuseofwastematerial29DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBooksEco-Efficiencyanalysesshowedthatthereissomepotentialforbiobasedmaterialsandwhitebiotechnology,andthatthegreatestimpactofwhitebiotechnologymaybeinthefinechemicalssegment,whereupto60%ofproductsmayusebiotechnology(EuropaBio2004;Saling2005).
Inaddition,theeconomicandenvironmentalimpactsarefavourable(Table19)(Saling2005).
CONCLUDINGREMARKS-ENVIRONMENTALBIOTECHNOLOGYCHALLENGESANDPERSPECTIVESNewenvironmentalchallengescontinuetoevolveandnewtechnologiesforenvironmentalprotectionandcontrolarecurrentlyunderdevelopment.
Also,newapproachescon-tinuetogainmoreandmoregroundinpractice,harnessingthepotentialofmicroorganismsandplantsaseco-efficientandrobustcleanupagentsinavarietyofpracticalsituationssuchas(Urbainetal.
1996;vanWyk2001;GrommenandVerstraete2002;Cicek2003;KohliandMartin2005):enzymeengineeringforimprovedbiodegradationevolutionaryandgenomicapproachestobiodegrada-tiondesigningstrainsforenhancedbiodegradationprocessengineeringforimprovedbiodegradationre-useoftreatedwastewaterbiomembranereactortechnologydesignwastewatertreatmentbasedondecentralizedsanitationandreuseimplementationofanaerobicdigestiontotreatbio-wastebiodevelopmentofbiowasteasanalternativeandrenewableenergyresourceemergingandgrowing-uptechnologicalapplicationsofsoilremediationandcleanupofcontaminatedsitesAlongwithawidegroupoftechnologieswiththepot-entialtoaccomplishtheobjectivesofsustainability,bio-technologywillcontinuetoplayanimportantroleinthefieldsoffoodproduction,renewablerawmaterialsandenergy,pollutionprevention,bioremediation.
Sinceenvironmentalbiotechnologyprovedtohavealargepotentialtocontributetotheprevention,detectionandremediationofenvironmentalpollutionanddegradation,itisasustainablewaytodevelopcleanprocessesandpro-ducts,lessharmful,withreducedenvironmentalimpactthantheirforerunners,andthisroleisillustratedwithrefer-encetocleantechnologyoptionsintheindustrial,agrofor-estry,food,rawmaterials,andmineralssectors.
Sincesomenewtechniquesmakeuseofgeneticallymodifiedorganisms,regulationtoguaranteesafeapplica-tionofnewormodifiedorganismsintheenvironmentisimportant.
Awiderangeofbiologicalmethodsarealreadyinusetodetectpollutionincidentsandforthecontinuousmoni-toringofpollutants,butnewdevelopmentsareexpected.
Environmentalandeconomicbenefitsthatbiotechno-logycanofferinmanufacturing,monitoringandwastemanagementareinbalancewithtechnicalandeconomicproblemswhichstillneedtobesolved.
Allthisisbeingachievedwithreducedenvironmentalimpactandenhancedsustainability.
Anevaluationoftheconsequences,opportunitiesandchallengesofmodernbiotechnologyisimportantbothforpolicymakersandtheindustry.
ACKNOWLEDGEMENTSThisworkwassupportedbytheProgramIDEI,GrantID_595,ContractNo.
132/2007,intheframeoftheNationalProgramforResearch,DevelopmentandInnovationII—MinistryofEducationandResearch,Romania.
REFERENCESAhnY,JungH,TatavartyR,ChoiH,YangJ,KimIS(2005)Monitoringofpetroleumhydrocarbondegradativepotentialofindigenousmicroorganismsinozonatedsoil.
Biodegradation16,45-56Ah-YouK,SuleimanM,JaworskiJ(2000)BiotechnologyandCleanerPro-ductioninCanada.
ProgramforEnergyResearchandDevelopment(PERD),LifeSciencesBranchIndustryCanada,Ottawa,96ppAlivisatosP(2004)Theuseofnanocrystalsinbiologicaldetection.
NatureBio-technology22,47-52AlkhaddarRM,PhippsDA,ChengC(2005)TodayandTomorrow!
ResearchProspectsforAerobicBiologicalLiquidWasteTreatmentforReductionofCarbonLoad.
E-Water,OfficialPublicationoftheEuropeanWaterAssocia-tion(EWA),pp1-18AndresY,DumontE,LeCloirecP,Ramirez-LopezE(2006)Woodbarkaspackingmaterialinabiofilterusedforairtreatment.
EnvironmentalTechno-logy27,1297-1301Asante-DuahDK(1996)ManagingContaminatedSites:ProblemDiagnosisandDevelopmentofSiteRestoration,Wiley,NewYork,254ppAshboltNJ,GrabowWOK,SnozziM(2001)Indicatorsofmicrobialwaterquality.
In:FewtrellL,BartramJ(Eds)WaterQuality:Guidelines,StandardsandHealth,IWAPublishing,London,pp289-316AshleyK,BiagimiR,SmithJP,SammonsDL,MackenzieBA,StrileyCAF,RobertsonSK,SnawderJE(2008)Theuseofimmunochemicalandbio-sensormethodsforoccupationalandenvironmentalmonitoring.
PartI:Intro-ductiontoimmunoassays.
JournalofOccupationalandEnvironmentalHygi-ene5,D25-D32AtlasRM(1981)Microbialdegradationofpetroleumhydrocarbons:anenvi-ronmentalperspective.
MicrobiologicalReviews45,180-209AraiK(2006)Towardbiotechnology:ThemissionofIUBMBinthe21stcen-tury.
IUBMBLife58,267-268BaheriH,MeysamiP(2002)Feasibilityoffungibioaugmentationincompos-tingaflarepitsoil.
JournalofHazardousMaterials89,279-286BajpaiP(2000)TreatmentofPulpandPaperMillEffluentswithAnaerobicTechnology,PiraInternational,Leatherhead,UK,129ppBalakshinM,CapanemaE,ChenCL,GratzlJ,KirkmanA,GraczH(2001)Biobleachingofpulpwithdioxygeninthelaccase-mediatorsystem-reactionmechanismsfordegradationofresiduallignin.
JournalofMolecularCatalysisB:Enzymatic13,1-16BalkemaAJ,PreisigHA,OtterpohlR,LambertF(2002)Indicatorsforthesustainabilityassessmentofwastewatertreatmentsystems.
UrbanWater4,153-161BanksCJ,StentifordEI(2007)Biodegradablemunicipalsolidwaste:biotreat-mentoptions.
WasteandResourceManagement160,11-18BaptistaSJ,CamporeseEFS,FreireDDC(2006)Evaluationofbiostimula-tion,bioaugmentationanduseofbiosurfactantastreatmenttechniqueofclaysoilcontaminatedwithdieseloil,EnvironmentalEngineeringandManage-mentJournal6,1325-1332BargagliR(1998)TraceElementsinTerrestrialPlants:AnEcophysiologicalApproachtoBiomonitoringandBiorecovery,Springer-Verlag,Berlin,324ppBeaudetteLA,CassidyMB,EnglandL,KirkJL,HabashM,LeeH,Tre-vorsJT(2002)Bioremediationofsoils.
In:BittonG(Ed)EncyclopediaofEnvironmentalMicrobiology,Wiley-Interscience,NewYork,pp722-737Beck-FriisBG(2001)Emissionsofammonia,nitrousoxideandmethaneduringcompostingoforganichouseholdwaste.
PhDthesis,SwedishUniver-sityofAgriculturalSciences,Uppsala,331ppBeliaeffB,BurgeotT(2002)Integratedbiomarkerresponse:ausefultoolforecologicalriskassessment.
EnvironmentalToxicologyandChemistry21,1316-1322BenAimRM,SemmensMJ(2003)Membranebioreactorsforwastewatertreatmentandreuse:asuccessstory.
WaterScienceandTechnology47,1-5BenzM,BruneA,SchinkB(1998)Anaerobicandaerobicoxidationoffer-rousironatneutralpHbychemoheterotrophicnitrate-reducingbacteria.
Table19Illustrationofeconomicandenvironmentalimpactsofvariousproducts/processesbasedonwhitebiotechnology(Saling2005).
EnvironmentalimpactProduct/processEnergyefficiencyRawmaterialsconsumptionCO2emissionsEconomicimpact/ProductioncostsVitaminB2(BASF)Cephalexin(DSM)Scouringenzyme(Novozymes)++0+Biopolimers(CargillDow)0Biopolymers(DuPont)Ethylenefrombiomass(underresearch)0++++--30Environmentalbiotechnology.
MariaGavrilescuArchivesofMicrobiology169,159-165BetianuC,GavrilescuM(2006a)Environmentalbehaviorandassessmentofpersistentorganicpollutants.
EnvironmentalEngineeringandManagementJournal5,213-241BetianuC,GavrilescuM(2006b)Persistentorganicpollutantsinenvironment:InventoryproceduresandmanagementinthecontextoftheStockholmCon-vention.
EnvironmentalEngineeringandManagementJournal5,1011-1028BidokiSM,WittlingerR,AlamdarAA,BurgerJ(2006)Eco-efficiencyana-lysisoftextilecoatingmaterials.
JournaloftheIranianChemicalSociety3,351-359BIO-PRO(2008)BiotechnologyintheChemicalIndustry:TheLongRoadfromExceptiontoStandard(II),TheBiotech/LifeSciencePortalBaden-Württem-berg.
Onlineat:http://bio-pro.
de/en/region/ulm/magazin/00698/index-htmlBiotech(2000)EnvironmentalBiotechnology,TheWelcomeTrust.
Onlineat:http://www.
biochemistry.
org/education/pdfs/enviro-card.
pdfBittonG(2005)WastewaterMicrobiology,Wiley-Liss,JohnWileyandSons,NewJersey,USA,766ppBlancoA(2000)Immobilizationofnon-viablecyanobacteriaandtheiruseforheavymetaladsorptionfromwater.
In:OlguinEJ,SánchezG,HernándezE(Eds)EnvironmentalBiotechnology,Philadelphia,pp135-151BlonskayaV,VaaluT(2006)InvestigationofdifferentschemesforanaerobictreatmentoffoodindustrywastesinEstonia.
ProceedingsoftheEstonianAcademyofSciences:Chemistry55,14-28BontideanI,AhlqvistJ,MulchandaniA,ChenW,BaeW,MehraR,Mor-tariA,CsregiE(2003)Novelsyntheticphytochelatin–basedcapacitivebiosensorforheavymetalindetection.
BiosensorsandBioelectronics18,447-553BoopathyR(2000)Factorslimitingbioremediationtechnologies.
BioresourceTechnology74,63-67BoopathyR,PetersR(2001)Enhancedtransformationoftrichloroethyleneundermixedelectronacceptorconditions.
CurrentMicrobiology42,134-138BorjaJQ,AureseniaaJL,GallardoaSM(2006)Biodegradationofpoly-chlorinatedbiphenylsusingbiofilmgrownwithbiphenylascarbonsourceinfluidizedbedreactor.
Chemosphere64,555-559BotrèC,BotrèF,MazzeiF,PodestaE(2000)Inhibition-basedbiosensorsforthedetectionofenvironmentalcontaminantsdeterminationof2,4-dichloro-phenoxyaceticacid.
EnvironmentalToxicologyandChemistry19,2876-2881BoyetchoSM,PedersenE,PunjaZK,ReddyMS(1999)Formulationsofbiopesticides.
In:HallFR,MennJJ(Eds)Biopesticides.
UseandDelivery,HumanaPress,Totowa,NewJersey,USA,pp487-508BremerJP,GeeseyGG(2001)Laboratory-basedmodelofmicrobiologicallyinducedcorrosionofcooper.
AppliedandEnvironmentalMicrobiology57,1956-1962BrinzaL,GavrilescuM(2003)pHeffectonthebiosorptionofCu2+fromaqueoussolutionbySaccharomycescerevisiae.
EnvironmentalEngineeringandManagementJournal2,243-254BrinzaL,DringM,GavrilescuM(2005a)Abilityofdifferentalgalspeciestotakeupheavymetalsfromwastewater:Areview.
ThePhycologist68,30-31BrinzaL,DringM,GavrilescuM(2005b)BiosorptionofCu2+ionsfromaqueoussolutionbyEnteromorphasp.
EnvironmentalEngineeringandManagementJournal4,41-50BrinzaL,DringMJ,GavrilescuM(2005)BiosorptionofCu2+ionsfromaqueoussolutionbyEnteromorphasp.
EnvironmentalEngineeringandManagementJournal4,29-46BrinzaL,DringMJ,GavrilescuM(2007)Marinemicroandmacroalgalspeciesasbiosorbentsforheavymetals.
EnvironmentalEngineeringandManagementJournal6,237-251BrinzaL,GavrilescuM(2003)pHeffectonthebiosorptionofCu2+fromaqueoussolutionbySaccharomycescerevisiae.
EnvironmentalEngineeringandManagementJournal3,243-254BullAT(1995)Biotechnologyforenvironmentalquality:closingthecircles.
BiodiversityandConservation5,1-25BurtonFL,StenselHD,TchobanoglousG(2002)WastewaterEngineering:TreatmentandReuse,MetcalfandEddyInc.
,McGraw-HillProfessional,1848ppCamposMG,PereiraP,RoseoraJC(2006)Packedbedreactorfortheinteg-ratedbiodegradationofcyanideandformamidebyimmobilizedFusariumoxysporiumCCMI876andMethylabacteriumsp.
RXMCCMI908.
EnzymeandMicrobialTechnology38,848-854CampàsM,CarpentierR,RouillonR(2008)Planttissue-andphotosynthesis-basedbiosensors.
BiotechnologyAdvances26,370-378CannonsAC,HarwoodVJ(2004)SensorTechnologyforWaterQualityMoni-toring:Fiber-OpticBiosensor(WERFReport),IWAPublishing,London,72ppCantorCR(2000)Biotechnologyinthe21stcentury.
TrendsinBiotechnology18,6-7ChakarFS,RagauskasAJ(2004)Biobleachingchemistryoflaccase-mediatorsystemsonhigh-lignin-contentkraftpulps.
CanadianJournalofChemistry82,344-352ChandlerD,DavisonG,GrantWP,GreavesJ,TatchellGM(2008)Micro-bialpesticidesforintegratedcropmanagement:anassessmentofenviron-mentalandregulatorysustainability.
TrendsinFoodScienceandTechnology19,275-283ChangJS,ChenBY,LinYS(2004)StimulatoriofbacterialdecolorizationofazodyebyextracelularmetabolitesfromEscherichiacolistrainN03.
Biore-sourceTechnology91,243-248ChangJS,KuoTS,ChaoYP,HoYS,LinPJ(2000)AzodyedecolorizationwithamutantEscherichiacolistrain.
BiotechnologyLetters22,807-812ChavanA,MukherjiS(2010)Responseofanalgalconsortiumtodieselundervaryingcultureconditions.
AppliedBiochemistryandBiotechnology160(3),719-729ChemnitiusG,MesselM,ZaboroschC,KnollM,SpenerF,CammannK(1996)Highlysensitiveelectrochemicalbiosensorsforwatermonitoring.
FoodTechnologyandBiotechnology34,23-29ChenW,MulchandaniA,DeshussesMA(2005)Environmentalbiotechno-logy:challengesandopportunitiesforchemicalengineers.
AIChEJ51,690-695ChenCY,KaoCM,ChenSC(2008)ApplicationofKlebsiellaoxytecaim-mobilizedcellsonthetreatmentofcyamidewastewater.
Chemosphere71,133-139CheremisinoffNP(1996)BiotechnologyforWasteandWastewaterTreatment,NoyesPublications,Westwood,NewJersey,231ppCheremisinoffNP(2003)HandbookofSolidWasteManagementandWasteMinimizationTechnologies,Butterworth-Heinemann/ElsevierScience,Ams-terdam,477ppChielliniE,ChielliniF,CinelliP(2003)Polymersfromrenewableresources.
In:ScottG(Ed)DegradablePolymers:PrinciplesandApplications,KluwerAcademicPublishers,Dordrecht,pp163-264ChistiY(2007)Biodieselfrommicroalgae.
BiotechnologyAdvances25,294-306ChistiY(2008)Biodieselfrommicroalgaebeatsbioethanol.
TrendsinBiotech-nology26,126-131ChistiY,Moo-YoungM(1999)Fermentationtechnology,bioprocessing,scale-upandmanufacture.
In:MosesV,CapeRE,SpringhamDG(Eds)Biotechno-logy:TheScienceandtheBusiness(2ndEdn),HarwoodAcademicPublishers,NewYork,pp177-222CicekN(2003)Areviewofmembranebioreactorsandtheirpotentialapplica-tioninthetreatmentofagriculturalwastewater.
CanadianBiosystemsEngi-neering45,6.
37-6.
49CohenY(2001)Biofiltration–thetreatmentoffluidsbymicroorganismsim-mobilizedintothefilterbeddingmaterial:areview.
BioresourceTechnology77,257-274ContiME(2007)BiologicalMonitoring;TheoryandApplications,Bioindica-torsandBiomarkersforEnvironmentalQualityandHumanExposureAssessment,WITPress,Southampton,UK,228ppCost624(2001)MicrobialTools:ApplicationinWastewaterTreatmentPro-cesses(WWTP).
Cost624WG4MeetingRapport,LisbonCoxHH,DeshussesMA(1998)Biologicalwasteairtreatmentinbiotricklingfilters.
CurrentOpinioninBiotechnology9,256-262CoxHHJ,DeshussesMA(2001)Biotricklingfilters.
In:KennesC,VeigaMC(Eds)BioreactorsforWasteGasTreatment,KluwerAcademicPublishers,TheNetherlands,pp99-131CoxHHJ,DeshussesMA,ConverseBM,SchroederED,PatelDD,Vosoo-ghiD,IranpourR(2001)OdorandVOCtreatmentbybiotricklingfilters:pilotscalestudiesattheHyperionTreatmentPlant.
WaterEnvironmentRe-search74,557-563CutrightT,MezaL(2007)Evaluationofaerobicbiodegradationoftrichloro-ethyleneinresponsesurfacemethodology.
EnvironmentInternational33,338-345DaleBE,KimS(2006)Biomassrefiningglobalimpact–Thebiobasedeco-nomyofthe21stcentury.
In:KammB,GruberPR,KammM(Eds)Bio-refineries-IndustrialProcessesandProducts.
StatusQuoandFutureDirec-tions(Vol1),Wiley-VCH,Weinheim,Germany,pp41-66DanalewichJR,PapagiannisTG,BelyeaRL,TumblesonME,RaskinL(1998)Characterizationofdairywastestreams,currenttreatmentpracticesandpotentialforbiologicalnutrientremoval.
WaterResearch32,3555-3568DasTK(2005)TowardZeroDischarge.
InnovativeMethodologyandTechnolo-giesforProcessPollutionPrevention,JohnWileyandSons,Hoboken,NewJersey,744ppDasTK,JainAK(2001)Pollutionpreventionadvancesinpulpandpaperpro-cessing.
EnvironmentalProgress20,87-92DasK,MukherjeeAK(2007)Crudepetroleum-oilbiodegradationefficiencyofBacillussubtilisandPseudomonasaeruginosastrainsisolatedfromapet-roleum-oilcontaminatedsoilfromNorth-EastIndia.
BioresourceTechnology98,1339-1345DashRR,MajumderCB,KumarA(2008)Treatmentofmetalcyanidebear-ingwastewaterbysimultaneousadsorptionandbiodegradation(SAB).
Jour-nalofHazardousMaterials152,387-396DashRR,GaurA,BalomajumderC(2009)Cyanideinindustrialwastewateranditsremoval:Areviewonbiotreatment.
JournalofHazardousMaterials163,1-11DeshussesMA(1997)Biologicalwasteairtreatmentinbiofilters.
CurrentOpi-nioninBiotechnology8,335-339DevinnyJS,DeshussesAA,WebsterTS(1999)BiofiltrationforAirPollutionControl,CRCPress,BocaRaton,299ppDobleM,KruthiventiAK,GaikarVG(2004)BiotransformationsandBio-31DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBooksprocesses,MarcelDekker,NewYork-Basel,371ppDobleM,KumarA(2005)BiotreatmentofIndustrialEffluents,Elsevier-Butterworth-Heinemann,337ppDonkinJ(1997)Bulkinginaerobicbiologicalsystemstreatingdairypro-cessingwastewater.
InternationalJournalofDairyTechnology50,67-72DoranJW,ParkinTB(1994)Definingandassessingsoilquality.
In:DoranJW,ColemanDC,BezdicekDF,StewartBA(Eds)DefiningSoilQualityforaSustainableEnvironment,SSSASpecialPublicationNo.
35,Madison,pp3-21DrosteRL(1997)TheoryandPracticeofWaterandWastewaterTreatment,JohnWileyandSonsInc.
,NewJersey,816ppDunnIJ,HeinzleE,InghamJ,PrenosilJE(2003)BiologicalReactionEngi-neering.
DynamicModellingFundamentalswithSimulationExamples,Wiley-VCH,Weinheim,532ppDuncanM,HoranNJ(2003)HandbookofWaterandWastewaterMicrobiol-ogy,Elsevier,832ppDurrieuC,Tran-MinhC,ChovelonJM,BarthetL,ChouteauC,VédrineC(2006)Algalbiosensorsforaquaticecosystemsmonitoring.
TheEuropeanPhysicalJournal-AppliedPhysics36,205-209DuttaTK,SamantaTB(1997)Novelcatalyticactivityofimmobilizedsporesunderreducedwateractivity.
BioorganicandMedicinalChemistryLetters7,629-632EC(2002)LifeSciencesandBiotechnology-AStrategyforEurope,Com-municationfromtheCommissiontotheEuropeanParliament,theCouncil,theEconomicandSocialCommitteeandtheCommitteeoftheRegions.
On-lineat:http://ec.
europa.
eu/biotechnology/pdf/com2002-27_en.
pdfEFB(1995)EnvironmentalBiotechnology,EFBTaskGrouponPublicPercep-tionsofBiotechnology,On-lineat:http://www.
bioportfolio.
com/efb4.
htmEglitT(2002)Microbialdegradationofpollutantsatlowconcentrationsandinthepresenceofalternativecarbonsubstrates:emergingpatterns.
In:AgathosSN,ReinekeW(Eds)BiotechnologyfortheEnvironment:SoilRemediation,Springer,Berlin,pp131–139EIBE(2000)BiotechnologyandEnvironment.
EuropeanInitiativeforBiotech-nologyEducation.
Availableon-lineat:http://www.
ipn.
uni-kiel.
de/eibe/UNIT16EN.
PDFEl-SheekhMM,GhariebMM,Abou-El-SouodGW(2009)Biodegradationofdyesbysomegreenalgaeandcyanobacteria.
InternationalBiodeteriorationandBiodegradation63,699-704EremektarG,SelcukH,MericS(2007)investigationoftherelationbetweenCODfractionsandthetoxicityinatextilefinishingindustrywastewater.
Effectofpreozonation.
Desalination211,314-320EuropaBio(2003)Whitebiotechnology:gatewaytoamoresustainablefuture,Onlineat:http://www.
europabio.
org/documents/100403/Innenseiten_final_screen.
pdfEvansGM,FurlongJC(2003)EnvironmentalBiotechnology.
TheoryandApplication,JohnWileyandSons,Chichester,300ppFaneAG(2007)Sustainabilityandmembraneprocessingofwastewaterforreuse.
Desalination202,53-58FayolleF,FrancoisA,GarinerL,GodefroyD,MatgisH,PiveteauP,MonatF(2003)LimitationsinMTBEbiodegradation.
OilandGasScienceandTechnology58,497-504FerhanM(2003)Biodegradationoftrichloroethylene(TCE)inthepresenceofphenoliccompound.
JournalofBiologicalSciences3,973-983FengD,AldrichC(2004)AdsorptionofheavymetalsbybiomaterialsderivedfromthemarinealgaEckloniamaxima.
Hydrometallurgy73,1-10FiorenzaS,RifaiH(2003)ReviewofMTBEBiodegradationandBioremedia-tion.
BioremediationJournal7,1-35FischerK(2008)BiologicalwastemanagementandtreatmentinEurope.
Inter-nationalConferenceonEnvironmentalResearchandTechnology(ICERT2008)28-30May2008,Penang,MalaysiaFitzgiblonFJ,NigamDP,SinghD,MarchantR(2007)Biologicaltreatmentofdistillerywasteforpollution-remediation.
JournalofBasicMicrobiology35,293-301FraserH(2005)Reduced-riskpesticidesandbiopesticides.
MinistryofAgri-culture,FoodandRuralAffairs,Ontario.
Onlineat:http://www.
omafra.
gav.
on.
ca/english/crops/hort/news/vegnews/2005/vg1105a5.
htmFRTR(1999),Remediationtechnologies.
TreatmentPerspectives.
On-lineat:http://www.
frtr.
gov/matrix2/section3/figure3_1.
htmlFutrellR(2000)Politicsofspaceandthepoliticaleconomyoftoxicwaste.
InternationalJournalofPolitics,Culture,andSociety13,447-476GabrielR,BrauneA(2005)Eco-efficiencyanalysis:applicationsandusercontacts.
JournalofIndustrialEcology9,19-21GaddGM(2007)Geomycology:biogeochemicaltransformationsofrocks,minerals,metalsandradionuclidesbyfungi,bioweatheringandbioremedia-tion.
MycologicalResearch111,3-49GallertC,WinterJ(1999)Bacterialmetabolisminwastewatertreatmentsys-tem.
In:RehmH-J,ReedG(Eds)Biotechnology(2ndEdn),Wiley-VCHVer-lag,GmbH,Weinheim,pp17-94GallertC,WinterJ(2005)Perspectivesofwastewater,waste,off-gasandsoiltreatment.
In:JrdeningH-J,WinterJ(Eds)EnvironmentalBiotechnology.
ConceptsandApplications,Wiley-VCH,Weinheim,pp439-451GanderM,JeffersonB,JuddS(2001)AerobicMBRsfordomesticwaste-watertreatment:areviewwithcostconsiderations.
SeparationandPurifica-tionTechnology18,119-130GaoH,KongY(2004)SimulationofDNA-nanotubeinteractions.
AnnualRe-viewofMaterialsResearch34,123-150GavrilescuM(2002)Engineeringconcernsinanaerobicwaste-watertreat-ment.
CleanTechnologyandEnvironmentalPolicy3,346-362GavrilescuM(2004)Cleanerproductionasatoolforsustainabledevelopment.
EnvironmentalEngineeringandManagementJournal3,45-70GavrilescuM(2004)Removalofheavymetalsfromtheenvironmentbybio-sorption.
EngineeringinLifeSciences4,219-232GavrilescuM(2005)Fateofpesticidesintheenvironmentanditsbioremedi-ation.
EngineeringinLifeSciences5,497-526GavrilescuM(2006)Overviewofinsituremediationtechnologiesforsitesandgroundwater.
EnvironmentalEngineeringandManagementJournal5,79-114GavrilescuM(2008)Biomasspowerforenergyandsustainabledevelopment.
EnvironmentalEngineeringandManagementJournal7,617-640GavrilescuM,ChistiY(2005)Biotechnology–asustainablealternativeforchemicalindustry.
BiotechnologyAdvances23,471-499GavrilescuM,MacoveanuM(1999)Processengineeringinbiologicalaerobicwaste-watertreatment.
ActaBiotechnologica19,111-145GavrilescuM,MacoveanuM(2000)Attached-growthprocessengineeringinwastewatertreatment.
BioprocessEngineering23,95-106GavrilescuM,NicuM(2005)SourceReductionandWasteMinimization(inRomanian),secondedition,EcoZONEPress,Iasi,Romania,230ppGavrilescuM,PavelLV,CretescuI(2008)Characterizationandremediationofsoilspollutedwithuranium.
JournalofHazardousMaterials163,475-510GavrilescuM,TeodosiuC,GavrilescuD,LupuL(2008)Strategiesandprac-ticesforsustainableuseofwaterinindustrialpapermakingprocesses.
Engi-neeringinLifeSciences8,99-124GavrilescuM,UngureanuF(2002)Modellingandsimulationofanactivatedsludgebioreactor.
BulletinofthePolytechnicInstituteofIasi52,89-100GavrilescuM,UngureanuF,CojocaruC,MacoveanuM(2005)ModellingandSimulationoftheProcessesinEnvironmentalEngineering(Vol1),EcoZonePress,Iasi,Romania,448pp(inRomanian)GavrilescuM,UngureanuF,CretescuI(2002b)Simulationofabiofilmreac-torwithsuspendedparticles.
BulletinofthePolytechnicInstituteofIasi52,69-81GavrilescuM,UngureanuF,RobuB(2002a)Modellingandsimulationofathreephasefluidizedsystemappliedtoattached-growthnitrificationofwastewater.
EnvironmentalEngineeringandManagementJournal1,517-532GerardiMH(2006)WastewaterBacteria,WileyInterscience,JohnWileyandSons,255ppGiardiMT,PaceE(2007)PhotosystemII–Basedbiosensorsforthedetectionofphotosyntheticherbicides.
In:GiardiMT,PiletskaEV(Eds)Biotechnolo-gicalApplicationsofPhoto-SyntheticProteins:Biochips,BiosensorsandBiodevices,Springer,pp147-154GilbertJ,BarthJ,BrggerB(2006)PromotingthesustainablemanagementofbiowasteacrosstheEU:Bridgingthepolicygaps.
FinalECNPositionPaperforBiowasteConference31stMai/1stJune06,pp1-3GradyLJR,DaiggerGT,LimHC(1999)BiologicalWastewaterTreatment,MarcelDekker,NewYork,1076ppGravitisJ,AbolinsJ,KokarevicsA(2008)Integrationofbiorefineryclusterstowardzeroemissions.
EnvironmentalEngineeringandManagementJournal7,569-577GrayNF(2004)BiologyofWastewaterTreatment(2ndEdn),WorldScientificPublishing,NewJersey,1444ppGrommenR,VerstraeteW(2002)Environmentalbiotechnology:theongoingquest.
JournalofBiotechnology98,113-23GuMB,MitchellRJ,KimBC(2004)Whole-cell-basedbiosensorsforenvi-ronmetalbiomonitoringandapplication.
In:ZhongJJ(Ed)Biomanufacturing,ScheperT(SeriesEd)AdvancesinBiochemicalEngineering/Biotechnology,Springer-VerlagBerlinHeidelbergNewYork,pp269-305GuMB(2005)Environmentalbiosensorsusingbioluminescentbacteria.
In:LichtfonseE,SchwarzbanerJ,RobertD(Eds)EnvironmentalChemistry.
GreenChemistryandPollutantsinEcosystems,Springer-VerlagBerlin,pp691-698GuestRK,SmithDW(2002)ApotentialnewroleforfungiinawastewaterMBRbiologicalnitrogenreductionsystem.
JournalofEnvironmentalEngi-neeringandScience1,433-437GuptaSK,GuptaSK,HungY-T(2004)Treatmentofpharmaceuticalwaste.
In:WangLK,HungY-T,LoHH,YapijakisC(Eds)HandbookofIndustrialandHazardousWastesTreatment(2ndEdn),MarcelDekker,pp63-130GuptaS,SeagrenEA(2005)Comparisonofbioenhancementofnonaqueousphaseliquidpooldissolutionwithfirst-andzero-orderbiokinetics.
JournalofEnvironmentalEngineering131,165-169HaggerJA,JonesMB,LeonardDRP,OwenR,GallowayTS(2006)Biomar-kersandintegratedenvironmentalriskassessment:AretheremorequestionsthananswersIntegratedEnvironmentalAssessmentandManagement2,312-329HamerG(1997)Microbialconsortiaformultiplepollutantbiodegradation.
PureandAppliedChemistry69,2343-235632Environmentalbiotechnology.
MariaGavrilescuHamerK,ArevaloE,DeibelI,HakstegeAL(2007)Assessmentoftreatmentanddisposaloptions.
SustainablemanagementofSedimentResource2,133-159HartJK,MartínezK(2006)EnvironmentalSensorNetworks:ArevolutionintheearthsystemscienceEarth-ScienceReviews78,177-191HashimMA,UijangZ(2004)Environmentalbiotechnology:itsrelevanceandprospectsfordevelopingcountries.
In:VjangZ,MenzeM(Eds)Environ-mentalBiotechnology,IWAPublishing,pp7-12HaugRT(1993)PracticalHandbookofCompostingEngineering,Lewis,BocaRaton,717ppHauptK,MosbachK(2000)Molecularlyimprintedpolymersandtheiruseinbiomimeticsensors.
ChemicalReviews100,2495-2504Hernández-LunaCE,Gutiérrez-SotoG,Salcedo-MartínezSM(2007)ScreeningfordecolorizingbasidiomycetesinMexico.
WorldJournalofMicrobiologyandBiotechnology24,465-473HeroldT,BiedermannW,SchlegelmilchM,HenselA(2002)Einflussvers-chiedenerFiltermaterialienaufdenWirkungsgradvonBiofilternzurReini-gungvonRotteablufteinerKompostierungsanlage.
Gefahrstoffe–Reinhal-tungderLuft62,147-153HérouxM,PagéT,GélinasC,GuyC(2004)Evaluatingodourimpactsfromalandfillingandcompostingsite:involvingcitizensinthemonitoring.
WaterScienceandTechnology50,131-137HettenhausJ(2006)Achievingsustainableproductionofagriculturalbiomassforbiorefineryfeedstock.
IndustrialBiotechnology2,257-274HwangS,HansenCL(1998)Characterizationandbioproductionofshort-chainorganicacidsfrommixeddairy-processingwastewater.
TransactionsoftheASABE41,795-802IBEP(2006)IntroducingtheInternationalBioenergyPlatform.
FoodandAgri-cultureOrganizationoftheUnitedNations,Rome.
On-lineat:http://esa.
un.
org/un-energy/pdf/FAO%20Bioenergy%20platform.
pdfHyunC-K,TamiyaE,TakeuchiT,KarubeI(1993)AnovelBODsensorbasedonbacterialluminescence.
BiotechnologyandBioengineering41,1107-1111InceO(1998)Potentialenergyproductionfromanaerobicdigestionofdiarywastewater.
JournalofEnvironmentalScienceandHealth33,1219-1228IranpourR,DeshussesMA,CoxHHJ,SchroederED(2002)Practicalexpe-rienceswithbiologicaltreatmentofodorandVOCsatPOTWsinUSA.
In:ProceedingsWEFOdorsandToxicAirEmissions2002SpecialtyConference,AlbuquerqueNM,April28–May1,WaterEnvironmentFederation,pp705-726JamilK(2001)BioindicatorsandBiomarkersofEnvironmentalPollutionandRiskAssessment,SciencePublishers,NewHampshire,USA,204ppJoshiT,IyengarL,SinghK,GargS(2008)Isolation,identificationandap-plicationofnovelbacterialconsortiumTJ-1forthedecolorizationofstruc-turallydifferentazodyes.
BioresourceTechnology99,7115-7121JiaW,ReitzET,LeiY(2007)Biosensorsforheavymetalusinghydrother-mallygrownZnOnanorod/nanotubeandmetalbindingpeptides.
Nanotech2007(Vol2)TechnicalProceedingsofthe2007NSTINanotechnologyCon-ferenceofTradeShow,NanoScienceandTechnologyInstitute,CambridgeMA,USA,pp508-510JohnstonDJ(2003)Biotechnology:thenextwaveofinnovationtechnologiesforsustainabledevelopment.
In:SeralgedinI,PersleyGJ(Eds)Biotechno-logyandSustainableDevelopment:VoicesoftheSouthandNorth,CABIPublishing,pp67-74JuddS(2006)TheMBRBook:PrinciplesandApplicationsofMembraneBio-reactorsinWaterandWastewaterTreatment,Elsevier,Amsterdam,344ppKammB,KammM(2004)Principlesofbiorefineries.
AppliedMicrobiologyandBiotechnology64,137-145KapdanIK,AlpanslanS(2005)Applicationofanaerobic-aerobicsequentialtreatmentsystemtorealtextilewastewaterforcolorandCODremoval.
En-zymeandMicrobialTechnology36,273-279KastnerM,Breuer-JammaliM,MahroB(1998)Impactofinoculationproto-cols,salinityandpHonthedegradationofPAHsandsurvivalofPAH-deg-radingbacteriaintroducedintosoil.
AppliedandEnvironmentalMicrobiology64,359-362KaziSK,D'SouzaSF,SarR(2008)UraniumandthoriumsequestrationbyaPseudomonassp.
:Mechanismandchemicalcharacterization.
JournalofHazardousMaterials163,65-72KennesC,VeigaMC(2001)Conventionalbiofilters.
In:KennesC,VeigaMC(Eds)BioreactorsforWasteGasTreatment,KluwerAcademicPublisher,TheNetherlands,pp47-98KennesC,ThalassoF(1998)Wastegasbiotreatmenttechnology.
JournalofChemicalTechnologyandBiotechnology72,303-319KhanFI,HusainT,HejaziR(2004)Anoverviewandanalysisofsiteremedi-ationtechnologies.
JournalofEnvironmentalManagement71,95-122KhanMA,SatohH,KatayannaH,KurisnH,MinoT(2004)Fluorescentlylabeledbacteriophagesasameanstoidentifybacteriainactivatedsludgeprocess.
In:UjiangZ,HenzeM(Eds)EnvironmentalBiotechnologyAd-vancementinWaterandWastewaterapplicationinTheTropics,IWAPub-lishing,pp349-356KicsiA,BilbaD,MacoveanuM(2006b)Batchcopper(II)removalfromaqueoussolutionbysphagnummosspeat.
EnvironmentalEngineeringandManagementJournal5,19-28KicsiA,CojocaruC,MacoveanuM,BilbaD(2006a)OptimizationofbatchprocessvariablesusingresponsesurfacemethodologyforCu2+removalfromaqueoussolutionbypeatadsorbent.
EnvironmentalEngineeringandManagementJournal5,1291-1300KilbaneJJII(2006)Microbialbiocatalystdevelopmentstoupgradefossilfuels.
CurrentOpinioninBiotechnology17,305-314KohliP,MartinCR(2005)Smartnanotubesforbiotechnology.
CurrentPhar-maceuticalBiotechnology6,35-47KriegEJ(1998)Thetwofacesoftoxicwaste:trendsinthespreadofenviron-mentalhazards.
SociologicalForum13,3-20KrogmannU,KrnerI(2000)Technologyandstrategiesofcomposting.
In:RehmHJ,ReedG(Eds)BiotechnologyVol.
11c:EnvironmentalProcessesIII,Wiley-VCH,Weinheim,pp127-150KrylD(2001)Environmentalandindustrialbiotechnologyindevelopingcoun-tries.
ElectronicJournalofBiotechnology4,Onlineat:http://www.
ejbiotechnology.
info/content/vol4/issue3/issues/03/index.
htmlKuhnT,PittelK,SchulzT(2003)Recyclingforsustainability–alongrunperspectiveInternationalJournalofGlobalEnvironmentalIssues3,339-s355KulbatE,Olanczuk-NeymanK,QuantB,GenejaM,HausteinE(2003)Heavymetalsremovalinthemechanical-biologicalwastewatertreatmentplant"Wschad"inGdansk.
PolishJournalofEnvironmentalStudies12,635-641KumarV,WatiL,FetzGibbonF,NiganP,BanatIM,SinghD,MarchantR(1997)Bioremediationanddecolonizationofanaerobicallydigesteddis-tilleryspentwashBiotechnologyLetters19,311-313KumarGS,GuptaSK,SinghG(2007)Biodegradationofdistilleryspentwashinanaerobichybridreactor.
WaterResearch41,721-730KuswandiB,MasciniM(2005)Enzymeinhibitionbasedbiosensorsforenvi-ronmentalmonitoring.
CurrentEnzymeInhibition1,207-221KutznerHJ(2000)Microbiologyofcomposting.
In:RehmHJ,ReedG(Eds)BiotechnologyVol.
11c:EnvironmentalProcessesIII,Wiley-VCH,Weinheim,pp35-100LagadicL,CaquetT,RamadeF(1994)Theroleofbiomarkersinenviron-mentalassessment(5).
Invertebratepopulationsandcommunities.
Ecotoxi-cology3,193-208LakóJ,HancsókJ,YuzhakovaT,MartonG,UtasiA,Rédey(2008)Bio-mass–asourceofchemicalsandenergyforsustainabledevelopment.
Envi-ronmentalEngineeringandManagementJournal7,499-509LakshmiCV,KumarMKhannS(2008)Biotransformationofchlorpyrifosandbioremediationofcontaminatedsoil.
InternationalBiodeteriorationandBiodegradation62,204-209LamPKS,GrayJS(2003)Theuseofbiomarkersinenvironmentalmonitoring.
MarinePollutionBulletin46,182-186LamPKS(2009)Useofbiomarkersinenvironmentalmonitoring.
OceanandCoastalManagement52,348-354LangwaldtJH,PuhakkaJA(2000)On-sitebiologicalremediationofcon-taminatedgroundwater:areview.
EnvironmentalPollution107,187-197LeCloirecP,AndrèsY,GérenteC,PréP(2005)Biologicaltreatmentofwastegasescontainingvolatileorganiccompounds.
In:ShareefdeenZ,SinghA(Eds)BiotechnologyforOdorandAirPollutionControl,Springer,Berlin,pp3-16LeeMD,OdumJM,BuchananRJJr.
(1998)Newperspectiveonmicrobialdehalogenationofchlorinatedsolvents:insightsfromthefield.
AnnualReviewofMicrobiology52,423-452LeahyJG,ColwellRR(1990)Microbialdegradationofhydrocarbonsintheenvironment.
MicrobiologicalReviews54,305-315LemaJM,MoreiraMT,PalmaC,FeijooG(1999)Cleanbiologicalbleach-ingprocessesinthepulpandpaperindustry.
In:OlguinEJ,SánchezG,Her-nándezE(Eds)EnvironmentalBiotechnologyandCleanerBioprocesses,TaylorandFrancis,BocaRaton,pp211-226LensP,vanderMaasP,ZandvoortM,ValleroM(2004)Newdevelopmentsinanaerobicenvironmentalbiotechnology.
In:UjangZ,HenzeM(Eds)Envi-ronmentalBiotechnology:AdvancementinWaterandWastewaterApplica-tionintheTropics,IWAPublishing,pp13-18LiW,ZhangY,WangMD,ShiY(2005)Biodesulphurizationofdibenzothio-pheneandotherorganicsulphurcompoundsbyanewlyisolatedMicrobac-teriumstrainZD-M2.
FEMSMicrobiologyLetters247,45-50LinC-W,ChengY-W,TsaiS-L(2007)Multi-substratebiodegradationkineticsofMTBEandBTEXmixturebyPseudomonasaeruginosa.
ProcessBioche-mistry42,1211-1217LloydJR(2002)Bioremediationofmetals:Theapplicationofmicroorganismsthatmakeandbreakminerals.
MicrobiologyToday29,67-69LopezC,ValadeA-G,CombourieuB,MielgoI,BouchonB,LemaJM(2004)MechanismofenzymaticdegradationoftheazodyeOrangeIIdeter-minedbyexsitu1Hnuclearmagneticresonanceandelectrosprayionization-iontrapmassspectrometry.
AnalyticalBiochemistry335,135-149LuengoJM,GarcíaB,SandovalA,NaharroG,OliveraER(2003)Bioplas-ticsfrommicroorganisms.
CurrentOpinioninMicrobiology6,251-260LuoH,LiuG,ZhangR,JinS(2009)Phenoldegradationinmicrobialfuelcells.
ChemicalEngineeringJournal147,259-264LupasteanuD,UngureanuF,GavrilescuM(2004)Studiesofvariouswaste-waternitrificationbioreactortypesbasedonmodellingandsimulation.
Envi-33DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBooksronmentalEngineeringandManagementJournal3,101-128LyewD,GuiotS(2003)Effectsofaerationandorganicloadingratesondegra-dationoftrichloroethyleneinamethanogenic-methanothrophiccoupledreac-tor.
AppliedMicrobiologyBiotechnology61,206-213MadejonP,MaranonT,MurilloJM(2006)Biomonitoringoftraceelementsintheleavesandfruitsofwildoliveandholmoaktrees.
ScienceoftheTotalEnvironment355,187-203MalinaG,ZawieruchaI(2007)Potentialofbioaugmentationandbiostimula-tionforenhancingintrinsicbiodegradationinoilhydrocarbon-contaminatedsoil.
BioremediationJournal11,141-147MarkertBA,BreureAM,ZechmeisterHG(2003)Definitions,strategiesandprinciplesforbioindication/biomonitoringoftheenvironment.
In:MarkertBA,BreureAM,ZechmeisterHG(Eds)BioindicatorsandBiomonitors,ElsevierScience,Oxford,pp3-39MaletestaC,GuascitoMR(2005)Heavymetaldeterminationbybiosensorsbasedonenzymeimmobilizedbyelectropolymerization.
BiosensorsandBio-electronics20,1643-1647Marques-RochaFJ,Hernández-RodriguesV,LamelaMAT(2000)Biodeg-radationofdieseloilbymicrobialconsortium.
Water,SoilandAirPollution128,313-320MartienssenM,FabritiusM,KuklaS,BalckeG,HasselwanderE,Schir-merM(2006)DeterminationofnaturallyoccurringMTBEbiodegradationbyanalyzingmetabolitesandbiodegradationby-products.
JournalofConta-minantHydrology87,37-53MartyJ–L,MiovettoN,NoguerT,OrtegaF,RouxC(1993)Enzymesensorforthedetectionofpesticides.
BiosensorsandBioelectronics8,237-280MartyJ–L,LeceaB,NaguerT(1998)Biosensorsforthedetectionofpesti-cides.
Analysis26,144-148Mata-AlvarezJ,MacéS,LlabrésP(2000)Anaerobicdigestionoforganicsolidwastes.
Anoverviewofresearchachievementsandperspectives.
Biore-sourceTechnology74,3-16MaurizE,CalleA,MontoyaA,LechugaLM(2006)Determinationofenvi-ronmentalorganicpollutantswithaportableopticalimmunosensor.
Talanta69,359-364MazzantiM,ZoboliR(2008)Wastegeneration,wastedisposalandpolicyeffectiveness:EvidenceondecouplingfromtheEuropeanUnion.
Resources,ConservationandRecycling52,1221-1234MCD(2008)Biopesticides,MicrobialControlDivision.
On-lineat:http://www.
dropdata.
net/Sip_micontrol/biopesticides.
htmMennJJ,HallFR(1999)Biopesticides:Presentstatusandfutureprospects.
In:HallFR,MennJJ(Eds)Biopesticides,UseandDelivery,HumanaPress,Totowa,NewJersey,USA,pp1-10MertensJ,LuyssaertS,VerheyenK(2005)Useandabuseoftracemetalcon-centrationsinplanttissueforbiomonitoringandphytoextraction.
Environ-mentalPollution138,1-4MetcalfandEddyInc.
(1991)WastewaterEngineering:Treatment,DisposalandReuse(3rdEdn),McGraw-Hill,NewYork,1334ppMohanaS,DesaiChiranyn,MadammarD(2007)Biodegradationanddeco-lorizationofanaerobicallytreateddistilleryspentwashbyanovelbacterialconsortium.
BioresourceTechnology98,333-339MohanaS,ArcharyaBK,MadammarD(2009)Distilleryspentwash:treat-menttechnologiesandpotentialapplication.
JournalofHazardousMaterials163,12-25MoharikarA,PurohitHJ,KumarR(2005)Microbialpopulationdynamicsateffluenttreatmentplants.
JournalofEnvironmentalMonitoring7,552-558MohnWW(1997)Indirectbioremediation:biodegradationofhydrocarbonsonacommercialsorbent.
Biodegradation8,15-19MoldesC,GarcíaP,GarcíaJL,PrietoMA(2004)InvivoimmobilizationoffusionproteinsonbioplasticsbytheNovelTagBioF.
AppliedandEnviron-mentalMicrobiology70,3205-3212MonticelloDJ(2000)Biodesulphurizationandtheupgradingofpetroleumdis-tillates.
CurrentOpinioninBiotechnology11,540-546MulchandaniA,RogersKR(Eds)(1998)EnzymeandMicrobialBiosensors:TechniquesandProtocols,HumanaPress,Totowa,NewJersey,284ppMulliganCN(2002)EnvironmentalBiotreatment,GovernmentInstitutes,Rockville,Maryland,USA,395ppMurthyYS,SubbiahV,RaoDS,ReddyRC,KumarLS,ElyasSI,RaoRKG,GadgillJS,DeshmukhSB(1984)Treatmentanddisposalofwastewaterfromsyntheticdrugsplant(IDPL),hyderabad,PartI-Wastewatercharacteris-tics.
IndianJournalofEnvironmentalHealth26,7-19MwinyihijaM,MehargA,DawsonJ,StrachanNJC,KillhamK(2006)Anecotoxicologicalapproachtoassessingtheimpactoftanningindustryefflux-entonriverhealth.
ArchivesofEnvironmentalContaminationandToxicology50,316-324NakajimaF,IzuK,YamamotoK(2001)Materialrecoveryfromwastewaterusingphotosyntheticbacteria.
In:MatsuoT,HanakiK,TakizawaS,SatohH(Eds)AdvancesinWaterandWastewaterTreatmentTechnology.
MolecularTechnology,NutrientRemoval,SludgeReductionandEnvironmentalHealth,Elsevier,Amsterdam,pp261-269NaliC,FranciniA,LorenziniG(2006)Biologicalmonitoringofozone:thetwenty-yearItalianexperience.
JournalofEnvironmentalMonitoring8,25-32NazaroffWW,Alvarez-CohenL(2001)EnvironmentalEngineeringScience,JohnWileyandSons,Inc.
,NewYork,704ppNicellJA(2003)Enzymatictreatmentofwatersandwastes.
In:TarrMA(Ed)ChemicalDegradationMethodsforWastesandPollutants.
EnvironmentalandIndustrialApplications,MarcelDekker,NewYork,pp423-476Novozymes(2001)Enzymesatwork.
NovozymesA/S,Bagsvaer,Denmark,On-lineat:http://www.
novozymes.
com/NR/rdonlyres/FB09CA43-EA35-4F0B-B55C-909C3D916B08/0/EnzymesAtWork20010026904.
pdfNRC(1987)Biologicalmarkersinenvironmentalhealthresearch(NationalResearchCouncil.
Committeeonbiologicalmarkers).
EnvironmentalHealthPerspectives74,3-9OECD(1994)BiotechnologyforaCleanEnvironment:Prevention,Detection,Remediation,OECDPublishing,Paris,204ppOECD(1998)BiotechnologyforCleanIndustrialProductsandProcesses.
TowardsIndustrialSustainability,OECDPublishing,Paris,200ppOECD(2001)TheApplicationofBiotechnologytoIndustrialSustainability,OECDPublishing,Paris,158ppOhtakeH,HardoyoJK(1992)Newbiologicalmethodfordetoxificationandremovalofhexavalentchromium.
WaterScienceandTechnology25,395-405OktemYA,InceO,SallisP,DonnellyT,InceBK(2007)anaerobictreatmentofchemicalsynthesis-basedpharmaceuticalwastewaterinahybridupflowanaerobicsludgeblanketreactor.
BioresourceTechnology99,1089-1096OlguinEJ(1999)Cleanerbioprocessesandsustainabledevelopment.
In:OlguinEJ,SánchezG,HernándezE(Eds)EnvironmentalBiotechnologyandCleanerBioprocesses,TaylorandFrancis,BocaRaton,pp3-18PandeyA(2004)ConciseEncyclopediaofBioresourceTechnology,FoodProd-uctsPress-TheHaworthReferencePress,NewYork,735ppParalesRE,BruceNC,SchmidA,WackettLP(2002)Biodegradation,bio-transformation,andbiocatalysis(B3).
AppliedandEnvironmentalMicrobiol-ogy68,4699-4709ParshettiGK,KalmeSD,GomareSS,GovindwarSP(2007)BiodegradationofreactiveBlue-25byAspergillusochraceusNCIM-1146.
BioresourceTech-nology98,3638-3642PatelYB,PaknikarKM(2000)Developmentofaprocessforbiodetoxifica-tionofmetalcyanidesforwastewater.
ProcessBiochemistry35,1139-1151PavelLV,PenciuOM,GavrilescuM,UngureanuF(2004)Modelingandsimulationofthree-phasesystemswithfixedbedappliedforthetreatmentofgaseouseffluents.
BulletinofthePolytechnicInstituteofIasi54,115-128PavelLV,GavrilescuM(2008)Overviewofexsitudecontaminationtech-niquesforsoilcleanup.
EnvironmentalEngineeringandManagementJour-nal7,815-834PenciuOM,UngureanuF,GavrilescuM(2004)Modellingandsimulationofthreephasebioreactorsappliedtothedepollutionofgaseousstreamscon-tainingvolatileorganiccompounds–Acomparisonbetweenfixedbedandfluidizedbedreactors.
EnvironmentalEngineeringandManagementJournal3,177-197PenciuOM,GavrilescuM(2003)Surveyonthetreatmentofgaseousstreamscontainingvolatileorganiccompounds.
EnvironmentalEngineeringandManagementJournal2,77-160PenciuOM,GavrilescuM(2004)Biodegradation-InnovativetechnologyfortreatinggaseousfluxescontainingVOCs.
EnvironmentalEngineeringandManagementJournal3,737-754PiletskaEV,PiletskySA,RouillonR(2006)ApplicationofchloroplastD1proteininbiosensorsformonitoringphotosystemsII–Inhibitingherbicides.
In:GiardiMT,PiletskaEU(Eds)BiotechnologicalApplicationofPhotosyn-theticProteins:Biodips,BiosensorsandBiodevices,Springer,Berlin,pp130-146PoindexterJS,PujaraKP,StaleyJT(2000)Insitureproductiverateoffresh-waterCaulobacterspp.
AppliedEnvironmentalMicrobiology66,4105-4111PokhrelD,ViraraghavanD(2004)Treatmentofpulpandpapermillwaste-water–areview.
ScienceoftheTotalEnvironment333,37-58PullmanGS,CairneyJ,PeterG(1998)Clonalforestryandgeneticengineer-ing:wherewestand,futureprospectsandpotentialimpactsonmillopera-tions.
TAPPIJournal81,57-63RabbowE,RettbergP,Baumstark-KhanC,HorneckG(2002)SOS-LUXandLAC-FLUORO-TESTforthequantificationofgenotoxicand/orcyto-toxiceffectsofheavymetalsalts.
AnalyticalChimicaActa456,31-39RaeymaekersB(2006)AprospectivebiomonitoringcampaignwithhoneybeesinadistrictofUpper-Bavaria(Germany).
EnvironmentalMonitoringandAssessment116,233-243RamsdenJJ(1999)Asumparametersensorforwaterquality.
WaterResearch33,1147-1150RaynalM,PrudenA(2008)AerobicMTBEbiodegradationinthepresenceofBTEXbytwoconsortiaunderbatchandsemi-batchconditions.
Biodegrada-tion19,427-432ReddyCSK,GhaiR,Rashmi,KaliaVC(2003)Polyhydroxyalkanoates:anoverview.
BioresourceTechnology87,137-146RiedelK,NaumovAV,BoroninAM,GolovlevaLA,SteinHJ,SchellerF(1991)Microbialsensorsfordeterminationofaromaticsandtheirchloro-derivativesI:Determinationof3-chlorobenzoateusingaPseudomonas-con-tainingbiosensors.
AppliedMicrobiologyandBiotechnology35,559-562ReissM,HartmeierW(1999)Monitoringofenvironmentalprocesseswithbiosensors.
In:RehmH-I,ReedG(Eds)Biotechnology(2ndEdn),Wiley-VCH,Weinheim,pp125-13934Environmentalbiotechnology.
MariaGavrilescuReisLFL,VanSluysM-A,GarrattRC,PereiraHM,TeixeiraMM(2006)GMOs:Buildingthefutureonthebasisofpastexperience.
AnaisdaAca-demiaBrasileiradeCiencias78,667-686RigauxF(1997)IndustrialBiotechnologyintheAtlanticProvinces.
FromEmergencetoDevelopmentToronto:TheCanadianInstituteforResearchonRegionalDevelopment,139ppRiser-RobertsE(1998)RemediationofPetroleumContaminatedSoils.
Biolo-gical,PhysicalandChemicalProcesses,LewisPublishers,CRCPress,542ppRodríguez-MozazS,MarcoM-P,LópezdeAldaMJ,BarcelóD(2004)Bio-sensorsforenvironmentalapplications:Futuredevelopmenttrends.
PureandAppliedChemistry76,723-752Rodríguez-MozazS,LópezdeAldaMJ,BarcelóD(2006)Biosensorsasuse-fultoolsforenvironmentalanalysisandmonitoring.
AnalyticalandBioana-lyticalChemistry386,1025-1041RogersK(1995)Biosensorsforenvironmentalapplications.
BiosensorsBio-electron10,533-541RosenwinkelK–H,Austermann–HannU,MeyerH(1999)Industrialwaste-watersourceandtreatmentstrategies.
In:RehmHJ,ReedG(Eds)Biotech-nology(2ndEdn),WileyVCHWeinheim,pp193-215RussellDL(2006)PracticalWastewaterTreatment,JohnWiley&Sons,Hobo-ken,NewJersey,288ppSalingP(2005)Eco-efficiencyanalysisofbiotechnologicalprocesses.
AppliedMicrobiologyandBiotechnology68,1-8SalminenE,RintalaJ(2002)Anaerobicdigestionoforganicsolidpoultryslaughterhousewaste–areview.
BioresourceTechnology82,13-26SandauE,SandauP,PulzO,ZimmermannM(1996)Heavymetalsorptionbymarinealgaeandalgalby-products.
ActaBiotechnologica16,103-119SanzJL,KochlingT(2007)Molecularbiologytechniquesusedinwastewatertreatment:Anoverview.
ProcessBiochemistry42,119-133SamkuttyPJ,GoughRH(2002)Filtrationtreatmentofdairyprocessingwastewater.
JournalofEnvironmentalScienceandHealthA37,195-199SarataleRG,SarataleGD,KalyaniDC,ChangJS,GovindwarSP(2009)EnhanceddecolorizationandbiodegradationoftextileazodyeScarletRbyusingdevelopedmicrobialconsortiumGR.
BioresourceTechnology100,2493-2500SarkarB,ChakrahartiPP,VijaykumarA,KaleV(2006)Wastewatertreat-mentindairyindustries-possibilityofreuse.
Desalination195,141-152SasakiT,KajinoT,LiB,SugiyamaH,TakahashiH(2001)Newpulpbio-bleachingsysteminvolvingmanganeseperoxidaseimmobilizedinasilicasupportwithcontrolledporesizes.
AppliedandEnvironmentalMicrobiology67,2208-2212SasikumarCS,PapinazathT(2003)Environmentalmanagement:bioremedia-tionofpollutedenvironment.
In:BunchMJ,SureshVM,KumaranTV(Eds)ProceedingsoftheThirdInternationalConferenceonEnvironmentandHealth,Chennai,India,15-17December,Chennai:DepartmentofGeography,UniversityofMadrasandFacultyofEnvironmentalStudies,YorkUniversity,pp465-469SatyawaliY,BalakrishananM(2008)WastewatertreatmentinmolassesbasedalcoholdistilleriesforCODandcolorremoval:Areview.
JournalofEnvironmentalManagement86,481-497SavalS(1999)Bioremediation:Clean-upbiotechnologiesforsoilsandaquifers.
In:OlguinEJ,SánchezG,HernándezE(Eds)EnvironmentalBiotechnologyandCleanerBioprocesses,TaylorandFrancis,BocaRaton,pp155-166SaylerGS,ShiarisMP,BeckTW,HeldS(1982)Effectsofpolychlorinatedbiphenylsandenvironmentalbiotransformationproductsonaquaticnitrifica-tion.
AppliedandEnvironmentalMicrobiology43,949-952SchellerFW,SchubertF,FedrowitzJ(1997)FrontiersinBiosensoricsI.
FundamentalAspects,Birkhauses,Basel,287ppSchuchardtF(2005)Compostingoforganicwaste.
In:JrdeningH-J,WinterJ(Eds)EnvironmentalBiotechnology.
ConceptsandApplication,Wiley-VCH,Weinheim,pp333-354SchlegelmilchM,StreeseJ,BiedermannW,HeroldT,StegmannR(2005)Reducingodorousemissionsfrombiowastecompostingplantsbymeansofbiologicalwastegastreatmentsystems.
Proceedings(CD-ROM)ofSardinia2005–10thInternationalWasteManagementandLandfillSymposium.
CossuR,StegmannR(Eds)SessionG4:Odouranalyses,Cagliari,Italy,3-7Octo-ber2005,CISA,EnvironmentalSanitaryEngineeringCentre,ItalySeidelH,MattuschJ,WennrichR,MorgensternP,OndruschkaJ(2002)Mobilizationofarsenicandheavymetalsfromcontaminatedsedimentsbychangingtheenvironmentalconditions.
ActaBiotechnologica22,153-160SelcukH(2005)Decolorizationanddetoxificationoftextilewastewaterbyozonationandcoagulationprocess.
DyesandPigments64,217-222SenR,SamantaTB(1981)C21–steroidsbySyncephalastrumracemosum.
JournalofSteroidBiochemistry14,307-309SenanRC,AbrahamTE(2004)Bioremediationoftextileazodyesbyaerobicbacterialconsortium.
Biodegradation15,275-280ShareefdeenZ,HernerB,SinghA(2005)Biotechnologyforairpollutioncontrol–anoverview.
In:ShareefdeenZ,SinghA(Eds)BiotechnologyforOdorandAirPollutionControl,Springer,Berlin-Heidelberg,pp3-16ShuklaOP,RaiUN,SubramanyamSV(2004)Biopulpingandbiobleaching:anenergyandenvironmentsavingtechnologyforindianpulpandpaperindustry.
EnviroNews10.
Onlineat:http://www.
geocities.
com/isebindia/01_04/04-04-3.
htmlShuklaAK,VishmakarmaP,UpodhyaySN,TripathiAK,PrasanaHC,DubeySK(2009)Biodegradationoftrichloroethylene(TCE)bymethanotro-piccommunity.
BioresourceTechnology100,2469-2474SilverS,MisraTK,(1988)Plasmidmediatedheavymetalresistance.
AnnualReviewofMicrobiology42,717-743SinghalPK,ShrivastavaP(2004)ChallengesinSustainableDevelopment,AnmolPublicationsPvt.
Ltd.
,NewDelhi,India,373ppSirtoriC,ZapataA,OllerI,GernjakW,AgueraA,MalatoS(2009)Decon-taminationindustrialpharmaceuticalwastewaterbycombiningsolarphoto-Fentonandbiologicaltreatment.
WaterResearch43,661-668SmithLA,AllemanBC,Copley-GravesL(1994)Biologicaltreatmentoptions.
In:MeansJL,HincheeRE(Eds)EmergingTechnologyforBioremediationofMetals,LewisPublishers,NewYork,pp1-12StapletonRD,SavageDC,SaylerGS,StaceyG(1998)Biodegradationofaro-matichydrocarbonsinanextremelyacidicenvironment.
AppliedandEnvi-ronmentalMicrobiology64,4180-4184StarodubNF,KatzevAM,StarodubVM,LevkovetzIA,GoncharukVV,KlimenkoNA,Shmir'ovaAN,PivenNV,DzantijevBB(2005)Biosensorsforwaterqualitymonitoring.
In:OmelchenkoA,PivovarovAA,SwindallWJ(Eds)ModernToolsandMethodsofWaterTreatmentforImprovingLivingStandards,ProceedingsoftheNATOAdvancedResearchWorkshoponMod-ernToolsandMethodsofWaterTreatmentforImprovingLivingStandardsDnepropetrovsk,Ukraine19–22November2003,pp51-70SteffanS,BardiL,MarzonaM(2005)Azodyebiodegradationbymicrobialculturesimmobilizedinalginatebeds.
EnvironmentInternational31,201-205SteinerM(2005)Thestatusofmechanical-biologicaltreatmentofresidualwasteandutilizationofrefuse-derivedfuelsinEurope.
PresentationtotheConferenceTheFutureofResidualWasteManagementinEurope,17-18November,Luxembourg,Onlineat:http://www.
orbit-online.
net/orbit2005/vortraege/steiner-ppt.
pdfStevensES(2002)GreenPlastics:AnIntroductiontotheNewScienceofBio-degradablePlastics,PrincetonUniversityPress,NewJersey,USA,272ppStrydomJP,BritzTJ,MosterJF(1997)Twophaseanaerobicdigestionofthreedifferentdairyeffluentsusingahybridbioreactor.
WaterSA23,151-156SuklaLB,PanchanadikarV(1993)Bioleachingoflatericnickeloreusingaheterotrophicmicro-organism.
Hydrometallurgy32,373-379SukumaranNairMP(2006)Environmentalbiotechnologyforsustainableche-micalprocessing,wfeo27.
Onlineat:http://www.
wfeo-cee.
org/news/v27n10pg2.
htmTalleyJ(2005)Introductiontorecalcitrantcompounds.
In:JaffreyW,TalleyJ(Eds)BioremediationofRecalcitrantCompounds,CRCPress,BocaRaton,pp1-9TarazonaJV,FernándezMD,VegaMM(2005)RegulationofcontaminatedsoilsinSpain–anewlegalinstrument.
JournalofSoilsandSediments5,121-124TBVGmbH(2000)Anaerobicmethodsofwastetreatment.
Gate.
TechnicalInformationW2e,Onlineat:http://www.
gate-international.
org/documents/techbriefs/webdocs/pdfs/w2e_2000.
pdfTescioneL,BelfortG(1993)Constructionandevaluationofametalionbio-sensor.
BiotechnologyBioengineering42,945-952TimmisKN,SteffanRJ,UntermanR(1994)Designingmicroorganismsforthetreatmentoftoxicwastes.
AnnualReviewsinMicrobiology48,525-557Tom-PetersenA,LeserTD,MarshTL,NybroeO(2003)EffectsofcopperamendmentonthebacterialcommunityinagriculturalsoilanalyzedbytheT-RFLPtechnique.
FEMSMicrobiologyEcology46,53-62TorkianA,DehghanzadehD,HakimjavadiM(2003)Biodegradationofaro-matichydrocarbonsinacompostbiofilter.
JournalofChemicalTechnologyandBiotechnology78,795-801TrejoM,QuinteroR(1999)Bioremediationofcontaminatedsoils.
In:OlguinEJ,SánchezG,HernándezE(Eds)EnvironmentalBiotechnologyandClea-nerBioprocesses,TaylorandFrancis,BocaRaton,pp179-190TuckerCL,FieldsS(2001)Ayeastsensorofligandbinding.
NatureBiotech-nology19,1042-1046TuppurainenKO,VisnenO,RintalaJA(2002)Sulphatereducinglabora-toryscalehigh-rateanaerobicreactorsfortreatmentofmetalandsulphatecontainingminewastewaters.
EnvironmentalTechnology23,599-608TuzenM,SaraA,MendilD,UluozluOD,SoylakM,DoganM(2009)Cha-racterizationofbiosorptionprocessofAs(III)ongreenalgaeUlothrixcylin-dricum.
JournalofHazardousMaterials165,566-572Uluda÷Y,PiletskySA,TurnerAPF,CooperMA(2007)Piezoelectricsensorsbasedonmolecularimprintedpolymersfordetectionoflowmolecularmassanalytes.
FEBSJournal274,5471-5480UrbainV,BenoitR,ManemJ(1996)Membranebioreactor:Anewtreatmenttool.
JournalAmericanWaterWorksAssociation88,75-86USEPA(1994)AssessmentandRemediationofContaminateSediments(ARCS)Program.
FinalSummaryReport,EPA-905-S-94-001,USEPA,Chi-cagovanBeuzekomB,ArundelA(2006)OECDBiotechnologyStatistics–2006.
OECD,Availableon-lineat:http://www.
oecd.
org/dataoecd/51/59/36760212.
pdf35DynamicBiochemistry,ProcessBiotechnologyandMolecularBiology4(1),1-362010GlobalScienceBooksvanWykJPH(2001)Biotechnologyandtheutilizationofbiowasteasare-sourceforbioproductdevelopment.
TrendsinBiotechnology19,172-177VeglioF,BeolciniF(1997)Removalofmetalsbybiosorption:Areview.
Hydrometallurgy44,301-316VermaN,SinghM(2005)Biosensorsforheavymetals.
Biometals18,121-129VidaliM(2001)Bioremediation.
Anoverview.
PureandAppliedChemistry73,1163-1172VilarVJP,BotelhoCMS,BoaventuraRAR(2007)KineticsandequilibriummodellingofleaduptakebyalgaeGelidiumandalgalwastefromagarex-tractionindustry.
JournalofHazardousMaterials143,396-408Vo–DinhT(2007)Biosensorsandbiochips.
In:FerrariM,BashirR,WereleyS(Eds)BioMEMSandBiomedicalNanotechnology(VolIV)BiomoleculesSen-sing,ProcessingandAnalysis,Springer,Berlin,pp1-20VoleskyB(1990)BiosorptionofHeavyMetals,CRCPress,BocaRaton,Flo-rida,396ppVoleskyB,MayH,HolanZR(1993)Cd(II)biosorptionbySaccharomycescerevisiae.
BiotechnologyBioengineering41,826-829WagnerM,AmannR(1997)Moleculartechniquesfordeterminingmicrobialcommunitystructuresinactivatedsludge.
In:CloeteTE,MuyimaNYO(Eds)MicrobialCommunityAnalysis:TheKeytotheDesignofBiologicalWastew-aterTreatmentSystems,UniversityPress,Cambridge,pp61-71WagnerM,LoyA,NogueiraR,PurkholdU,LeeN,DaimsH(2002)Micro-bialcommunitycompositionandfunctioninwastewatertreatmentplants.
AntonievanLeeuwenhoek81,665-680Wall-MarkowskiCA,KichererA,SalingP(2005)Usingeco-efficiencyana-lysistoassessrenewable-resource-basedtechnologies.
EnvironmentalProg-ress23,329-333WangJ,ChenC(2006)BiosorptionofheavymetalsbySaccharomycescere-visiae:Areview.
BiotechnologyAdvances24,427-451WangJ,XingD,ZhangL,JiaL(2007)Anewprinciplephotosynthesiscapa-citybiosensorbasedonquantitativemeasurementofdelayedfluorescenceinvivo.
Biosensorsandbioelectronics22,2861-2868WatsonJS(1999)SeparationMethodsforWasteandEnvironmentalApplica-tions,MarcelDekker,NewYork,616ppWaulC,ArvinE,SchmidtJE(2009)Longtermstudiesontheanaerobicbio-degradabilityofMTBEandgasolineethers.
JournalofHazardousMaterials163,427-432WBCSD(2000)Eco-efficiency.
CreatingMoreValuewithLessImpact,WorldBusinessCouncilforSustainableDevelopment,Geneva,SwitzerlandWeitzHJ,CampbellCD,KillhamK(2002)Developmentofanovel,biolumi-nescence-based,fungalbioassayfortoxicitytesting.
EnvironmentalMicro-biology4,422-429WiesmannU,ChoiIS,DombrowskiE-M(2007)FundamentalsofBiologicalWastewaterTreatment,Wiley-VCH,Weinheim,391ppWillkeT,PrüseeU,VorlopK-D(2006)Biocatalyticandcatalyticroutesfortheproductionofbulkandfinechemicalsfromrenewableresources.
In:KammB,GruberPR,KammM(Eds)Biorefineries-IndustrialProcessesandProducts.
StatusQuoandFutureDirections(Vol1).
Wiley-VCH,Wein-heim,Germany,pp385-406WilsonJT,WilsonBH(1985)Biotransformationofthrichloroethyleneinsoil.
AppliedandEnvironmentalMicrobiology49,242-243WongS-KN,O'ConnellM,WisdomJA,DaiH(2005)Carbonnanotubesasmultifunctionalbiologicaltransportersandnear-infraredagentsforselectivecancercelldestruction.
ProceedingsoftheNationalAcademyofSciencesUSA102,11600-11605XuT,ChenC,LiuC,ZhangS,WuY,ZhangP(2009)Anovelwaytoen-hancetheoilrecoveryratiobyStreptococcussp.
BT-003.
JournalofBasicMicrobiology49(5),477-481YamamotoK(2001)Membranebioreactor:anadvancedwastewatertreatment/reclamationtechnologyanditsfunctioninexcess-sludgeminimization.
In:MatsuoT,HanakiK,TakizawaS,SatohH(Eds)AdvancesinWaterandWastewaterTreatmentTechnology.
MolecularTechnology,NutrientRemoval,SludgeReductionandEnvironmentalHealth,Elsevier,Amsterdam,pp229-237ZanardiniE,PisoniC,RanalliG,ZucchiM,SorliniC(2002)Methyltert-butylether(MTBE)bioremediationstudies.
AnnalsofMicrobiology52,207-221ZelanoV,TorazzoA,BertoS,GineproM,PrenestiE,FerrariA(2006)Bio-monitoringoftrafficoriginatedPAHsintheair.
InternationalJournalofEnvironmentalandAnalyticalChemistry86,527-540ZhongW-H,ChenJ-M,LuZ,ChenD-Z,ChenX(2007)Aerobicdegrada-tionofmethyltertbutyletherbyaproteobacteriastraininaclosedculturalsystem.
JournalofEnvironmentalSciences19,18-22ZouboulisAI,LoukidonMX,MatisKA(2004)Biosorptionoftoxicmetalsfromaqueoussolutionbyabacteriastrainisolatedfrommetal-pollutedsoil.
ProcessBiochemistry39,909-916ZouboulisAI,LazaridisNK,MatiasKA(2002)Removaloftoxicmetalionsfromaqueoussystemsbybiosorptiveflotation.
JournalofChemicalTech-nologyandBiotechnology77,958-96436

HostNamaste$24 /年,美国独立日VPS优惠/1核1G/30GB/1Gbps不限流量/可选达拉斯和纽约机房/免费Windows系统/

HostNamaste是一家成立于2016年3月的印度IDC商家,目前有美国洛杉矶、达拉斯、杰克逊维尔、法国鲁贝、俄罗斯莫斯科、印度孟买、加拿大魁北克机房。其中洛杉矶是Quadranet也就是我们常说的QN机房(也有CC机房,可发工单让客服改机房);达拉斯是ColoCrossing也就是我们常说的CC机房;杰克逊维尔和法国鲁贝是OVH的高防机房。采用主流的OpenVZ和KVM架构,支持ipv6,免...

GeorgeDatacenter:洛杉矶/达拉斯/芝加哥/纽约vps云服务器;2核/8GB/250GB/2TB流量/1Gbps端口,$84/年

georgedatacenter怎么样?GeorgeDatacenter是一家2017年成立的美国商家,正规注册公司(REG: 10327625611),其实是oneman。现在有优惠,有几款特价VPS,基于Vmware。支持Paypal付款。GeorgeDatacenter目前推出的一款美国vps,2核/8GB内存/250GB NVMe空间/2TB流量/1Gbps端口/Vmware/洛杉矶/达拉...

PacificRack(19.9美元/年)内存1Gbps带vps1GB洛杉矶QN机房,七月特价优惠

pacificrack怎么样?pacificrack商家发布了七月最新优惠VPS云服务器计划方案,推出新款优惠便宜VPS云服务器采用的是国产魔方管理系统,也就是PR-M系列,全系基于KVM虚拟架构,这次支持Windows server 2003、2008R2、2012R2、2016、2019、Windows 7、Windows 10以及Linux等操作系统,最低配置为1核心2G内存1Gbps带宽1...

wisediskcleaner为你推荐
金评媒朱江喜剧明星“朱江”的父亲叫什么?摩根币摩根币到底是什么是不是骗局硬盘工作原理硬盘的读写原理原代码什么是原代码lunwenjiancepaperrater论文检测准确吗www.zjs.com.cn中通快递投诉网站网址是什么?www.bbb551.combbb是什么意思lcoc.topeagle solder stop mask top是什么层baqizi.cc徐悲鸿到其中一张很美的女人体画sodu.tw今天sodu.org为什么打不开了?
vps服务器 联通c套餐 优key 68.168.16.150 最好看的qq空间 ibrs qq数据库下载 php空间申请 国外免费全能空间 七夕促销 域名接入 1g内存 33456 vip域名 如何注册阿里云邮箱 四川电信商城 空间租赁 移动服务器托管 带宽租赁 德隆中文网 更多