investigatedwww

www.hhh.com  时间:2021-03-01  阅读:()
12015Wiley-VCHVerlagGmbH&Co.
KGaA,Weinheimwileyonlinelibrary.
comwww.
MaterialsViews.
comInterfaceManipulationforPrintingThree-DimensionalMicrostructuresUnderMagneticGuidingLibinWang,FengyuLi,MinuanKuang,MengGao,JingxiaWang,YuHuang,LeiJiang,andYanlinSong*surfaces,diverse3Dmicrostructuresincludinghat,cone,pillar,andspindleareformed.
Therelationshipbetween3Dmorphologyandinterfacepropertiesisclaried.
Accord-ingly,accurate-positionedandoriented-patterned3Darraysarefacilelyprinted,demonstratinghighcontrollabilityandlarge-scalefabricationofuniform3Dmicrostructures.
Theas-prepared3Dmicrostructuresandarrayshavegreatpotentialinactuators,[29,30]sensors,[31,32]andphononiccrystalsstudy.
[33]Thisadvancein3Dfabricationtechnologybasedoninterfacemanipulationwillpresentsignicantinsightandpromisingapplicationsincontrollable3Dmanufacturing.
Figure1aillustratestheschemetoachieve3Dmicrostruc-turesontheliquid–solidcompositesurfaceguidedbyacubicmagnet.
Magneticink(M-ink)dropletsareprintedontothesurfaceanddeformedfromhemisphericaltopillaredmicro-structurewithdropletedgeretracing.
Theorientationofthe3Dmicrostructurescanbealteredwithinawidetiltinganglebydeectingthemagnet,enablingasymmetric3Dmanu-facturing.
Theliquid–solidcompositesurfaceisconstructedbyswellingpolydimethylsiloxane(PDMS)withsiliconeoil(Figure1b).
SwellingcausesthePDMSchainstobeunfoldedandcladdedofoil,formingacompositesurfaceexposingacertainamountofliquid,whichsuppressestheresistanceandfavorstheslidingofdroplet.
Thedynamicdewettabilityofthesurfacecanbeaccuratelycontrolledbyswellingratio(denedastheratioofabsorbedsiliconeoilandPDMS),whichessentiallyalternatestheamountofliquidcomponent(FiguresS1a–candS2,SupportingInformation).
Particularly,recedingangle(θR)ofthesurfacepresentsneadjustabilitywiththeswellingratio(Figure1c).
Asaresult,theM-inkdropletspossesscontrollableretracingbehavior(FigureS1d,SupportingInformation).
Theformationschemeofthe3DmicrostructureisdepictedinFigure1d.
PulledbymagneticforceFmanddistortedbyresistanceforceFr,thedropletisdeformedintoconicshapewithfastreducedinstantaneouscontactangle(CA).
Whenitislessthantherecedingangle,thedropletedgestartstoretrace.
Withthedropletheight-eninganddiameterreducing,theinstantaneousCAincreasesgraduallytoreachtherecedinganglevalueandtheraiseddropletwillnotbedrawnawayduetothesubstrateresistance.
Eventually,a3Dhigh-aspect-ratiomicrostructureisformed,andthebaseangleofthe3DstructureonsubstrateisequaltoitsM-inkrecedingangle.
AtypicaldeformationprocessforoneM-inkdropletonthecompositesurfacewithrecedingangleofca.
95°wascapturedbyaCCD-camera(Figure1e).
ThedynamicevolutionsshowthatthedropletisheighteningDOI:10.
1002/smll.
201403355ControllabilityDr.
L.
Wang,Dr.
F.
Li,Dr.
M.
Kuang,Dr.
M.
Gao,Dr.
J.
Wang,Dr.
Y.
Huang,Prof.
L.
Jiang,Prof.
Y.
SongBeijingNationalLaboratoryforMolecularSciences(BNLMS)KeyLaboratoryofGreenPrintingKeyLaboratoryofOrganicSolidsInstituteofChemistryChineseAcademyofSciencesBeijing100190,P.
R.
ChinaE-mail:ylsong@iccas.
ac.
cnDr.
L.
Wang,Dr.
M.
Kuang,Dr.
M.
GaoSchoolofChemistryandChemicalEngineeringUniversityoftheChineseAcademyofSciencesBeijing100049,P.
R.
China3Dmicrostructures[1,2]hasarousedgreatinterestandbeenappliedinintegratedelectronics,tissueengineering,high-efcientcollectorsandsensors,photonicmaterials,etc.
[3–6]Various3Dfabricationtechniqueshavebeenproposedindecades,includingself-assemblyofin-planeunits,[7,8]layer-by-layerprinting,[9,10]directwriting,[11–14]andsoon.
Althoughthesestrategiesprovideexiblefabricationplatform,thecontrollabilityofprecise3Dmicrostructuresremainsasig-nicantchallenge.
Thefundamentalproblemsinvolvethemanipulationoftheliquidwetting,dewetting,[15,16]coales-cence,[17]transport,[18,19]andreshaping,[20,21]whichinuencetheformationofthe3Darchitectures.
Someeffortshavebeeninvestedtocontroldropletsbyappropriateinterfacedesign.
Forinstance,dropletsweretransformedtospecic3Dmicro-structuresbasedonpyroelectrodynamic-inducedliquid–airinterfacedeformation.
[22,23]Moreover,externallydrivenmagneticdropletswereseparatedintocomplicatedpatternonsuperhydrophobicsurfaces.
[24]However,therelationshipof3Dmorphologyandinterfacialpropertiesisstillunclear,whichlimitstheoperabilityofdroplets,resultinginpoor3Dcontrollability.
Hence,exploringtheinuenceofinterfacialpropertiesuponnal3Dmorphologyofprinteddropletswillhavebroadtheoreticalandtechnologicalimplications.
Herewepresentacontrollablestrategytoprintprecise3Dmicrostructuresvia2Dinterfacemanipulationofdrop-letsonsurfaceswithtunabledynamicdewettingproper-tiesundermagneticguiding.
Forthispurpose,aliquid–solidcompositesurfacewithtunabledynamicdewettability[25,26]andremarkableslipproperty[27,28]isconstructed,wheredropletspossessescontrollablestick-slipbehavioranddefor-mationperformance.
Bytuningthedynamicdewettability,especiallytherecedingangleofprinteddropletsonsuchsmall2015,DOI:10.
1002/smll.
2014033552www.
small-journal.
comcommunications2015Wiley-VCHVerlagGmbH&Co.
KGaA,Weinheimwww.
MaterialsViews.
comanditsedgeisretracinguntilthebaseangleapproachestoaround90°,forminga3Dpillarstructure.
Thecorrespondingshapeparametervariationofdiverse3Dmicrostructuresonunswollen,partial-swollenandsaturated-swollenPDMSwithdifferentrecedingangleswereinvestigated,demonstratingvariousdropletretracingperformancesandcontrollable3Dmorphologies(FiguresS3,S4andMoviesS1–3,SupportingInformation).
Figure2showsscanningelectronmicroscopy(SEM)imagesofcontrolled3Dmicrostructuresandprintedarraysondifferentsurfaces.
OnunswollenPDMSwithlargeCAhysteresisandsmallrecedingangle(θRinedforthestickingofthedropletedge(Figure2a).
Ithasbaseangleofaround30°,andthebasediameterapproximatetothatoftheinitiallyprinteddropletofca.
120m.
Whereas,onthecompositesurfacessmall2015,DOI:10.
1002/smll.
201403355Figure1.
Interfacemanipulationprincipleforprinting3Dmicrostructures.
a)Schematictoachieve3Dmicrostructuresbyprintingdropletsonliquid–solidcompositesurfaceundermagnet;theorientationofthemicrostructurescanbecontrolledbymagneticguiding.
b)ConstructionofthecompositesurfacebyswellingPDMSwithsiliconeoil.
c)Relevanceofrecedingangleandswellingratioofthesurface,demonstratingtunableinterfaceproperties.
d)Illustrationofthedropletdeformationandretractionprocess,whichdependsontherecedingangleofthesurface.
e)SequenceofapillarstructureformedonswollenPDMSsurfacewithrecedingangleofca.
95°.
Scalebar,500m.
Figure2.
Controllabilityof3Dmicrostructuresbyinkjetprintingonsurfaceswithtunabledewettability.
a–e)Multiplemicrostructuresshapedfromhat,cone,andspindleonsurfaceswithincreasedM-inkrecedingangles.
f)HatarrayonunswollenPDMSwithrecedinganglebelow30°.
g)Conearrayonpartial-swollenPDMS(swellingratioofca.
0.
45)withrecedingangleofca.
85°.
h)Spindlearrayonsaturated-swollenPDMS(swellingratioofca.
1.
6)withrecedinganglebeyond90°.
Scalebars,100m;viewangles,60°.
3www.
small-journal.
com2015Wiley-VCHVerlagGmbH&Co.
KGaA,Weinheimwww.
MaterialsViews.
comofpartial-swollenPDMSwithM-inkθRofca.
75°,85°,and95°(swellingratiosofca.
0.
29,0.
45,and1.
43),conicmicro-structureswithdifferentbaseanglesanddecreaseddiametersweregeneratedduetotheedgeretractionofvariantdegrees(Figure2b–d).
Specically,the3DmicrostructurespresentpillaredshapewhenθRisaround90°.
Asexcessiveslidingofthedropedgeoccurredonsaturated-swollenPDMS(swellingratioofca.
1.
6)withnegligibleCAhysteresisandlargeM-inkθRofca.
105°,aspindlemicrostructurewithbaseangleofabout105°wasachieved(Figure2e).
Thebaseandmaximummiddlediameterofthespindleis28mand49m,respectively.
TheSEManalysisshowsthattheinterfacialdewettingpropertiesdirectlyinuencethe3Dmorphologyofthemicrostructures;indeedthebaseanglevaluescorre-spondwellwiththerecedinganglevalues,andthediametersdecreasewiththeenhancingofdropletretraction.
Remark-ably,typical3Dmicrostructurearraysofhat,cone,andspindlewereeasilypreparedbyinkjetprinting(Figure2f–h).
Comparingtotheirregulararrayconsistedofrandom3Dmicrostructuresongeneralsurface(FigureS5,SupportingInformation),thearrayspreparedbyinterfacemanipulationoncompositesurfacespossessmuchmoreuniform3Dmicro-structures,achievingexcellentcontrollabilityandlarge-scalefabricationfor3Dprintingtechnique.
Astherecedinganglesofsurfacescontrolthedropletretractionandthe3Dmorphologies,weillustratethefor-mationoftypical3Dmicrostructuresontheliquid–solidcompositesurfaceswithdifferentinterfacialproperties(Figure3a).
(i)Onsolidsurfacewithextremelysmallrecedingangle(unswollenPDMS,θRinterfacialresist-ance,deformingtohat-likestructure.
(ii)Onliquid–solidcom-positesurfacewithincreasedrecedingangle(partial-swollenPDMSwithdifferentswellingratios),thedropletedgeisretracingcontinuouslybecausethedecreasedinstantaneousCAcanreachtherecedinganglereadily.
Forrecedinganglesrangingin30°–90°,the3Dstructurespossessconiccongura-tionsofserialbaseangles.
Particularly,the3Dpillarstructurecanbeobtainedonsurfacewithrecedinganglearound90°.
(iii)OnsurfacewithrecedingangleapproachingtoitsstaticCA(saturated-swollenPDMS,θR>90°),thedropletedgeiseasiertoslide,thusspindlearchitectureisformed.
M-inkdropletpresentsellipticaldeformationundertheactionofaperpendicularmagneticeld(FigureS6,SupportingInformation).
ThedeformeddropletissubjectedtobothmagneticforceFmandresistanceforceFr.
Onlyifthemagneticforceisnotsufcienttoovercometheresist-anceforceFm≤Fr,stable3Dstructurescanbeachievedwithoutthewholedropletdrawnaway(gravityforceisneg-ligiblefornanoliterdroplets.
[24]Frisalignedwiththeverticaldirection,whosevalueisrelatedtothebasediameterdofthe3DmicrostructureandtherecedingangleθRofthesur-face.
[34]Inthiscase,forconstantmagneticforceFmactingonthejetteddroplets,[35]therelevanceofbasediameterdandrecedingangleθRcanbedescribedas(detailsinSupportingInformation)θ≥24.
4/sindRRegardingthecriticalconditionforavailable3Dmicro-structures,acurvecorrespondingtodc=24.
4/sinθRispre-sented(Figure3b),wheredcsuggeststhecriticalbasediameterofthe3Dmicrostructures.
IntheexperimentedθRrangedfrom0°to90°onthecompositePDMSsurfaces,3Dstructuresshowmorphologiesfromhattoconewithdecreaseddc.
Particularly,high-aspect-ratio3Dmicrostruc-turecanbeachievedatrecedinganglesaround90°.
WhenθRisabove90°,3Dspindlestructureswouldbeobtained.
ForθRapproaching180°,thedropletstendtobedrawnawayduetotheirtinysurfaceresistance;[35]3Dmicrostructureswithlargedccanonlybeobtainedwithmilddropletdeformationandretraction.
InFigure3b,thegreenregionpredictsthefeasiblemorphology(diameterandbaseangle)for3Dmicrostruc-tures,whilethepinkregionrepresentstheparameterspacewherethedropletwillbedrawnaway.
small2015,DOI:10.
1002/smll.
201403355Figure3.
Interfacemanipulationsketchandcapacityforprintingdesirable3Dmicrostructures.
a)Modelsoftypical3Dmicrostructures(i)hat,(ii)cone,and(iii)spindleformedonsurfaceswithdifferentinterfacialproperties.
b)Theoreticalcurveandexperimentalresultspredictingthemorphologyofthe3Dmicrostructures.
Thesolidcurveshowsthecriticalrelevancebetweenthebasediameterof3Dmicrostructuresandtherecedingangleofcorrespondingsurfaces.
Thegreenregionconnesthefeasibleparametersforstable3Dmicrostructures,whilethepinkregionindicatesthatthedropletwoulddeviateorbedrawnaway.
Thesquaresandcrossesrepresenttheexperimentalresultsofavailableandunavailable3Dmicrostructures,respectively.
Thethreeregionsseparatedbydottedlinescorrespondtothethreetypical3Dmicrostructuresina).
4www.
small-journal.
comcommunications2015Wiley-VCHVerlagGmbH&Co.
KGaA,Weinheimwww.
MaterialsViews.
comToverifytheanalysis,wedidstatisticsonthebasedia-metersoftheas-printed3Dmicrostructuresandtherecedinganglesofrelevantsurfaces.
Controlledmicrostructurearrayscanbepreparedwithparameterinthecurve(squaresingreenregion),whilethe3Dmicrostructureswouldeitherdeviatefromtheirdesignedpositionsorbedrawnawayasthemagneticforceislargerthantheresistanceforce(crossesinpinkregion,FigureS9,SupportingInformation).
Thethreeregionsseparatedbydottedlinescorrespondtothethreetypical3DmicrostructuresinFigure3a,whicharedenedashat,cone,andspindle.
Manipulatingthedropletretractionanddeformationbytuningthe2Dinterfacialpropertiesleadstodiverse3Dmicrostructures,andtheexploredrelevancebetween3Dmorphologyanddynamicdewettabilityofsur-facemakesitpossibletopreciselydesignandcontrolarbi-trary3Dmicrostructures.
Interestingly,thisstrategyalsoallowsversatilefabricationofasymmetricmicrostructuresatavarietyoftiltingangles,pavingthewaytomanufactureawidepaletteofcomplex3Dmicrostructures.
Thesetiltedmicrostructuresarecreatedbylaterallymovingandrotatingthemagnet;theorientationandtiltingangleoftheresulted3Dmicrostructurescorrespondtothedirectionanddisplacementsofthemagnet(Figure4aandMovieS4,SupportingInformation).
Thetiltedpillarmicro-structureisaffectedbyboththemagneticforceandtheresist-anceforce.
Onlyiftheresistanceforceisstrongerthanthemagneticforce,thepillardropletisinclinedbyamagneticanisotropictorquewithoutslippingonthesurface.
Asaresult,tilted3Dmicrostructuresofdiversefeaturesandtiltingangleswereobtained(Figure4b–e).
Moreover,synchronized-tiltedpillararrayswithcertainangleswerefacilelyprinted(Figure4fandFigureS10,SupportingInformation).
Ananiso-tropic-tiltedpillarrowpossessedtiltinganglesfrom0°to90°wasachievedbyrotatingthemagnet(Figure4g).
Insummary,manipulationofinterfacialpropertiesadvancesthecapabilityof3Dconstructionbyenablingcon-trolledretractionanddeformationofprinteddroplets.
Wehaveveriedtherelevanceofinterfacialpropertiesandspa-tialmicrostructureparameters,anddemonstratedthatthe3Dmorphologyisdeterministicallydependentonthedynamicdewettabilityofsurface.
Accordingly,precisecontrolonthebaseangle,diameterandheightofthe3Darchitectureswasaccomplishedviamanagingtherecedinganglesofsurfaces,resultinginhat,cone,pillar,andspindlemicrostructures.
Besides,morecomplex3Dmorphologiescanbeattainedbyanisotropicinterfacemanipulationofdroplets(FigureS11,SupportingInformation),forexample,onpatternedsurfacewithdifferentialdewettability.
Wehavealsofabricatedpat-ternedandasymmetric3Dmicrostructurearraysbyinkjetprintingundermagneticguiding,whichenablesversatileandlarge-scale3Dconstruction.
Asageneralapproach,numeroustunableinterfacescouldbeadoptedtosatisfythecontrolofvariousinks(water,oilorsolvents).
Moreover,othertriggers,suchaselectriceld,capillaryforce,andthermostimuli,canguidethedeformationofdroplets,offeringawiderangeoftoolstofabricatediverse3Dmicrostructures.
Furthermore,3Dmicrostructureswithdesiredmorphologiesandelabo-rateoptical/electricalpropertiescouldbeachievedbydevel-opingfunctionalmaterialsasink,providingthisapproachapromisingfutureforon-demandandhighlyprecise3Dmanufacturing.
ExperimentalSectionM-Ink:Magneticink(M-ink)inthisworkwasobtainedbymixingferrouid(BeijingShenranTech.
Co.
,Ltd.
,MFW),aqueouspolyvinylalcohol(PVA1788,Aladdin-reagent)solutionof10wt%,andethyleneglycol(EG)withproportionof1:0.
4:0.
6.
Itcontained17wt%Fe3O4nanoparticleswithdiameterbelow10nm.
Thesurfacetensionandsaturationmagnetizationwere52.
37±0.
026mNm1andca.
100±10Gs,respectively.
CompositeSurfaces:Liquid–solidcompositesurfaceswithtunabledynamicdewettabilitywerepreparedfromPDMSelas-tomerkits(DowCorningSylgard184,30:1precursorandcuringagent)swollenbysiliconeoil(Shin-EtsuChemicalIndustryCo.
,Ltd.
,Japan,KF-5,5cs).
PDMSwerespin-coatedoncleanedglassslides,annealedat80°Cfor1handthenimmersedinsiliconeoilforpredeterminedperiods.
Afterwipingexcessoilonthesurface,theswollenPDMSwithdifferentswellingratioswereusedastun-ablecompositesurfaces.
Inthiswork,swellingratiowasdenedastheratioofabsorbedsiliconeoilandPDMS,andwasmeasuredbyweighingPDMSatdifferentswellingtime.
ThetunabledynamicdewettingpropertiesofswollenPMDSwerecharacterizedbyacontactangle(CA)measurementdevice(OCA20,DataPhysics,Germany)at23°C.
Advancingangleandrecedingangle(θAandθR)weremeasuredas3Lliquidwasaddedandwithdrawndynamicallyfromasurface-bounddroplet.
Contactanglehysteresis(Δθ)wasdenedasthedifferenceofadvancingsmall2015,DOI:10.
1002/smll.
201403355Figure4.
Versatileprintingofasymmetric3Dmicrostructures.
a)Schematicillustrationoftheforcesituationforatiltedpillarunderdeectingmagneticeld.
SEMimagesoftiltedb)hat;c)cone;d)pillar;ande)spindlewithdifferenttiltinganglesandorientations.
Scalebars,50m.
f)Printeddeectivepillararraywithanaccordanttiltingangleof30°.
Insertistheopticalmicrographofapillarwithviewangleof90°.
g)Ananisotropic-tiltedpillarrowbyrotatingthemagneticeldinplane.
Scalebars,100m.
AllSEMviewangles,60°.
5www.
small-journal.
com2015Wiley-VCHVerlagGmbH&Co.
KGaA,Weinheimwww.
MaterialsViews.
comandrecedingangle.
Slidingangle(α)wasrecordedbymeasuringthetiltingofsubstrateforthemovementofa5Ldropletonit.
Eachangledatawasanaverageofatleastveindependentmeas-urementsondifferentpositionsofthesamesample.
MoredetaileddataareshowninFigureS1,SupportingInformation.
PrintingDroplets:WeprintedtheM-inkdropletsontotheas-preparedcompositesurfacebyajetprintingsystemusingthepiezoelectricvalvewithdispensingvolumeof2nL(PicoDotEFD,Nordson,USA).
AcubicNdFeBmagnetwasplacedverticallyuponthedropletswithouttouchingthem,inducingthedroplettodeformandretraceonthesurfacetogeneratefreestanding3Dmicrostruc-tures.
Thepositionandmovementofdropletsandarrayswereaccuratelycontrolledby4-axissteppingmotorswithpositioningaccuracyof1m(JR2200NDesktopRobot,Nordson,USA).
MagnetandMagneticField:AcubicNdFeBpermanentmagnetwithsizeof5*2.
5*5cm3wasused.
Magneticeldintensity(H)wasmeasuredasafunctionofthedistancefromthesurfaceofthemagnetbyaGaussmeter(DigitalMeasurementSystemSG-3M,China).
Verticalmagneticeldgradient(gradH)wasobtainedfromthederivationofthemeasuredmagneticeldintensity.
DetaileddataareshowninFigureS8,SupportingInformation.
Characterization:Themorphologiesofthe3Dmicrostructureswerecharacterizedbyaeld-emissionscanningelectronmicroscope(SEM,JEOL,JSM-7500F,Japan).
AlltheSEMphotographsweretakenataviewangleof60°unlessstated.
ThedropletdeformationprocesswasacquiredbyaCCD-camerawithcapturespeedof25frames1andresolutionof768*576pixel2equippedofawhite-light-emittinglampandazoominglens(SCA40,Dataphysics,Germany).
SupportingInformationSupportingInformationisavailablefromtheWileyOnlineLibraryorfromtheauthor.
AcknowledgementsTheauthorsthankthenancialsupportbytheNationalNatureScienceFoundation(GrantNos.
51173190and21121001),the973Program(Nos.
2013CB933004,2011CB932303,and2011CB808400),andthe"StrategicPriorityResearchProgram"oftheChineseAcademyofSciences(GrantNo.
XDA09020000).
[1]B.
Derby,Science2012,338,921.
[2]B.
Y.
Ahn,E.
B.
Duoss,M.
J.
Motala,X.
Guo,S.
I.
Park,Y.
Xiong,J.
Yoon,R.
G.
Nuzzo,J.
A.
Rogers,J.
A.
Lewis,Science2009,323,1590.
[3]R.
Galland,P.
Leduc,C.
Guérin,D.
Peyrade,L.
Blanchoin,M.
Théry,Nat.
Mater.
2013,12,416.
[4]D.
B.
Kolesky,R.
L.
Truby,A.
S.
Gladman,T.
A.
Busbee,K.
A.
Homan,J.
A.
Lewis,Adv.
Mater.
2014,26,3124.
[5]K.
Li,J.
Ju,Z.
Xue,J.
Ma,L.
Feng,S.
Gao,L.
Jiang,Nat.
Commun.
2013,4,2276.
[6]K.
Aoki,H.
T.
Miyazaki,H.
Hirayama,K.
Inoshita,T.
Baba,K.
Sakoda,N.
Shinya,Y.
Aoyagi,Nat.
Mater.
2003,2,117.
[7]M.
Boncheva,S.
A.
Andreev,L.
Mahadevan,A.
Winkleman,D.
R.
Reichman,M.
G.
Prentiss,S.
Whitesides,G.
M.
Whitesides,Proc.
NatlAcad.
Sci.
U.
S.
A.
2005,102,3924.
[8]M.
Jamal,A.
M.
Zarafshar,D.
H.
Gracias,Nat.
Commun.
2011,2,527.
[9]P.
Galliker,J.
Schneider,H.
Eghlidi,S.
Kress,V.
Sandoghdar,D.
Poulikakos,Nat.
Commun.
2012,3,890.
[10]G.
Villar,A.
D.
Graham,H.
Bayley,Science2013,340,48.
[11]G.
M.
Gratson,M.
J.
Xu,J.
A.
Lewis,Nature2004,428,386.
[12]K.
Sun,T.
S.
Wei,B.
Y.
Ahn,J.
Y.
Seo,S.
J.
Dillon,J.
A.
Lewis,Adv.
Mater.
2013,25,4539.
[13]C.
Ladd,J.
H.
So,J.
Muth,M.
D.
Dickey,Adv.
Mater.
2013,25,4953.
[14]J.
T.
Kim,S.
K.
Seol,J.
Pyo,J.
S.
Lee,J.
H.
Je,G.
Margaritondo,Adv.
Mater.
2011,23,1968.
[15]Y.
Y.
Noh,N.
Zhao,M.
Caironi,H.
Sirringhause,Nat.
Nanotechnol.
2007,2,784.
[16]M.
Caironi,E.
Gili,T.
Sakanoue,X.
Cheng,H.
Sirringhaus,ACSNano2010,4,1451.
[17]T.
Wauer,H.
Gerlach,S.
Mantri,J.
Hill,H.
Bayley,K.
TanujSapra,ACSNano2014,8,771.
[18]H.
Mertaniemi,R.
Forchheimer,O.
Ikkala,R.
H.
A.
Ras,Adv.
Mater.
2012,24,5738.
[19]P.
Aussillous,D.
Quéré,Nature2001,411,924.
[20]K.
Piroird,B.
D.
Texier,C.
Clanet,D.
Quéré,Phys.
Fluids2013,25,032108.
[21]J.
J.
Balowski,Y.
Wang,N.
L.
Allbritton,Adv.
Mater.
2013,25,4107.
[22]P.
Ferraro,S.
Coppola,S.
Grilli,M.
Paturzo,V.
Vespini,Nat.
Nano-technol.
2010,5,429.
[23]S.
Grilli,S.
Coppola,V.
Vespini,F.
Merola,A.
Finizio,P.
Ferraro,Proc.
NatlAcad.
Sci.
USA2011,108,15106.
[24]J.
V.
I.
Timonen,M.
Latikka,L.
Leibler,R.
H.
A.
Ras,O.
Ikkala,Science2013,341,253.
[25]T.
-S.
Wong,S.
H.
Kang,S.
K.
Y.
Tang,E.
J.
SmythevB.
D.
Hatton,A.
Grinthal,J.
Aizenberg,Nature2011,477,443.
[26]X.
Yao,Y.
Hu,A.
Grinthal,T.
-S.
Wong,L.
Mahadevan,J.
Aizenberg,Nat.
Mater.
2013,12,529.
[27]N.
Vogel,R.
A.
Belisle,B.
Hatton,T.
S.
Wong,J.
Aizenberg,Nat.
Commun.
2013,4,2176.
[28]A.
Lafuma,D.
Quéré,Europhys.
Lett.
2011,96,56001.
[29]J.
Belardi,N.
Schorr,O.
Prucker,J.
Rühe,Adv.
Funct.
Mater.
2011,21,3314.
[30]D.
Wu,S.
-ZWu,S.
Zhao,J.
Yao,J.
-N.
Wang,Q.
-D.
Chen,H.
-B.
Sun,Small2013,9,760.
[31]E.
P.
Gnanamanickam,J.
PSullivan,J.
Micromech.
Microeng2012,22,125015.
[32]J.
Digabel,N.
Biais,J.
Fresnais,J.
-F.
Berret,P.
Hersen,B.
Ladoux,LabChip2011,11,2630.
[33]Y.
Pennec,J.
O.
Vasseur,B.
Djafari-Rouhani,L.
Dobrzynski,P.
A.
Deymierb,Surf.
Sci.
Rep.
2010,65,229.
[34]N.
Havard,F.
Risso,Ph.
Tordjeman,Phys.
Rev.
E2013,88,013014.
[35]J.
V.
I.
Timonen,M.
Latikka,O.
Ikkala,R.
H.
A.
Ras,Nat.
Commun.
2013,4,2398.
Received:November12,2014Publishedonline:small2015,DOI:10.
1002/smll.
201403355

【IT狗】在线ping,在线tcping,路由追踪

IT狗为用户提供 在线ping、在线tcping、在线路由追踪、域名被墙检测、域名被污染检测 等实用工具。【工具地址】https://www.itdog.cn/【工具特色】1、目前同类网站中,在线ping 仅支持1次或少量次数的测试,无法客观的展现目标服务器一段时间的网络状况,IT狗Ping工具可持续的进行一段时间的ping测试,并生成更为直观的网络质量柱状图,让用户更容易掌握服务器在各地区、各线...

HostYun全场9折,韩国VPS月付13.5元起,日本东京IIJ线路月付22.5元起

HostYun是一家成立于2008年的VPS主机品牌,原主机分享组织(hostshare.cn),商家以提供低端廉价VPS产品而广为人知,是小成本投入学习练手首选,主要提供基于XEN和KVM架构VPS主机,数据中心包括中国香港、日本、德国、韩国和美国的多个地区,大部分机房为国内直连或者CN2等优质线路。本月商家全场9折优惠码仍然有效,以KVM架构产品为例,优惠后韩国VPS月付13.5元起,日本东京...

RAKsmart裸机云/云服务器/VPS全场7折,独立服务器限量秒杀$30/月起

适逢中国农历新年,RAKsmart也发布了2月促销活动,裸机云、云服务器、VPS主机全场7折优惠,新用户注册送10美元,独立服务器每天限量秒杀最低30.62美元/月起,美国洛杉矶/圣何塞、日本、香港站群服务器大量补货,1-10Gbps大带宽、高IO等特色服务器抄底价格,机器可选大陆优化、国际BGP、精品网及CN2等线路,感兴趣的朋友可以持续关注下。裸机云新品7折,秒杀产品5台/天优惠码:Bare-...

www.hhh.com为你推荐
安徽汽车网合肥汽车站网上售票云计算什么叫做“云计算”?留学生认证留学生回国认证,是否要求需要在国外待满三年,还是只需要完成所需的三年课程?商标注册流程及费用注册商标的程序及费用?地陷裂口山崩地裂的意思www.jjwxc.net在哪个网站看小说?百度关键词分析百度竞价关键词分析需要从哪些数据入手?www.522av.com现在怎样在手机上看AVwww.228gg.comwww.a8tb.com这个网站该如何改善www.5any.com重庆哪里有不是全日制的大学?
域名转让网 已备案未注册域名 合租服务器 嘉洲服务器 中国电信测速112 135邮箱 ftp免费空间 ca187 阿里云官方网站 国外在线代理服务器 lamp架构 cdn网站加速 电信主机托管 脚本大全 restart so域名 傲盾代理 vim rewrite规则 装修瓦工培训 更多