TheNewAlgorithmoftheItem-basedonMapReduceZHAOWei1,a1CollegesoftwareTechnologySchool,ZhengzhouUniversityZhengzhou450002,Chinaaiezhaowei@163.
comKeywords:RecommendationsystemparallelcomputingClusteringAbstract.
TraditionalcollaborativefilteringalgorithmbasedonitemandK-meansclusteringalgorithmarestudied,theparallelalgorithmofcollaborativefilteringItem-basedonMapReduceisproposedbyusingMapReduceprogrammingmodel.
Thealgorithmismainlydividedintotwosteps,onestepisK-Meansalgorithmclusteringforusers,anotherstepistheparallelItem-basedalgorithmforclusteringuserrecommendation.
Experimentalresultsshowthatthealgorithmhasobtainedverygoodeffect,improvedtherunningspeedandexecutionefficiency,theimprovedalgorithmismuchsuitableforprocessingbigdata.
IntroductionBigdatausuallyincludesdatasetswithsizesbeyondtheabilityofcommonlyusedsoftwaretoolstocapture,curate,manage,andprocessdatawithinatolerableelapsedtime.
Bigdataishighvolume,highvelocity,and/orhighvarietyinformationassetsthatrequirenewformsofprocessingtoenableenhanceddecisionmaking,insightdiscoveryandprocessoptimization.
Volumemeansbigdatadoesn'tsample;itjustobservesandtrackswhathappens;Velocitymeansbigdataisoftenavailableinreal-time;Varietymeansbigdatadrawsfromtext,images,audio,video;plusitcompletesmissingpiecesthroughdatafusion[1].
Therefore,thebigdatamustbethroughthecomputerstatistics,comparison,analysisofthedatacanbetheobjectiveresults.
Nowelectroniccommercesystemsofeverytransaction,everyinputandeverysearchcanasdata,datathroughthecomputersystemtodothescreening,sorting,analysis,sothattheanalysisresultsisnotonlyanobjectiveconclusion,moreabletohelpbusinessprovidedthedecision-makingofenterprisesandalsocollectedusefuldatacanalsobereasonableplanning,activelyguidethedevelopmentoflargerpowerconsumption,andmoreeffectivemarketingandpromotion.
Withtheincreasingamountofdataintheelectroniccommercesystem,theneedforalargenumberofdatadepthanalysisisincreasinglyurgent.
Therefore,theuseofasimpleandhighscalabilityoftheprogramfortheanalysisofproductrecommendationisparticularlyimportant.
Atpresentdomesticmanyecommercesitesusecollaborativefilteringalgorithm,suchasAmazon,Dangdang,collaborativefilteringalgorithmismainlydividedintobasedontheitemsofthecollaborativefilteringalgorithmanduserbasedcollaborativefilteringalgorithm.
Basedonitemsofcollaborativefilteringalgorithmistomeasurethesimilaritybetweenitemsaccordingtotheuser'spreferences,donotneedtoconsidertheitemspecificcontentfeatures,sothealgorithmismainlyusedine-commercerecommendationandmovierecommendationdomain,thealgorithmwhileinthefieldofelectroniccommercerecommendationhasbeenacertaindegreeofsuccess.
Butinmassivedataarerecommendedwhenthedataisrecommendedperformanceisnothighandthedatainformationlackofsharingandextendedtheleadtothehardwarerequirementscomparedhigherinherentshortcomingsmakeitdidnotreceiveapromotionandsupportofenterpriseelectroniccommerce[2].
SoifweuseMapReducetoachievedistributedparallelcomputing,itwillgreatlyimprovetheefficiencyandperformanceofthealgorithm,andpromotethefurtherdevelopmentofthealgorithm[3-4].
Basedontheitemsofthecollaborativefilteringalgorithmisaccordingtoitemsimilarityanduserhistoryaccessrecordrecommendedtotheusertogeneratealistofitems,buttherearesomesmallproblems,suchasdatasparsityproblemandwhenthemassofusersandthenumberofitems,theuserbehaviorandrecorddatawillgreatly,andthealgorithmforcomputingitemswithsimilarmatrixcostgreatly,algorithmefficiencyandperformancewillgreatlyreduce.
Aimingattheaboveproblems,theclusteringalgorithmhasalsobeenappliedtoacollaborativefilteringalgorithmbasedonitem,themassiveuserclusteringanalysis,soitcanavoidthequestioncarefully,foreachusertorecommendoperation.
Thefirstshoppinguserswithsimilarinterestsintoauserclass,withaclusterofuserrecommendedgoodsarethesame.
Thesecondistoreducethemassiveuserdimensionsbecomedozensofclusteringlimited,thetimecomplexityencounteredabottleneck,andtheparallelclusteringalgorithmusingMapReduceistheeffectivewaytosolvethebottleneck[5].
MapReduceisadistributedprogrammingmodelframeworkonHadoopplatform,intheconditionofnotfamiliarwiththeunderlyingdetailsofthedistributedimplementationoftheimplementationoftheprogram[6].
TheMapReduceasparallelcomputingprogrammingmodel,firstofalltousersofMapReducebasedparallelclusteringandaccordingtotheresultsofuserclustering,ineveryuserclassusingtheMapReduceparallelcollaborativefilteringrecommendation,eventuallygiveusersareasonablepersonalizedcommodityrecommendationlist.
Therunningtimeofdifferentnodesinthequantitativedataiscomparedwiththenewalgorithm.
Theresultsshowthatthedataprocessingperformanceoftheproposedalgorithmisgreatlyimproved.
TheprincipleofMapReduceprogrammingmodelMapReduceisinHadoopplatformbyusingparallelcomputingprogrammingmodel,thetechniqueisproposedbyGoogleforatypicaldistributedparallelprogrammingmodel,theuserintheMapReducemodeldevelopthemapandreducefunctions,canrealizetheparallelprocessing.
Mapwillberesponsiblefordatadispersion,Reduceisresponsiblefordataaggregation.
UsersonlyneedtoachieveMapandReducetwointerface,youcancompletethecalculationofTBleveldata.
BecauseoftheMapReducemodel,thedetailsoftheparallelandfault-tolerantprocessingareencapsulated,whichmakesprogrammingveryeasytoimplement.
MapReduceparallelcalculationisdividedintotwoparts,thefirststepisinitializingtheoriginalinputdatafileandthedatasetisdividedintoapluralityofacertainsizeofdatablock,facilitateparallelcomputing;thesecondstepistostartthemapandreducefunctionsalgorithmofparallelcomputing,finallyproducedthefinalresult.
Figure1ParallelflowchartofMapReduceKeytechnologyresearchandImplementation1.
ThebasicideaofthetraditionalcollaborativefilteringalgorithmbasedonItem-basedThetraditionalbasedonitemsofcollaborativefilteringalgorithmthebasicideaisdividedintothreeparts,thefirstpartistocomputethesimilaritybetweenitems,commonsimilaritycalculationmethodwithcosinesimilarity,Pearsoncorrelationcoefficient,Tanmotocoefficientcorrelationof.
ThispaperselectstheEuclideansimilarityalgorithm,asfollows:TheassumptionisthatthereisavectorXandavectorY:X=(1x,2x,3x),Y=(1y,2y,3y),UsingtheEuclideansimilarityalgorithmtocalculatethesimilaritybetweenXandYSvector(x,y)formulaisasfollows[7]:1(,)1(,)Sxydxy=+(1)Where(,)dxyisthedistancebetweenthevectorXandY,thecalculationformulaisasfollows:222231123(dxyxyyyxx2)Thesecondpartistocalculatetheuserratingsmatrixontheitemsofthegoodsaccordingtothesimilaritymatrix;thethirdpartistheitemsimilaritymatrixWandtheusersoftheitemscorematrixmultiplicationtoobtaintherecommendationresults.
TraditionalItem-Basedcollaborativefilteringrecommendationalgorithmbasedonitemisthestagethataffectstheperformanceofthealgorithm.
Ifthenumberofusersisn,thenumberofcommodityitemsism,thetimecomplexityoffindingalltheitemsinthenprojectisO(2m),thetotalsearchspaceisnusers,sothetimecomplexityofcomputingsimilarityisO(2nm).
Sowhencalculatingthesimilaritymatrixofitems,itisindependentofthesimilaritybetweenthecalculatedandtheotherpairofitemstoaproject,soitispossibletocalculatethesimilaritymatrix.
2.
AnewalgorithmofItem-basedbasedonMapReduceThenewalgorithmismainlydividedintotwosteps;thefirststepistheMapReduceimplementationofK-Meansalgorithmbasedonclusteringofusers.
ThesecondstepistoachievetheparallelrecommendationalgorithmofItem-basedonMapReduce,theproductofuserclusteringrecommendation.
2.
1ThenewalgorithmK-MeansbasedonMapReduceThebasicideaofthetraditionalK-meansclusteringalgorithm:fromMdataobjectsinarbitrarychoiceofKobjectsastheinitialclustercenters;fortherestoftheotherobjects,accordingtotheirdistanceandtheclustercenters,respectively,theyallocatedtoitsmostsimilarclustering;thencalculateeachreceivedanewclusteringalgorithmclusteringcenter;keeprepeatingtheprocessuntilnochangesinacore.
Inthek-meansalgorithmtocalculatethedistancebetweendataobjectsandclustercentersisthemosttime-consumingoperation.
ThedataobjectandKclustercenterdistancecomparisonatthesametime,datafromotherobjectscanalsobecomparedwiththeKdistanceofthecenterofcluster,sotheoperationcanbeparallelized[8]BasedonMapReduceparallelimplementationofK-meansalgorithmcanimprovethespeedoftheclusteringalgorithm,isdividedintothreesteps:thefirststep:themapfunction,foreverypointcalculationrecentlythecenterdistanceandthecorrespondingtothenearestclustercenter.
Thesecondstep:Combinefunction,justcompletedtheMapmachineonthemachinearecompletedwiththesamepointoftheclusterpointofsummation,reducetheamountofcommunicationandcomputationofReduceoperation.
ThisstepisthekeytotheuseofCombinefunctiononthemachineonthefirstofthesameclustermerge,reducedtotheReducefunctionofthetransferandtheamountofcomputation.
Thethirdstep:theReducefunction,theintermediatedataofeachclustercenterwillbeformedandthenewclustercentercanbeobtained.
Eachiterationisrepeatedonthethreestep.
Figure2ParallelFlowChartofK-meansAlgorithmbasedonMapReduce2.
2thecollaborativefilteringalgorithmbasedonMapReduceforparallelimplementationofItem-basedBasedonthesimilaritycalculationformulamentionedabove(1),thispaperpresentsacollaborativefilteringrecommendationalgorithmbasedonMapReduce.
Algorithm1ThecollaborativefilteringrecommendationalgorithmbasedonMapReduceINPUT:Userinformationfile,Iteminformationfile,IntendeduserOUTPUT:IntendeduserrecommendedlistTheprocessisasfollows:Step1:Transformingtheuservectorintoanitemvector;Step2:Parallelcalculationofthesimilaritybetweenitems;thecalculationofthesimilaritybetweenitemsaccordingtotheformula(2)tocalculate;Step3:Similaritymatrixofparallelcomputingobjects;Step4:Parallelcomputinguserratingmatrix;inthecalculationoftheuser'sscoringmatrix,iftheuserisnotontheitemstoomuch,thenthedefaultscoreis1;Step5:Theresultsobtainedbythemultiplicationofthesimilaritymatrixofparallelcomputingobjectsandtheuser'sscorematrixarerecommended.
Experimentalresultanalysis1.
experimentalenvironmentThesimulationexperimentusingVMware_Workstation_10.
0.
3,virtualizationsoftwaretovirtualHadoopcloudplatform.
EightvirtualmachinesareinstalledonthevirtualHadoopcloudplatform,andaHadoopclusterenvironmentisbuiltontheseeightvirtualmachines.
OneofthevirtualmachineasagoodJobTrackernodeNameNode,theothersevenvirtualmachinesdeployedTaskTrackerandDataNode.
Thesemachinesareinthesamelocalareanetwork.
Theexperimentuseseightsetsofvirtualmachinehardwareconfigurationandsoftwareconfigurationasshownintable1:Table1HadoopClusterConfigurationOSCentos6.
4JDKVersion1.
6.
0Hadoop1.
1.
2HardWare2GRAM100GHardDisk2.
ExperimentandanalysisBasedonMapReduceparallelimplementationofItem-basedcollaborativefilteringalgorithminparallelmodeexpansionrateperformancecomparisontest,selectthesizeofthedataset,respectively,intheefficiencyof1-8nodesrunning.
Theexperimentalresultsareshownbelow:Figure3PerformanceTestChartFigure3isbasedonMapReduceparallelimplementationofitembasedcollaborativefilteringalgorithmcantestchart,theXaxisisthenumberofclients,they-axisistheresponsetimeofthesystem.
TheexperimentalresultsshowthatbasedonMapReduceparallelimplementationofitembasedcollaborativefilteringalgorithmperformancecomparedtothetraditionalrecommendationalgorithmissignificantlyimproved.
ConclusionInthispaper,anewalgorithmofcollaborativefilteringalgorithmbasedonMapReduceisproposed.
Theexperimentresultsshowthatthenewalgorithmhashighefficiencyandcanachievehighperformanceatalowcost.
Butinthispaper,theuserclusteringiscompletedonthebasisoftheuserwithasmallnumberofattributes,forhighdimensionalattributesoftheusergroups,butalsotodofurtherresearch.
Inadditiontothenewalgorithminthispaperhasbeenputforward,wewillcontinuetoimprovetheexperimentalmethod,andconstantlyimprovetheaccuracyoftherecommendationalgorithm.
References[1]Chenruming,Challenges,valuesandcopingstrategiesintheeraofbigdata[J].
MobileCommunications.
2012(17):14-15.
[2]SunLingfang,ZhangJing.
ElectronicrecommendationmechanismbasedonRFMmodelandcollaborativefiltering[J].
JournalofJiangsuUniversityofScienceandTechnology(NaturalScienceEdition).
2010,24(3):285-289.
[3]LIGai,PANRong.
etCollaborativefilteringalgorithmparallelizeresearchbasedonlargedatasetsa[J].
ComputerEngineeringandDesign,2012,33(6):2437-2441.
[4]LIWenhai;XUShuren;DesignandimplementationofrecommendationsystemforE-commerceonHadoop[J].
ComputerEngineeringandDesign,2014(35):131-136.
[5]SUNTianhao,LIAnnenget.
ResearchonDistributedCollaborativeFilteringRecommendationAlgorithmBasedonHadoop[J].
ComputerEngineeringandApplications,2014,51(15):124:128[6]XieXuelian,LiLanyou.
ResearchonParallelK-meansAlgorithmBasedonCloundComputingPlatform[J].
ComputerMeasurement&Control,2014,22(5):1510-1512.
[7]YanCun,JiGenlin.
DesignandImplementationofItem-BasedParallelCollaborativeFilteringAlgorithm[J].
JOURNALOFNANJINGNORMALUNIVERSITY(NaturalScienceEdition),2014,37(1):71-75.
[8]WAGNFei,QinXiaolin.
Algorithmfork-meansBasedonDataStreaminCloudComputing[J].
ComputerScience,2015,42(11):235:239.
bgp.to对日本机房、新加坡机房的独立服务器在搞特价促销,日本独立服务器低至6.5折优惠,新加坡独立服务器低至7.5折优惠,所有优惠都是循环的,终身不涨价。服务器不限制流量,支持升级带宽,免费支持Linux和Windows server中文版(还包括Windows 10). 特色:自动部署,无需人工干预,用户可以在后台自己重装系统、重启、关机等操作!官方网站:https://www.bgp.to...
vpsdime怎么样?vpsdime是2013年成立的国外VPS主机商,以大内存闻名业界,主营基于OpenVZ和KVM虚拟化的Linux套餐,大内存、10Gbps大带宽、大硬盘,有美国西雅图、达拉斯、新泽西、英国、荷兰机房可选。在上个月搞了一款达拉斯Linux系统VPS促销,详情查看:vpsdime夏日促销活动,美国达拉斯vps,2G内存/2核/20gSSD/1T流量,$20/年,此次推出一款Wi...
很久没有分享PhotonVPS的消息,最近看到商家VPS主机套餐有一些更新所以分享下。这是一家成立于2008年的国外VPS服务商,Psychz机房旗下的站点,主要提供VPS和独立服务器等,数据中心包括美国洛杉矶、达拉斯、芝加哥、阿什本等。目前,商家针对Cloud VPS提供8折优惠码,优惠后最低2G内存套餐每月4美元起。下面列出几款主机配置信息。CPU:1core内存:2GB硬盘:30GB NVm...
centos6.0为你推荐
公司网络被攻击网络遭受攻击分为哪几类www.jjwxc.net晋江文学网 的网址是什么?百花百游迎得春来非自足,百花千卉共芬芳什么意思8090lu.com8090lu.com怎么样了?工程有进展吗?sss17.com一玩棋牌吧(www.17wqp.com)怎么样?www.765.com下载小说地址www.javmoo.comjavimdb怎么看杨丽晓博客杨丽晓是怎么 出道的www.se222se.comhttp://www.qqvip222.com/www.kaspersky.com.cn现在网上又有病毒了?
虚拟空间免费试用 电信服务器租用 荣耀欧洲 42u机柜尺寸 Hello图床 shopex空间 火车票抢票攻略 win8.1企业版升级win10 线路工具 浙江独立 52测评网 上海域名 帽子云 世界测速 怎么建立邮箱 个人免费主页 带宽租赁 韩国代理ip 浙江服务器 restart 更多