SimulationAnalysisandOptimalDesignofBackClampDevicePingYU,Si-JieKANGa*,Yan-JiaoLI,En-ChaoJINMechanicalScienceandEngineeringInstituteofJilinUniversity,Changchun,ChinaaKangsijie@163.
com*CorrespondingauthorKeywords:backclampdevice,dynamicanalysis,orthogonaloptimizingdesign.
Abstract.
Backclampdeviceisthekeyequipmentofthetopdrive,whichisrequiredoperationreliableandcompactstructure.
Thispaperintroducestheworkingprocessandworkingprincipleofthebackclamp,Accordingtotheoperationschemeandperformanceparametersofthebackclamp,Dynamicssimulationanalysiswascarriedout.
Obtainthecontactforcebetweenthejawanddrillpipe,aswellasforceandotherperformanceparametersofclampteeth.
Thebasicideaoforthogonaloptimizationmethodistooptimizetheparametersoftoothprofile,toothheightandtoothpitchofthejaw,andtheparameteroptimizationcombinationisgained.
Finally,UsingtheANSYSWorkbenchforthefiniteelementstaticsanalysisofthebackclamp,theresultsshowthatthedesignandfunctionalrequirementsoftheapplicationaremet.
DesignandExistingProblemsofBackClampDeviceDuetotheoverallfloatingofthebackclampingdeviceintheprocessofclampingandloosening,thewholefloatishighlyrequired.
Thereforeneedtoensurethatthefloatingprecisionofthebackclampfloatingmechanism,SchematicdiagramofthebackclampisshownintheFig.
1~Fig.
2,Theconfigurationofthespringhasaveryimportantroleinthebackclampingdevice,Oneistobeabletolimittheposition,andtheotheristoeasetheinertiaofthehydrauliccylindercausedbytherapidmovement.
Theoutershellbodyoftheclampingmechanismadoptsthesplitstructureoftheleftclampbodyandtherightclampbody.
Thesplittypestructuredesignisconvenienttodisassembleandreducetheauxiliarytimetomaintenanceoftheequipment,andimproveworkefficiency.
Fig.
1BackclampdeviceFig.
2BackclampfloatingmechanismThewholestructureoftheexistingbackclampingmechanismiscompactandcomplete,andtheoperationisflexible,Safeandreliable,Buttheactualoperationoftheprocessalsofoundthatthenumberofdiscardedclamptoothanddrillpipeisrelativelylarge,Themainreasonforthefailureisthewearorfractureofthejaw,Thejawisapartofthebackclampdevice,whichisdirectlyunderthepressureandthefrictionforce.
Thequalityofthejawisdirectlyrelatedtotheworkingefficiencyandtheservicelifeofthedrillingtools.
Fig.
3FigureofdrillpipefailureFig.
4WearmapofjawDynamicSimulationAnalysisoftheBackClampingMechanismSetsTheModelSimulationParameters.
Settingthecontactforceparametersbetweenthejawandthedrillpipejoint:1.
Normalcontactforce:(1)Where:Generalizednormalcontactforce,N;stiffness):Collidingstiffnessonthesideofthecomponent;penetrationdepthPenetrationstiffnessinthecontactpoint,mm;(forceexponent):Forceindex,whichisalsothecontributionfactorofthestiffnessterm.
Force-Displacementcurveshapecanbedetermined.
:Maximumallowablepenetrationdepth,mm;damping)Maximumlossfactor,;2.
Tangentialforce-frictionThecontacttangentialforceistheproductofthefrictioncoefficientandthenormalforce,TheKunlunfrictionmodelisusedtodealwiththecontacttangentialforceinADAMS,Thefrictioncoefficientofcontactforceisinaccordancewiththerelativeslidingvelocitybetweenthecontactobjects.
Choiceofdynamicfrictioncoefficientorstaticfrictioncoefficient,Accordingtotheactualworkingconditionofthedrillpipejointandthejaw,Setting=0.
35,=0.
30.
SimulationDataOutputandAnalysis.
Inordertobeabletosimulationthehydrauliccylinderthrustintofoursymmetricaldistributionofthejaw,andeffectiveclampingofthedrillpipe,Setthesimulationtimeto110seconds,Setthenumberofsimulationstepsforthe11000step,SetthemaximumnumberofiterationsintheADAMS/solverto6,Theintegralpolynomialorderissetto2,Thiscaneffectivelyimprovethespeedandaccuracyofthecontactimpactforce.
ForceAnalysisoftheJaws.
ThecontactpressureinformationofthefourteethontheleftjawisshowninFig.
5andFig.
6;Fig.
5ContactpressureofthejawsFig.
6ContactpressureFromFig.
5wecanseethatthereisasequenceofcontactbetweenthefourteethontheleftjawandthesurfaceofdrillpipe,whatisinaccordancewiththeactual,Thecontactforceofeachtoothreachedtheirpeakvalueintheintervalof40secondsto50seconds,FNL11=125.
31KN,FNL12=228.
48KN,FNL13=264.
56KN.
Accordingtothecontactpressurestatediagram,Contactpressureoftheteethatthecenterofthehorizontallineisthelargest,whichclosestfromthehorizontallineistheleast.
Thishelpsincreasetherangeoftheclampingandbasicallymeetthedesignrequirements.
EatIntoTheDepthAnalysisOfTheJaws.
EatintothedepthofthedrillpipejointthatbitebyjawsintheprocessofMake-upisshownintheFig.
7,Combinedwiththesimulationcurvetoanalyzeeatintothedepth,Wecanseethebitedepthofeachteethgraduallyincreasedfromzerotomaximumvalues.
Andthenenterthestageofequilibriumandstability.
Hydraulicthrusttomaximumvaluein40secondsto50seconds,Bitedepthofthejawisgraduallyincreasedtothemaximum,Fig.
8.
Schematicdiagramofthejawsbitedepth,FollowingresultscanbeobtainedwiththecombinationofFig.
7andFig.
8,δL11=-0.
2541mm,δL12=-0.
3792mm,δL13=-0.
4182mm,δL14=-0.
1395mm.
Bitedepthvariationofthejawcanbeusedasfoundationofdrillpipejointsplasticdeformation.
Provideareferenceforjawsectionsizeoptimization.
Fig.
7EatintothedepthFig.
8SchematicdiagramofeatintothedepthKeyParametersOptimizationDesignoftheJawThroughtheanalysisofthejaws,weobtainedtherelationshipbetweenthekeyparametersandtheinfluenceonworkingconditionofthedevicewhenparametersvariation,abackclampdevicewithgoodperformanceshouldensurethatthedrillpipeandthejawmusthaveenoughfrictionco-efficient.
Toensurethattherewillbenoslipphenomenon,then,asfaraspossibletoensurethatthedamagetotheouterwallofthedrillpipeissmall,theorthogonalmethodisusedtooptimizethemainparametersofthejaw.
DesignVariable.
Inthispaper,thetoothheight,pitchandthreadangleofthethreecrosssectionparametersareoptimized.
ConstraintCondition.
Accordingtotheactualworkingbackgroundanddesignexperience,thelimitingconditions:threadangle80°~120°,spaceofthetooth2mm~8mm,toothheight~.
OptimizationIndexes.
Thepurposeofthisoptimizationistoselecttheoptimalvalueofeachparameterbycontrollingthedepthofbiteandtheequivalentfrictioncoefficient,Therearetwoaspectsoftheoptimizationindexes,Thebitedepth:,equivalentfrictioncoefficientThecombinationcanbeclassifiedtomulti-objectiveprogrammingproblem,Twoobjectivefunctionsareasfollows:(2)Withinacertainrange,thesmallervalueofthebitedepthfunction(2)is,thebettertheresultsare.
(3)Withinacertainrange,thebiggervalueoftheequivalentfrictioncoefficientfunction(3)is,thebettertheresultsare.
TheOptimizationDesign.
Optimizationofthemainparametersbyorthogonalmethod,comprehensiveconsiderationoftheoreticalanalysis,manufacturingrequirementsanddesignexperience,thedesignvariablesofthreadanglewereselectedas85,95,105,110,120,thetoothheightwereselectedas1.
5,2,2.
5,3,4,andvalueofthepitchwereselectedas3,4,5,6,8,selectstandardorthogonaltableL25(56),tablelinenumberofthetableis25,25testscanbecarriedout,tablecolumnnumberis6,upto6factorscanbeplaced,Thisstudydoesnotconsiderinteraction,Atotalofthreefactorsandfivelevelareinvolved,fromthestandardorthogonaltableL25(56),wecanseeoccupythreecolumnsandidlethreecolumns,ForintuitiveconveniencecanberecordedasL25(53),thelevelfactortableisshownbelow.
Tab.
1FactorlevelLevelFactorsAthreadangle((°)BToothheighth(mm)CPitchP(mm)1851.
532952431052.
55411036512048Aftercalculatingtheobjectivefunction,thestatisticaldataisneeded,inthispaper,wechoosetherangeanalysismethodtoprocessthedata,theresultanalysistableisshowinTab.
2,amongthem,KsisthesumofthefunctionresultsthatthelevelnumberineachcolumnoftheTab.
2forthes.
Inthispaper,s=1,2,3,4,5;ksisthearithmeticmeanvalueofthefunctionresultsthatthelevelnumberineachcolumnoftheTab.
2forthes.
ks=Ks/n,nisthenumberoflevels,n=5Ristherange,ineachcolumn,R=maxks-minks.
Tab.
2ResultanalysisEatintothedepthAthreadangleBtoothheighthCpitchPK13.
64152.
054.
8408K21.
5892.
66764.
9959K34.
13233.
58912.
9184K44.
72274.
96333.
2971K53.
96624.
78171.
9995k10.
72830.
410.
96816k20.
31780.
533520.
99918k30.
826460.
717820.
58368k40.
944540.
992660.
65942k50.
793240.
956340.
3999R0.
626740.
582660.
59928orderACBAthreadangleBtoothheighthCpitchPK14.
08043.
08725.
5713K24.
96263.
53454.
347K32.
50714.
46063.
7545K44.
87234.
32084.
1134K54.
41265.
59093.
1482k10.
816080.
617441.
11426k20.
992520.
70690.
8694k30.
501420.
892120.
7509k40.
974460.
864160.
82268k50.
882521.
118180.
62964R0.
44910.
500740.
48462orderBCAOptimizationResults.
Howtoco-ordinatevariousfactorswithlevelisthebest,thisoptimizationhastwoobjectivefunctions.
Forthebitedepth,thethreadangleisthemaininfluencingfactors,level110isthemostpreferred,Theoptimalcombinationparameter;andfortheequivalentfrictioncoefficient,themaininfluencingfactorsarethetoothheight,level2isthemostpreferred,Theoptimalcombinationparameter:,Accordingtotherequirementsoftheactualworkandtheoreticalanalysis,thedesignparametersofthefinaljawthat,sthebestoption.
FiniteElementAnalysisoftheJawToagreatextent,Strainandstressmagnitudeofthebackclampdevicethatunderstaticload,whatisaffectsthesafetyandreliabilityoftopdrivesystem,Therefore,itisnecessarytocheckthestrengthofthebackclamp,Themaximumstressandthetotaldeformationwereobserved,checkwhetherthedeviceisreliable.
AddModelMaterialProperties.
Thebacktongsmaterialselectionfor20CrMnTi,MaterialpropertiesareshowninTab.
3:Tab.
3Materialpropertiesof20CrMnTiAllowablestressMPaElasticmodulusEGPaDensityKg/m3Poisson'sratioYieldlimitMPa3102077.
81030.
25835DivideandRefinetheGrid.
Athreedimensionalmodelofthejawwasbuiltbythe3DsoftwareofInventor,exportthismodelintoANSYSworkbench,Addthematerialpropertiesofjawas20CrMnTi,andthemeshdivisionofjawisshowninFig.
9.
Fig.
9meshingofclampteethAddedloadanddidtheFEM.
Combinedwiththespecificsituationofthemodel,reasonableboundaryconditionsareaddedtoit,firstofall,toaddafixedconstrainttothebottomsurfaceoftheclamp,addtheloadtothefourteethofjaw,then,addtheappropriatesizeofcontactpressureandshearstressineachtooth,theloadsizeisprovidedbythesimulationresults.
Staticanalysisofthejaw,thecorrespondingstressdistributionanddeformationresultsareobtained,thetotaldeformationisshowninFig.
10,andtheequivalentstressisshowninFig.
11.
Fig.
10ContouroftotaldeformationFig.
11StresscontourofclampteethFromFig.
10andFig.
11wecanseethefollowingconclusions:Tab.
4FiniteelementanalysisresultscategoryminimumvalueMaximumvaluedisplacement00.
00845mmstress0.
31MPa411MPaThemaximumstressofjawis411Mpa,andtheyieldstressofjawis835Mpa,themaximumdisplacementofjawwas0.
00845mm,andthedeformationisrelativelysmall,sowecanconcludethatthestressanddeformationofjawaremeettherequirementsoftheuse.
ConclusionsThetheoreticalanalysisandoptimizationdesignofthebackclampdevicearecarriedout,weselectedthesectionparametersofthejaw,threadangle,thetoothheight,pitch,thisschemeensuresthattheequipmentworkprocessreliable,reducesthewearofjawsandthedamagetothedrill,prolongtheservicelifeoftheequipmentaswell.
Staticsanalysisofthejaws,themaximumstressanddeformationshowsthatjawsstrengthmeetstheapplicationrequirements;clampingprocessofthedeviceisstableandreliable.
AcknowledgementThisworkispartiallysupportedbygrantSinoProbe-09-05oftheChineseNationalScienceFoundation,andmysinceregratitudegoestoit.
References[1]ZhangFeiyu.
DynamicsimulationanalysisofMPR-70Atypefullhydraulicautomaticdrainagepipe[D].
JilinUniversity,2013.
[2]KvernelandH.
2009.
ElectricalCranesandWinchesforImprovedSafetyandBetterOperationalPerformanceforuseinExtremeWeatherConditions[C].
SocietyofPetroleumEngineers,1(5):137-149.
[3]SunMingxing.
Finiteelementanalysisandevaluationofbearingcapacityofdrillingderrick[D].
LanzhouUniversityofTechnology,2010.
[4]LatorreR.
Shiphulldragreductionusingbottomairinjection[J].
OceanEngineering,1997,24(2):161-175.
[5]KeWang,HuaiChen,WeiWangetal.
1997.
ModalAnalysisofOilfieldDerrickStructure[C].
Proceedingsofthe199715thInternationalModalAnalysisConference,1871-1877.
[6]XiaoWensheng.
2004.
DynamicanalysisoftopdrivedrillingdeviceandResearchonVirtualPrototypingTechnology[D].
HuazhongUniversityofScienceandTechnology.
[7]YuanQinghong.
2004.
TDSResearchandpracticeofvirtualprototypesystemofdrillingrig[D].
HuazhongUniversityofScienceandTechnology.
[8]ShuanluLu,YaorongFeng,FaqianLuo,ChangyiQin,XinhuWang.
FailureanslysisofIEUDrillPipeWashout.
InternationalJournalofFatigue[J].
2005,(27):1360-1365.
[8]DickinsonIIIBWO,DickinsonRW,NordlundR.
Multiplelateralhydraulicdrillingapparatusandmethod:U.
S.
Patent6,206,112[P].
2001-3-27.
[9]KeWang,HuaiChen,WeiWangetal.
1997.
ModalAnalysisofOilfieldDerrickStructure[C].
Proceedingsofthe199715thInternationalModalAnalysisConference,1871-1877.
[10]DickinsonIIIBWO,DickinsonRW,NordlundR.
Multiplelateralhydraulicdrillingapparatusandmethod:U.
S.
Patent6,206,112[P].
2001-3-27.
[11]JanPinka,JozefLumtzer,JamilBadran.
1996.
TDS-TopDriveSystem,newdrillingtechnology.
ActaMontanisticaSlovaca,(4):89-295.
[12]VittorioGusella,OstilioSpadaccini,AndreaVignoli.
1996.
In-ServiceDynamicBehaviorofaDrillingDerrickonaJacketPlatform.
InternationalJournalofOffshoreandPolarEngineering,6(7):184-194.
CloudCone 商家在以前的篇幅中也有多次介绍到,这个商家也蛮有意思的。以前一直只有洛杉矶MC机房,而且在功能上和Linode、DO、Vultr一样可以随时删除采用按时计费模式。但是,他们没有学到人家的精华部分,要这样的小时计费,一定要机房多才有优势,否则压根没有多大用途。这不最近CloudCone商家有点小变化,有新人洛杉矶优化线路,具体是什么优化的等会我测试看看线路。内存CPU硬盘流量价格...
已经有一段时间没有分享阿里云服务商的促销活动,主要原因在于他们以前的促销都仅限新用户,而且我们大部分人都已经有过账户基本上促销活动和我们无缘。即便老用户可选新产品购买,也是比较配置较高的,所以就懒得分享。这不看到有阿里云金秋活动,有不错的促销活动可以允许产品新购。即便我们是老用户,但是比如你没有购买过他们轻量服务器,也是可以享受优惠活动的。这次轻量服务器在金秋活动中力度折扣比较大,2G5M配置年付...
台湾云服务器去哪里买?国内有没有哪里的台湾云服务器这块做的比较好的?有很多用户想用台湾云服务器,那么判断哪家台湾云服务器好,不是按照最便宜或最贵的选择,而是根据您的实际使用目的选择服务器,只有最适合您的才是最好的。总体而言,台湾云服务器的稳定性确实要好于大陆。今天,云服务器网(yuntue.com)小编来介绍一下台湾云服务器哪里买和一年需要多少钱!一、UCloud台湾云服务器UCloud上市云商,...
xyq.cbg.163.com为你推荐
太空国家世界上有哪些国家有能力探索太空蓝色骨头手机谁有崔健执导的电影《蓝色的骨头》。mathplayerjavascript 如何判断document.body.innerHTML是否为空18comic.fun有什么好玩的网站地陷裂口地陷前期会有什么征兆吗?陈嘉垣马德钟狼吻案事件是怎么回事haole16.com玛丽外宿中16全集在线观看 玛丽外宿中16qvod快播高清下载javbibinobibi的中文意思是?partnersonline国内有哪些知名的ACCA培训机构广告法有那些广告法?还有广告那些广告词?
提供香港vps enzu 便宜服务器 oneasiahost 国外bt 68.168.16.150 国外空间服务商 宕机监控 云鼎网络 国外免费全能空间 已备案删除域名 刀片式服务器 卡巴斯基试用版 联通网站 四川电信商城 移动服务器托管 国外在线代理服务器 中国域名 电信宽带测速软件 江苏徐州移动 更多