polytetrauorowww

www.99bill.com  时间:2021-03-01  阅读:()
QuasiInSituPolymerizationToFabricateCopperNanowire-BasedStretchableConductorandItsApplicationsTaoWang,RanranWang,*YinCheng,andJingSun*TheStateKeyLabofHighPerformanceCeramicsandSuperneMicrostructure,ShanghaiInstituteofCeramics,UniversityofChineseAcademyofSciences,1295DingxiRoad,Shanghai200050,P.
R.
China*SSupportingInformationABSTRACT:Stretchableelectronicshaveprogressedgreatlyandhavefoundtheirwayintovariousapplications,thusresultinginagrowingdemandforhigh-qualitystretchableconductors.
Poly(dimethylsiloxane)(PDMS)isthemostlyfrequentlyexploitedelastomericsubstratefortheconstructionofastretchableandconductiveplatformbecauseofitsvaluablefeatures,suchassuperbstretchability,hightransparency,andreliablebiocompatibility.
However,theweakadhesionbetweenthePDMSsubstrateandtheconductivecomponentshasalwaysbeenanintractableissuewhichunderminesthegoodandstableperformanceoftheresultantdevices.
Weproposedaquasiinsitupolymerizationmethodtoeectivelybuildatightandstableattachmentbetweencoppernanowire(CuNW)andthePDMSsubstrate.
TheCuNWs/PDMSconductorsshowexcellentconductivityandantioxidationstability(R/R0inair),enhancedinterfaceadhesion,andstretchability(80%strain,R/R05),withoutanycomplicatedprecongurationofthePDMSsubstrates.
Forapplicationdemonstration,theCuNWs/PDMSconductorwasdeployedasthestretchableelectricwiringtoilluminatealight-emittingdiode.
Furthermore,astretchablecapacitivestrainsensorwasfabricatedusingtheCuNWs/PDMSaselectrodes.
Thesensorpossessedagaugefactorof0.
82andtheminimumdetectionlimitof1%strain.
KEYWORDS:coppernanowires,PDMS,quasiinsitupolymerization,stretchableelectrode,strainsensor1.
INTRODUCTIONStretchableelectronicswithunconventionalmechanicalper-formancesaregainingnumerousscienticandsocialinterestsinthelast15years.
1,2Intensiveeortsbymaterialscientistsandengineershaveopenedupaspectrumofsophisticatedapplicationelds,includingelastomericcircuits,2,3exible/stretchabledisplays,4exible/stretchableenergy-relateddevi-ces,5,6electroniceyecameras,7smartskins,8muscle-likesoftactuators,9,10implantabledevicesforhumanhealthmonitor-ing,11pressure/strainsensorsforhuman-motiondetection,12,13andsoon.
Stretchableconductorwithbothhighconductivityandstretchabilityisoneofthekeybuildingblocksofstretchableelectronics.
14,15Stretchableconductorsincludetwonecessarymotifs:electricalconductivecomponentsandstretchablesubstrates.
Torealizetheirwideapplicationsforbending,stretching,twisting,andotherdeformationontocomplexandnonplanarsurfaces,exiblenanomaterialscouldbeasuitablealternativeaselectricalconductivecomponentsduetotheirpredominantcompliancecomparedwiththeirbulkcounterparts.
16,17Manyeortshavebeenmadetostudyavarietyofnewnanomaterialsaselectricalconductivecomponentssuchasconductingpolymers,18,19carbonnanotubes,12,13,20graphite,21andmetalnanomaterials.
2,17,2224However,theinstabilityandpoorconductivityofconductivepolymersandtherelativelylowelectricalconductivityofcarbon-basednanomaterialshavebecomethemainlimitationstotheirperformanceandapplications.
Amongthenanomaterials,metallicnanowires(NWs)couldbeverypromisingcandidatesforelectricalconductivecomponentsinstretchableconductors.
Althoughsilvernanowires(AgNWs)havebeenintensivelyinvestigatedformanyyears,thehighpricehinderstheirlarge-scaleapplications.
Veryrecently,coppernanowires(CuNWs)havebecomearesearchfocussincecopperpossessescomparableconductivitywithAg,andisalmost100timescheaperthanAg.
25Polydimethylsiloxane(PDMS)isaverycommonstretchablesubstrateandhasbeenbroadlyinvestigated.
15,17Itpossessesnotonlyhighstretchabilityanddurabilitybutalsogoodthermalstability,biocompatibility,andchemicalinertness.
26Additionally,transparencyandcost-eectivefabricationprocesscouldalsobeadvantageousforPDMS.
27,28AlthoughPDMSpossessessomanysuperiorproperties,theweakadhesionbetweenPDMSandelectricalconductivecomponentsisstillasevereproblemconstrainingitsapplicationsinstretchableelectronics.
Thisisattributedtothesuperhydrophobicityofitssurfaceandfastrecoveryfromhydrophilictohydrophobicsurfaceafterbeingtreatedextensivelybyoxygenplasma.
29TheReceived:November17,2015Accepted:February19,2016Published:February19,2016ResearchArticlewww.
acsami.
org2016AmericanChemicalSociety9297DOI:10.
1021/acsami.
5b11143ACSAppl.
Mater.
Interfaces2016,8,92979304shortcomingsofPDMSimpairtheelectricalpropertiesofstretchableconductors.
Evenworse,theconductivematerialsonPDMScouldbedetachedeasilyfromthesurfaceswhenexternalforceisapplied.
WiththepurposeofenhancingadhesionofthevariousconductivematerialswithPDMS,alotofmeasureshavebeenadopted,suchassurfacefunctionalizationandinsitupolymerization.
W.
C.
Kimetal.
andW.
S.
Kimetal.
modiedthesurfaceofPDMSusingsilaneandpolydopamine,respectively,andenabledthesurfacewithhydrophilicitylastingforalongtime.
ThemethodconsiderablyimprovedtheattachmentofAgNWsontoPDMS.
30,31However,theprocessofchemicalmodicationisrathercomplexandnoteasytocontrol.
Zhuandco-workerreportedthatbyinsitupolymerizationAgNWswereembeddedintoPDMSsubstrates,obtainingAgNWs/PDMSconductorswithhighstretchability.
32Itcanmarkedlyimprovetheadhesion;unfortunately,itisdiculttobetransplantedtotheCuNWs/PDMSsystembecauseCuNWswouldbefullyembeddedandlosetheirconductance.
Tothebestofourknowledge,therearenoreportsdemonstratinggoodattachmentofCuNWswithPDMSyet,whileonlyalittleworkisinvolvedintheweakattachmentofCuNWsonPDMSsubstrateswithoutanytreatment.
17Therefore,searchingafacile,cost-eective,andscalablefabricationmethodtoenhancetheadhesionofCuNWsonstretchablePDMSsubstrateisstillurgent.
ItwasfoundthatthestickinessofPDMSsubstratesvariedwiththepolymerizationtime,whichwouldaecttheattachmentofnanowiressignicantly.
Enlightenedbythisphenomenon,herein,anovel,cost-eective,andeasilyscalablefabricationmethod,quasiinsitupolymerization,composedofthreemainstepsincludingprepolymerization,transferofnanowirenetworks,andpost-treatmentweredeveloped.
Viaregulatingtheprepolymerizationtime,partembedmentofCuNWsinPDMSsubstrateswererealized,whichendowedstrongadhesion,excellentconductivityandstability(R/R0inair),enhancedstretchability(80%strain,R/R05),andbendabilityofCuNWs/PDMScompositeconductors.
Figure1.
(a)SEMtopviewimageofpristineCuNWscoatedonsilicon.
TheinsetshowsahomogeneouslydispersedCuNWink;(b)ThemagniedSEMimageofpristineCuNWs;(c)TheschematicfabricationprocessofCuNWs/PDMS;(d,e)SEMtopviewimagesandmagniedSEMimagesofCuNWsnetworksonPTFEltersbeforeandafterheatannealingat230°C.
TheinsetsshowphotographsofCuNWsnetworksbeforeandafterheatannealing.
ACSAppliedMaterials&InterfacesResearchArticleDOI:10.
1021/acsami.
5b11143ACSAppl.
Mater.
Interfaces2016,8,929793049298Stretchablelight-emittingdiode(LED)circuitandstretchablesensorswithCuNWs/PDMSconductorswerefabricatedtodemonstratethefeasibilityofthisapproach.
Theresultingcapacitivesensorwhichcandetectstrainaslowas1%andhasquitehighsensitivity(gaugefactor0.
82,closetothetheoreticalvalueof1)surpassesthepreviousresults.
Itisbelievedthatthequasiinsitupolymerizationmethodcanbeextendedtoothermaterialsandndmoreapplicationsinexibleandstretchabledevices.
2.
EXPERIMENTALSECTIONSynthesisofCuNWs.
CuNWsweresynthesizedbythemethodweproposedinpreviousstudies.
33,34Hexadecylamineandcetyl-trimethylammoniumbromideweremixedandheatedtoformaliquid-crystallinemediumastubularstructuretoguidethegrowthofCuNWs.
Thentheprecursor,copperacetylacetonate[Cu(acac)2],wasaddedintothemediumandthereactionsystemwasincubatedforacertainperiodoftime.
Thereafter,acertainamountofPtnanoparticleswithdiameterof5nmformedbyreducingPtCl2withethyleneglycolwereintroducedtocatalyzethereductionofCu2+.
After12hofreactionat180°C,CuNWsweresynthesized.
Afterbeingrinsedwithtolueneseveraltimes,thenanowireswerekeptintoluenewithaconcentrationof0.
28mg/mL.
PreparationofCuNWs/PDMSCompositeFilms.
CuNWssuspensionsof5mLwereltratedtoformlmsonpolytetrauoro-ethylene(PTFE)ltermembranes.
ThentheCuNWs/PTFElmswereheat-treatedatvarioustemperatures(190,210,230,250,and290°C)inaquartztubefurnacefor30minunderaconstantowofFigure2.
(a)SheetresistancechangeoftheCuNWs/PDMSastheprepolymerizationtimeisprolonged.
Thetopviewandcross-sectionalSEMimagesof(b)CuNWs/PDMS-3,(c)NWs/PDMS-5,(d)NWs/PDMS-10,(e)NWs/PDMS-15,(f)CuNWs/PDMS-20,and(g)CuNWs/PDMS-30.
(h)Adhesivestrengthtests(3Mscotchtapetest)ofCuNWs/PDMS-3,CuNWs/PDMS-5,CuNWs/PDMS-10,CuNWs/PDMS-15,CuNWs/PDMS-20,andCuNWs/PDMS-30.
ACSAppliedMaterials&InterfacesResearchArticleDOI:10.
1021/acsami.
5b11143ACSAppl.
Mater.
Interfaces2016,8,929793049299hydrogentoremoveorganiccomponentsandoxidesoverCuNWstogainconductivenetworks,andtheeectofannealingtemperatureonconductivityofCuNWslmswasinvestigated.
LiquidPDMS(Sylgard184,DowCorning)wascastontoglassslidesbymixingthe"base"andthe"curingagent"witharatioof10:1,followedbycuringat80°Cfordierenttimes(3,5,10,15,20,and30min)untilslightlystickyPDMSsubstrateswereobtained.
Theeectofprepolymerizationtimewasalsostudied.
TheannealedCuNWs/PTFElmswereplacedcarefullyontothePDMSsubstrateswithCuNWsfacedown,andthentheywereputintoavacuumovenfor2htopolymerizecompletely.
CuNWs/PDMScompositelmsweregainedafterpeelingoPTFEandtheywerecutintostripswiththewidthof10mmforelectricalandmechanicalpropertiestests.
FabricationofCapacitiveStrainSensor.
ACuNWs/PDMSlmwiththeCuNWssurfacefacingdownwasplacedonaglassslide.
ThePDMSliquidwasspreadoverthesurfaceoftheCuNWs/PDMSlm.
Beforecuring,anotherCuNWs/PDMSwiththeCuNWssurfacefacingupwaslaminatedontothewetPDMSandorientedtomakesurethatbothpatternsarefullyaligned.
Thenthewholepiecewasdegassedandcuredthermallyinavacuumovenat80°Cfor2h.
TheCuNWs/PDMSsubstratewascutintostripstoproducecapacitivesensorsfortesting.
Structural,Electrical,andMechanicalCharacterization.
ThemicromorphologyandEDXanalysisofCuNWswereconductedwithaeld-emissionscanningelectronmicroscope(HitachiS-4800).
ThesheetresistanceofsampleswasmeasuredwithMitsubishiChemicalLaiesta-EPMCP-T360.
Thevolumeresistancewasmeasuredusingatwo-probemethodwithaFLUKE-15Bdigitalmultimeter.
TheresistanceversusstrainofCuNWs/PDMSwasanalyzedwiththecombinationofPrincetonAppliedResearchParastat2273andahigh-precisionelectronicuniversaltestingmachine(CMT6103,MTSSystems(China)Co.
,Ltd.
).
ThebendabilityoftheCuNWs/PDMSwasmeasuredbyamovablestage(ZXT_050-300_MA06(China),ShanghaiZhengxinOptio-electricalTechnologyCo.
Ltd.
).
Fouriertransforminfrared(FTIR)spectroscopydatawerecollectedwithaFTIRspectrometer(BrukerTensor27),whichwasequippedwithanattenuatedtotalreectanceaccessoryandsettledinagloveboxlledwithAratmosphere.
RamanmeasurementswerecarriedouttostudytheoxidationstateofCuNWslmsbyusinga532nmlaserunderambientconditionswithaRamanmicroscope(ThermoScienticRamanDXR),andthelaserspotandpowersizewere0.
7μmand8mW.
ThermogravimetryanalysiswascarriedoutwithNETZSCHSTA449Cinthetemperaturerangeof40500°Cataheatingrateof10°C/mininnitrogen.
ThecapacitanceofcapacitivestrainsensorwascharacterizedwithYD2616Dcapacitancetestingapparatus(YangziElectronicCo.
Ltd.
(China))at1kHzfrequencywitha0.
1Vacsignal.
3.
RESULTSANDDISCUSSIONFigure1adisplaysthetop-viewSEMimageofpristineCuNWsonasiliconsubstrate,whereadensenetworkoflongCuNWsisformed.
Fromtheinsetwecanndthat,unlikeotherbundledCuNWsreported,35homogeneousstablenanowiredispersionwithoutanyvisibleaggregatescanbeeasilyobtainedviamildsonication.
Throughcalculationofrandomlyselected50nanowiresfromSEMimage(Figure1b),theaveragediameteroftheCuNWsis60nm.
Thelengthsofthenanowiresvaryfrom10sto100sofmicrometers.
Figure1cillustratestheschematicfabricationprocessofCuNWs/PDMSstretchableconductors.
Initially,CuNWswerecollectedonPTFEltersthroughvacuumltration.
Afterannealingtreatment,liquidPDMSwascastontoglassslides,followingbycuringat80°CforaperiodoftimeuntilslightlystickyPDMSsubstrateswereobtained.
ThentheCuNWs/PTFElmswerecarefullytransferredontothesubstratesandtheywerefullypostpolymerizedat80°Cfor2hinavacuumoven.
Finally,beingpeeledofromthelters,theCuNWs/PDMScompositelmswereobtained.
TheroughsurfaceofCuNWsshownfromthemagniedSEMimage(Figure1d,inset)implicatedtheexistenceoforganicresiduesandoxides,whichwasfurtherconrmedbyFTIR,energy-dispersiveX-rayspectroscopy,andRamananalysis(FigureS1,SupportingInformation).
Theorganicresidueswillincreasethecontactresistancebetweennanowiresgreatlyandneedtoberemoved.
Therefore,CuNWs/PTFElmswereannealedatacertaintemperature(190290°C)inaquartztubefurnacefor30minunderaconstantowofhydrogen.
Figure1eshowsthedigitalphotographandSEMimagesofCuNWlmannealedat230°C.
ThesurfacesofCuNWsbecamemuchcleanerafterannealing.
Moreover,thepeaksascribedtoNH2(3391cm1),CH2(2917,1467,and719cm1),andCH3(2847cm1)disappearedintheFTIRspectrumafterannealing,verifyingtheremovaloforganicresidues.
Inaddition,theoxidelayerwasalsoremovedbyannealing,asconrmedbyRamananalysis.
Sincetheannealingtemperaturehasaneectontheintegrityandconductivityofthenanowirelms,itwasinvestigatedindetail.
AsdisclosedinFigureS2,CuNWslmannealedat230°Cpossessesthebestconductiveperformance,whichisattributedtotheeectiveremovaloforganicresiduesandoxidelayers,aswellastheweldingofnanowires.
Higherannealingtemperatureswillleadtobreakageofnanowires,whichwilldecreasetheconductanceofthelm.
Therefore,CuNWslmswereannealedat230°Cinthefollowingdiscussionifnototherwisestated.
Duringthequasiinsitupolymerizationprocess,prepolyme-rizationtimeisacrucialfactorsinceitdeterminesthestickinessandhardnessofthePDMSsubstrates,whichwillaectthetransferofCuNWsgreatly.
Therefore,compositelmsfabricatedwithdierentprepolymerizationtimeswerecollected,tested,andcharacterizedbySEM.
AsshowninFigure2a,thesheetresistanceofthecompositelmsdecreasescontinuouslywiththeprolongingofprepolymerizationtimeandlevelsoafter10min.
ThereasonliesinthedierentembeddingdepthsofCuNWsintothePDMSsubstrates,asdisclosedinFigure2bg.
Astheprepolymerizationtimeisprolongedfrom3to30min,theembeddingdepthdecreases.
Prepolymerizationtimeof3and5minleadstostickierandsoftersurfacesofPDMSsubstrate,whichwillbringindeeperembeddingofCuNWnetworksduringthetransferprocess,andviceversa.
Whentheprepolymerizationtimeisprolongedto30min,CuNWsarescarcelyburied,andmostofthemcoverontopofthePDMSsubstrate(Figure2g).
Deeperembeddingofthenanowirenetworkresultsinlargersheetresistanceofthecompositelmssincewrappingbypolymerwouldincreasethecontactresistanceoftheunweldedjunctions,whichexplainsthevariationtrendofthesheetresistance.
Moreover,theembeddingstatusofCuNWsinuencestheirattachmenttoPDMSsubstratespronouncedly.
AsseenfromFigure2h,CuNWs/PDMSsamplesprepolymerizedfor3,5,and10min(markedasCuNWs/PDMS-3,CuNWs/PDMS-5,andCuNWs/PDMS-10,respectively)exhibitsstrongadhesiontothesubstrates,andnonanowirescanbepeeledothesubstratesby3Mscotchtapes.
Incontrast,forCuNWs/PDMS-15,CuNWs/PDMS-20,andCuNWs/PDMS-30,theCuNWswillbepartlyremovedbyscotchtapeandtheintegrityofCuNWsnetworkswillbebroken.
ThestretchabilityofCuNWs/PDMScompositeconductorswerecharacterizedbyatensilesystematthespeedof10%/min.
R/R0wasdenedasaratiooftheinstantaneousresistanceataspecictensilestraintotheinitialresistanceatzerostrain.
Figure3ademonstratesthechangeofR/R0asafunctionofACSAppliedMaterials&InterfacesResearchArticleDOI:10.
1021/acsami.
5b11143ACSAppl.
Mater.
Interfaces2016,8,929793049300strainofCuNWs/PDMSlmswithdierentprepolymeriza-tiontimes.
Theresistancesofthecompositelmsriseslowlyandthenrapidlywithstretch,whichissimilartothetendencyofresistancechangeasreportedbefore.
36CuNWs/PDMS-10revealsthebesttensilestraintolerance,andtheresistanceincreasesby4timesatthetensilestrainof80%,whichoutperformsmanynanomaterial-basedstretchableconductorswiththenonstructurallyengineeredelastomericsubstratestodate.
StretchableconductorsbasedonAgNWs/polyacrylateandCuNWs/polyurethaneshowedincreaseontheresistanceby10and15timesatthestrainof80%,respectively.
36,37Thersttencyclesofthesixsampleswithstrainupto20%wereinvestigatedandshowninFigure3b.
Asexpected,CuNWs/PDMS-10showsthebestperformancecomparedwiththeothersamplesandthecurvesofthechangeofR/R0asafunctionofstretchingcyclesrevealsxedperiodicity.
However,insteadofrecoveringtheinitialvalueafterreleasing,theresistanceascendsgraduallywithcycling.
ThisphenomenonismainlyattributedtotheslidebetweenCuNWswhenstretched,which,unfortunately,canonlyslidebackbyacertaindegreeafterreleasingduetothefrictionforcebetweenCuNWsandPDMSmatrix.
TheslideofCuNWsmayleadtoasmalleroverallcontactarea,thusresultingintheincreaseofresistanceshowninFigure3c.
32Exceptforthereasonmentionedabove,thereisresidualstraininCuNWs/PDMSlayeruponunloadingaswell,duetotherearrangementofCuNWsduringtherststretching,whichissimilartonetworksofCNTscompressedbyoutsideload.
38Figure3ddisclosesthatthevariationcurveofR/R0turnsatwithcycling,whichoriginatesfromtheformationofabuckledwavyshapeofCuNWs/PDMSlayer.
32Suchwavy,sinusoidalshapeisbenecialtothestretch-releaseperformanceanddurabilityofstretchableconductors,whichhasbeenconrmedinmanypreviousreports.
39,40ThebendablepropertiesoftheCuNWs/PDMScompositelmswerealsoinvestigated(showninFigure3e).
Forconvenience,thedistancebetweenthetwoendsofthebendedlmwastakenastheassessmentofthedegreeofbending.
Films15mmlongwerebentfromattoabendingdegreeof3mmgraduallyandthenreturnedtoat.
ThevariationcurvesofR/R0revealthatthesesixcompositelmsmaintaintheconductivestabilityintherstcycle,especiallyCuNWs/PDMS-10,CuNWs/PDMS-15,andCuNWs/PDMS-30.
Furthermore,acyclicbendingtestatabendingdegreeof6mmindicatesthattheconductivityofCuNWs/PDMS-10,CuNWs/PDMS-15,CuNWs/PDMS-20,andCuNWs/PDMS-30remainsperfectlystable,evenaftercyclingfor1000timeswithoutconspicuousdegradation.
TheresistanceofCuNWs/PDMS-3,however,increasesapparentlywithcycling.
AschemeofthestructurechangeofCuNWs/PDMScompositelmswithstretchingandreleasewasproposedtoillustratethereasonwhyCuNWs/PDMS-10hasthebeststretchingandbendingperformance.
AsshowninFigure3f,thecompositelmismainlycomposedofthreelayers,includingthebottomPDMSlayer,CuNW-PDMScompositelayer,andtheunembeddedCuNWlayer.
ThethicknessofeachlayerisdependentontheprepolymerizationtimeasshowninFigure2.
Whenbeingstretched,nanowiresinthecompositelayerwillslidealongthestretchingdirectionduetothefrictionforcebetweenthemandthePDMSsubstrate.
Thiswillleadtothedamageofsomeconductingpaths,thereforeresultingintheincreaseofthesheetresistance.
Incontrast,thecombiningbetweenPDMSwithCuNWs,whicharenotwrappedbypolymersintheunembeddedlayer,isratherweak.
Whenbeingstretched,slidingwilloccuramongthenanowiresaswellasbetweenthenanowireandthePDMSsubstrate.
Therefore,theunembeddedCuNWnetworkdeformslesscomparedwithCuNW-PDMScompositelayer,andstaysmoreconductiveafterFigure3.
(a)R/R0versustensilestrainupto200%ofCuNWs/PDMSwithdierentprepolymerizationtimes.
(b)R/R0changeofCuNWs/PDMS-3,CuNWs/PDMS-5,CuNWs/PDMS-10,CuNWs/PDMS-15,CuNWs/PDMS-20,andCuNWs/PDMS-30withtensilestrainupto20%inthersttencycles.
(c)R/R0variationofCuNWs/PDMS-10withtensilestrainupto20%intherstcycle.
(d)StretchingandreleasingpropertyofCuNWs/PDMS-10in50cycles(theinsetwasa10cyclescurveofthecompositeaftercycling20times).
(e)R/R0ofCuNWs/PDMSversusthebendingdegreefromatto3mm,andbacktoat.
Thephotographsarethecompositelmsbentatvariousbendingdegrees,fromatto9mm,6mm,andbacktoat.
TheinsertwasthecyclicbendingtestofCuNWs/PDMSatabendingdegreeof6mm.
(f)SchemeofthestructurechangeofCuNWs/PDMScompositelmswithstretchingandrelease.
ACSAppliedMaterials&InterfacesResearchArticleDOI:10.
1021/acsami.
5b11143ACSAppl.
Mater.
Interfaces2016,8,929793049301stretching.
ThiscanexplainthepoorstretchingperformanceofdeeplyembeddedsamplesincludingCuNWs/PDMS-3andCuNWs/PDMS-5.
However,ifthepolymerizationtimeisprolongedtoover20min,thenanowirenetworksarebarelyembedded,andtheirattachmenttothesubstratebecomesveryweakaswell,whichresultsineasierdetachmentofCuNWsfromPDMSsubstratesduringthestretchingprocess.
Onthebasisofthereasonsmentionedabove,theCuNWs/PDMS-10showsthebeststretchableperformance.
Whenbeingreleased,nanowirescouldnotslidebacktotheinitialstate,andmanyconductingpathsweredestroyedduetothehinderingofthesurroundingpolymermoleculesinthecompositelayers,whichexplainstheinferiorrecoveryperformanceofCuNWs/PDMS-3andCuNWs/PDMS-5.
Exceptfortheseproperties,theantioxidationabilitywasalsoinvestigated.
AsshowninFigureS3,thechangeofR/R0islessthan1.
4afterthelmswerestoredinairfor50days,testifyingtotheexcellentantioxidantpropertyofthecompositelms.
TodemonstratethefeasibilityofCuNWs/PDMSconductors,apieceofCuNWs/PDMS-10withthelengthof2cmandinitialresistanceof2Ωwasusedasstretchableelectricwiringtoilluminatealight-emittingdiode(LED)lamp.
TheLEDlampwasoperatedatavoltageof4Vwhenitwasstretchedfrom0%to120%asshowninFigure4.
Asseenfrominsets,noconspicuousdegradationofbrightnessisobservedduringstretchingfrom0%to120%.
Althoughthecurrentdecreasedastheelectriccircuitwasstretchedtoalargerstrain,owingtothepartialdamageoftheintegrityoftheCuNWsnetwork,theLEDcanstillmaintainitsnormalworking.
Thecurrentvoltagecharacteristicswerepartlyrecoveredwhenthestrainwasreleased.
ThesetestingresultssuccessfullydisplaythepossibleapplicationsoftheCuNWs/PDMSlmsinstretchableelectronics.
Becauseofitshighconductivity,stretchability,andbendability,CuNWconductorhaspotentialaselectrodesinstrainsensorapplication.
Herein,acapacitivesensorwasfabricatedbylaminatingtwoCuNWs/PDMS-10electrodeswiththeconductingsurfacefacingoutward,whichissimilartoaparallelplatecapacitor(Figure5a).
Theinitialcapacitanceofthesensorisgivenbyεε=CAd00r00,whereε0istheelectricconstant,εristhedielectricconstant,andA0andd0aretheareaoverlapandseparationbetweenthetwoelectrodes(thespacebetweentwoelectrodesisabout1mm),respectively.
Whenitwasuniaxiallystretched,thechangeincapacitanceΔCwiththeappliedstrainεisgivenbyΔC=aεC0,whereaisthegaugefactor.
32,41Figure5bplotsthechangeofcapacitanceasafunctionofstrain,whichshowsgreatlinearitywithstandarddeviationR2of0.
998underalargestrainrange(upto60%).
(ΔC/C0)/ε,isdenedasacapacitivegaugefactorwhichistheslopeofthelineartasshowninFigure5bandistakenasaperformanceindex.
42Thegaugefactorofourstrainsensoris0.
82andtheminimumdetectablestrainisabout1%.
Theperformanceoutperformsmanystrainsensorswiththesameworktheoryandparallel-platestructure.
Forexample,Lipomietal.
reportedstrainsensorbasedonCNTlmwiththegagefactorof0.
41,43whileHuetal.
andYaoandZhufabricatedAgNWstrainsensorswiththegaugefactorof0.
5and0.
7,respectively.
41,44Figure5crecordsthevariationofcapacitanceversustimeovertenstretchingandreleasingcycleswiththe20%stretchingstrain.
Ineachstretchingcycle,thecapacitanceincreasesquicklyto1.
16timesoftheoriginalvalueandcanreversebacktotheinitialvalueafterreleasing,exhibitingastableresponse.
Furthermore,thedurabilityofthesensorwastestedover1000cyclesofstretchingandreleasing.
AsseenfromFigure5d,thecapacitancekeepsconstantduringcycling,manifestingtheexcellentdurabilityoftheCuNWs/PDMScapacitivesensor.
4.
CONCLUSIONSInsummary,wehaveproposedaquasiinsitupolymerizationmethodtofabricateCuNWs/PDMSstretchableconductors.
Viaregulatingtheprepolymerizationtime,partialembedmentofCuNWsinPDMSsubstrateswererealized,whichendowedtheconductorswithstrongadhesion,excellentconductivityandstability(R/R0inair),enhancedstretchability(80%strain,R/R05),andbendabilityofCuNWs/PDMSconductors.
ThecompositeconductorhasbeenusedasthestretchableelectricwiringtoilluminateanLED,whichdidnotshowobviousdegradationofbrightnessduringstretchingfrom0%to120%.
Stretchablecapacitivesensorwithdetectionlimitaslowas1%strain,andsensitivityashighas0.
82hasalsobeenconstructedwithCuNWs/PDMSconductorsaselectrodes.
ItisbelievedthatthequasiinsitupolymerizationmethodcanbeFigure4.
CurrentvoltagemeasurementofLEDintegratedbyCuNWs/PDMS-10atvarioustensilestrainsover120%.
InsetsshowthedigitalimagesoftheintegratedLEDcircuitsoperatedat0%,40%,80%,and120%strain.
(Note:Thecurvefor100%tensilestraincoincideswiththeoneofrecovery.
)Figure5.
(a)SchematicallyshowingacapacitivestrainsensorwithCuNWs/PDMS-10astheelectrodes(top)beforeand(bottom)afterbeingstretched.
(b)ChangeofcapacitanceΔC/C0versusstrain.
(c)Changeincapacitanceversustimeovertenstretching/releasingcycleswith20%stretchingstrain(stretching/releasingspeedis50%/min).
(d)DurabilitytestofCuNWs/PDMSstrainsensorover1000timesstretchingandreleasinguptotensilestrainof20%.
ACSAppliedMaterials&InterfacesResearchArticleDOI:10.
1021/acsami.
5b11143ACSAppl.
Mater.
Interfaces2016,8,929793049302extendedtoothermaterialssystemandndnovelapplicationsinmanyexibleandstretchabledevices.
ASSOCIATEDCONTENT*SSupportingInformationTheSupportingInformationisavailablefreeofchargeontheACSPublicationswebsiteatDOI:10.
1021/acsami.
5b11143.
TheFTIRspectraofCuNWsonsiliconwaferbeforeandafterheattreatment,SEMandEDXofCuNWnetworkwithoutheattreatment,RamanspectraforCuNWsonPTFEbeforeandafterheattreatment,theeectofdierentheattreatmenttemperaturesonCuNWs/PTFElms,andlong-termstabilityofCuNWs/PDMSunderairatmosphere(PDF)AUTHORINFORMATIONCorrespondingAuthors*Telephone:+86-21-52412717.
Fax:+86-21-52413122.
E-mail:wangranran@mail.
sic.
ac.
cn.
*E-mail:jingsun@mail.
sic.
ac.
cn.
NotesTheauthorsdeclarenocompetingnancialinterest.
ACKNOWLEDGMENTSThisworkwasnanciallysupportedbytheNationalBasicResearchProgramofChina(2012CB932303),theNationalNaturalScienceFoundationofChina(GrantNo.
61301036),ShanghaiMunicipalNaturalScienceFoundation(GrantNo.
13ZR1463600),andTheInnovationProjectofShanghaiInstituteofCeramics.
REFERENCES(1)Lee,P.
;Lee,J.
;Lee,H.
;Yeo,J.
;Hong,S.
;Nam,K.
H.
;Lee,D.
;Lee,S.
S.
;Ko,S.
H.
HighlyStretchableandHighlyConductiveMetalElectrodebyVeryLongMetalNanowirePercolationNetwork.
Adv.
Mater.
2012,24,33263332.
(2)Cheng,Y.
;Wang,R.
;Sun,J.
;Gao,L.
HighlyConductiveandUltrastretchableElectricCircuitsfromCoveredYarnsandSilverNanowires.
ACSNano2015,9,38873895.
(3)Rogers,J.
A.
;Someya,T.
;Huang,Y.
MaterialsandMechanicsforStretchableElectronics.
Science2010,327,16031607.
(4)Sekitani,T.
;Nakajima,H.
;Maeda,H.
;Fukushima,T.
;Aida,T.
;Hata,K.
;Someya,T.
StretchableActive-matrixOrganicLight-emittingDiodeDisplayUsingPrintableElasticConductors.
Nat.
Mater.
2009,8,494499.
(5)Bae,J.
;Lee,J.
;Kim,S.
;Ha,J.
;Lee,B.
S.
;Park,Y.
;Choong,C.
;Kim,J.
B.
;Wang,Z.
L.
;Kim,H.
Y.
;Park,J.
J.
;Chung,U.
I.
Flutter-drivenTriboelectrificationforHarvestingWindEnergy.
Nat.
Commun.
2014,5,4929.
(6)Hu,L.
;Pasta,M.
;Mantia,F.
L.
;Cui,L.
;Jeong,S.
;Deshazer,H.
D.
;Choi,J.
W.
;Han,S.
M.
;Cui,Y.
Stretchable,Porous,andConductiveEnergyTextiles.
NanoLett.
2010,10,708714.
(7)Ko,H.
C.
;Stoykovich,M.
P.
;Song,J.
;Malyarchuk,V.
;Choi,W.
M.
;Yu,C.
J.
;Geddes,J.
B.
,III;Xiao,J.
;Wang,S.
;Huang,Y.
;Rogers,J.
A.
AHemisphericalElectronicEyeCameraBasedonCompressibleSiliconOptoelectronics.
Nature2008,454,748753.
(8)Takei,K.
;Takahashi,T.
;Ho,J.
C.
;Ko,H.
;Gillies,A.
G.
;Leu,P.
W.
;Fearing,R.
S.
;Javey,A.
NanowireActive-matrixCircuitryforLow-voltageMacroscaleArtificialSkin.
Nat.
Mater.
2010,9,821826.
(9)Lu,L.
;Chen,W.
BiocompatibleCompositeActuator:ASupramolecularStructureConsistingofTheBiopolymerChitosan,CarbonNanotubes,andanIonicLiquid.
Adv.
Mater.
2010,22,37453748.
(10)Wu,J.
;Zang,J.
;Rathmell,A.
R.
;Zhao,X.
;Wiley,B.
J.
ReversibleSlidinginNetworksofNanowires.
NanoLett.
2013,13,23812386.
(11)Jeong,G.
S.
;Baek,D.
H.
;Jung,H.
C.
;Song,J.
H.
;Moon,J.
H.
;Hong,S.
W.
;Kim,I.
Y.
;Lee,S.
H.
SolderableandElectroplatableFlexibleElectronicCircuitonaPorousStretchableElastomer.
Nat.
Commun.
2012,3,977.
(12)Yamada,T.
;Hayamizu,Y.
;Yamamoto,Y.
;Yomogida,Y.
;Izadi-Najafabadi,A.
;Futaba,D.
N.
;Hata,K.
AStretchableCarbonNanotubeStrainSensorforHuman-motionDetection.
Nat.
Nano-technol.
2011,6,296301.
(13)Wang,X.
;Gu,Y.
;Xiong,Z.
;Cui,Z.
;Zhang,T.
Silk-moldedFlexible,Ultrasensitive,andHighlyStableElectronicSkinforMonitoringHumanPhysiologicalSignals.
Adv.
Mater.
2014,26,13361342.
(14)Kim,D.
-H.
;Rogers,J.
A.
StretchableElectronics:MaterialsStrategiesandDevices.
Adv.
Mater.
2008,20,48874892.
(15)Chen,M.
;Zhang,L.
;Duan,S.
;Jing,S.
;Jiang,H.
;Li,C.
HighlyStretchableConductorsIntegratedwithaConductiveCarbonNanotube/GrapheneNetworkand3DPorousPoly-(dimethylsiloxane).
Adv.
Funct.
Mater.
2014,24,75487556.
(16)Yao,S.
;Zhu,Y.
Nanomaterial-EnabledStretchableConductors:Strategies,MaterialsandDevices.
Adv.
Mater.
2015,27,14801511.
(17)Won,Y.
;Kim,A.
;Yang,W.
;Jeong,S.
;Moon,J.
AHighlyStretchable,HelicalCopperNanowireConductorExhibitingaStretchabilityof700%.
NPGAsiaMater.
2014,6,e132.
(18)Argun,A.
A.
;Cirpan,A.
;Reynolds,J.
R.
TheFirstTrulyAll-PolymerElectrochromicDevices.
Adv.
Mater.
2003,15,13381341.
(19)Hansen,T.
S.
;West,K.
;Hassager,O.
;Larsen,N.
B.
HighlyStretchableandConductivePolymerMaterialMadefromPoly(3,4-ethylenedioxythiophene)andPolyurethaneElastomers.
Adv.
Funct.
Mater.
2007,17,30693073.
(20)Chun,K.
-Y.
;Oh,Y.
;Rho,J.
;Ahn,J.
-H.
;Kim,Y.
-J.
;Choi,H.
R.
;Baik,S.
HighlyConductive,PrintableandStretchableCompositeFilmsofCarbonNanotubesandSilver.
Nat.
Nanotechnol.
2010,5,853857.
(21)Kujawski,M.
;Pearse,J.
D.
;Smela,E.
ElastomersFilledwithExfoliatedGraphiteasCompliantElectrodes.
Carbon2010,48,24092417.
(22)Park,M.
;Im,J.
;Shin,M.
;Min,Y.
;Park,J.
;Cho,H.
;Park,S.
;Shim,M.
-B.
;Jeon,S.
;Chung,D.
-Y.
;Bae,J.
;Park,J.
;Jeong,U.
;Kim,K.
HighlyStretchableElectricCircuitsfromaCompositeMaterialofSilverNanoparticlesandElastomericFibres.
Nat.
Nanotechnol.
2012,7,803809.
(23)Ge,J.
;Yao,H.
-B.
;Wang,X.
;Ye,Y.
-D.
;Wang,J.
-L.
;Wu,Z.
-Y.
;Liu,J.
-W.
;Fan,F.
-J.
;Gao,H.
-L.
;Zhang,C.
-L.
;Yu,S.
-H.
StretchableConductorsBasedonSilverNanowires:ImprovedPerformancethroughaBinaryNetworkDesign.
Angew.
Chem.
,Int.
Ed.
2013,52,16541659.
(24)Han,S.
;Hong,S.
;Ham,J.
;Yeo,J.
;Lee,J.
;Kang,B.
;Lee,P.
;Kwon,J.
;Lee,S.
S.
;Yang,M.
Y.
;Ko,S.
H.
FastPlasmonicLaserNanoweldingforaCu-nanowirePercolationNetworkforFlexibleTransparentConductorsandStretchableElectronics.
Adv.
Mater.
2014,26,58085814.
(25)Hu,L.
;W,H.
;Cui,Y.
MetalNanogrids,Nanowires,andNanofibersforTransparentElectrodes.
MRSBull.
2011,36,760765.
(26)Mata,A.
;Fleischman,A.
J.
;Roy,S.
CharacterizationofPolydimethylsiloxane(PDMS)PropertiesforBiomedicalMicro/Nanosystems.
Biomed.
Microdevices2005,7,281293.
(27)McDonald,J.
C.
;Whitesides,G.
M.
Poly(dimethylsiloxane)asaMaterialforFabricatingMicrofluidicDevices.
Acc.
Chem.
Res.
2002,35,491499.
(28)Ng,H.
T.
;Foo,M.
L.
;Fang,A.
;Li,J.
;Xu,G.
;Jaenicke,S.
;Chan,L.
;Li,S.
F.
Y.
Soft-Lithography-MediatedChemicalVaporDepositionofArchitecturedCarbonNanotubeNetworksonElastomericPolymer.
Langmuir2002,18,15.
(29)Tan,S.
H.
;Nguyen,N.
-T.
;Chua,Y.
C.
;Kang,T.
G.
OxygenPlasmaTreatmentforReducingHydrophobicityofaSealedPolydimethylsiloxaneMicrochannel.
Biomicrofluidics2010,4,032204.
(30)Lee,H.
;Lee,K.
;Park,J.
T.
;Kim,W.
C.
;Lee,H.
Well-OrderedandHighDensityCoordination-TypeBondingtoStrengthenContactACSAppliedMaterials&InterfacesResearchArticleDOI:10.
1021/acsami.
5b11143ACSAppl.
Mater.
Interfaces2016,8,929793049303ofSilverNanowiresonHighlyStretchablePolydimethylsiloxane.
Adv.
Funct.
Mater.
2014,24,32763283.
(31)Akter,T.
;Kim,W.
S.
ReversiblyStretchableTransparentConductiveCoatingsofSpray-depositedSilverNanowires.
ACSAppl.
Mater.
Interfaces2012,4,18551859.
(32)Xu,F.
;Zhu,Y.
HighlyConductiveandStretchableSilverNanowireConductors.
Adv.
Mater.
2012,24,51175122.
(33)Zhang,D.
;Wang,R.
;Wen,M.
;Weng,D.
;Cui,X.
;Sun,J.
;Li,H.
;Lu,Y.
SynthesisofUltralongCopperNanowiresforHigh-performanceTransparentElectrodes.
J.
Am.
Chem.
Soc.
2012,134,1428314286.
(34)Cheng,Y.
;Wang,S.
;Wang,R.
;Sun,J.
;Gao,L.
CopperNanowireBasedTransparentConductiveFilmswithHighStabilityandSuperiorStretchability.
J.
Mater.
Chem.
C2014,2,53095316.
(35)Rathmell,A.
R.
;Bergin,S.
M.
;Hua,Y.
-L.
;Li,Z.
-Y.
;Wiley,B.
J.
TheGrowthMechanismofCopperNanowiresandTheirPropertiesinFlexible,TransparentConductingFilms.
Adv.
Mater.
2010,22,35583563.
(36)Hu,W.
;Wang,R.
;Lu,Y.
;Pei,Q.
AnElastomericTransparentCompositeElectrodeBasedonCopperNanowiresandPolyurethane.
J.
Mater.
Chem.
C2014,2,12981305.
(37)Hu,W.
;Niu,X.
;Li,L.
;Yun,S.
;Yu,Z.
;Pei,Q.
IntrinsicallyStretchableTransparentElectrodesBasedonSilver-nanowirecross-linked-polyacrylateComposites.
Nanotechnology2012,23,344002.
(38)Slobodian,P.
;Riha,P.
;Lengalova,A.
;Saha,P.
CompressiveStress-electricalConductivityCharacteristicsofMultiwallCarbonNanotubeNetworks.
J.
Mater.
Sci.
2011,46,31863190.
(39)Shin,M.
K.
;Oh,J.
;Lima,M.
;Kozlov,M.
E.
;Kim,S.
J.
;Baughman,R.
H.
ElastomericConductiveCompositesBasedonCarbonNanotubeForests.
Adv.
Mater.
2010,22,26632667.
(40)Kim,D.
-H.
;Xiao,J.
;Song,J.
;Huang,Y.
;Rogers,J.
A.
Stretchable,CurvilinearElectronicsBasedonInorganicMaterials.
Adv.
Mater.
2010,22,21082124.
(41)Hu,W.
;Niu,X.
;Zhao,R.
;Pei,Q.
ElastomericTransparentCapacitiveSensorsBasedonanInterpenetratingCompositeofSilverNanowiresandPolyurethane.
Appl.
Phys.
Lett.
2013,102,083303.
(42)Cao,Q.
;Rogers,J.
A.
UltrathinFilmsofSingle-WalledCarbonNanotubesforElectronicsandSensors:AReviewofFundamentalandAppliedAspects.
Adv.
Mater.
2009,21,2953.
(43)Lipomi,D.
J.
;Vosgueritchian,M.
;Tee,B.
C.
K.
;Hellstrom,S.
L.
;Lee,J.
A.
;Fox,C.
H.
;Bao,Z.
Skin-likePressureandStrainSensorsBasedonTransparentElasticFilmsofCarbonNanotubes.
Nat.
Nanotechnol.
2011,6,788792.
(44)Yao,S.
;Zhu,Y.
WearableMultifunctionalSensorsUsingPrintedStretchableConductorsMadeofSilverNanowires.
Nanoscale2014,6,23452352.
ACSAppliedMaterials&InterfacesResearchArticleDOI:10.
1021/acsami.
5b11143ACSAppl.
Mater.
Interfaces2016,8,929793049304

Megalayer(159元 )年付CN2优化带宽VPS

Megalayer 商家我们还算是比较熟悉的,商家主要业务方向是CN2优化带宽、国际BGP和全向带宽的独立服务器和站群服务器,且后来也有增加云服务器(VPS主机)业务。这次中秋节促销活动期间,有发布促销活动,这次活动力度认为还是比较大的,有提供香港、美国、菲律宾的年付VPS主机,CN2优化方案线路的低至年付159元。这次活动截止到10月30日,如果我们有需要的话可以选择。第一、特价限量年付VPS主...

青云互联:香港安畅CN2弹性云限时首月五折,15元/月起,可选Windows/可自定义配置

青云互联怎么样?青云互联是一家成立于2020年的主机服务商,致力于为用户提供高性价比稳定快速的主机托管服务,目前提供有美国免费主机、香港主机、韩国服务器、香港服务器、美国云服务器,香港安畅cn2弹性云限时首月五折,15元/月起;可选Windows/可自定义配置,让您的网站高速、稳定运行。点击进入:青云互联官方网站地址青云互联优惠码:八折优惠码:ltY8sHMh (续费同价)青云互联香港云服务器活动...

HostHatch(15美元)大硬盘VPS,香港NVMe,美国、英国、荷兰、印度、挪威、澳大利亚

HostHatch在当地时间7月30日发布了一系列的促销套餐,涉及亚洲和欧美的多个地区机房,最低年付15美元起,一次买2年还能免费升级双倍资源。商家成立于2011年,提供基于KVM架构的VPS主机,数据中心包括中国香港、美国、英国、荷兰、印度、挪威、澳大利亚等国家的十几个地区机房。官方网站:https://hosthatch.com/NVMe VPS(香港/悉尼)1 CPU core (12.5%...

www.99bill.com为你推荐
地图应用什么地图导航最好用最准确西部妈妈网九芽妈妈网加盟费多少www.jjwxc.net晋江文学网 的网址是什么?psbc.com95580是什么诈骗信息不点网址就安全吧!同ip域名什么是同主机域名同ip站点同ip站点很多有没有影响?www.baitu.com韩国片爱人.欲望的观看地址百度指数词为什么百度指数里有写词没有指数,还要购买广告法有那些广告法?还有广告那些广告词?www.36ybyb.com有什么网址有很多动漫可以看的啊?我知道的有www.hnnn.net.很多好看的!但是...都看了!我想看些别人哦!还有优酷网也不错...
美国网站空间 武汉域名注册 dns是什么 正版win8.1升级win10 debian源 40g硬盘 idc是什么 1g内存 hktv 电信托管 厦门电信 环聊 备案空间 阿里云手机官网 如何登陆阿里云邮箱 宿迁服务器 阿里云邮箱个人版 广州主机托管 mteam winserver2008r2 更多