SimulationAnalysisandOptimalDesignofBackClampDevicePingYU,Si-JieKANGa*,Yan-JiaoLI,En-ChaoJINMechanicalScienceandEngineeringInstituteofJilinUniversity,Changchun,ChinaaKangsijie@163.
com*CorrespondingauthorKeywords:backclampdevice,dynamicanalysis,orthogonaloptimizingdesign.
Abstract.
Backclampdeviceisthekeyequipmentofthetopdrive,whichisrequiredoperationreliableandcompactstructure.
Thispaperintroducestheworkingprocessandworkingprincipleofthebackclamp,Accordingtotheoperationschemeandperformanceparametersofthebackclamp,Dynamicssimulationanalysiswascarriedout.
Obtainthecontactforcebetweenthejawanddrillpipe,aswellasforceandotherperformanceparametersofclampteeth.
Thebasicideaoforthogonaloptimizationmethodistooptimizetheparametersoftoothprofile,toothheightandtoothpitchofthejaw,andtheparameteroptimizationcombinationisgained.
Finally,UsingtheANSYSWorkbenchforthefiniteelementstaticsanalysisofthebackclamp,theresultsshowthatthedesignandfunctionalrequirementsoftheapplicationaremet.
DesignandExistingProblemsofBackClampDeviceDuetotheoverallfloatingofthebackclampingdeviceintheprocessofclampingandloosening,thewholefloatishighlyrequired.
Thereforeneedtoensurethatthefloatingprecisionofthebackclampfloatingmechanism,SchematicdiagramofthebackclampisshownintheFig.
1~Fig.
2,Theconfigurationofthespringhasaveryimportantroleinthebackclampingdevice,Oneistobeabletolimittheposition,andtheotheristoeasetheinertiaofthehydrauliccylindercausedbytherapidmovement.
Theoutershellbodyoftheclampingmechanismadoptsthesplitstructureoftheleftclampbodyandtherightclampbody.
Thesplittypestructuredesignisconvenienttodisassembleandreducetheauxiliarytimetomaintenanceoftheequipment,andimproveworkefficiency.
Fig.
1BackclampdeviceFig.
2BackclampfloatingmechanismThewholestructureoftheexistingbackclampingmechanismiscompactandcomplete,andtheoperationisflexible,Safeandreliable,Buttheactualoperationoftheprocessalsofoundthatthenumberofdiscardedclamptoothanddrillpipeisrelativelylarge,Themainreasonforthefailureisthewearorfractureofthejaw,Thejawisapartofthebackclampdevice,whichisdirectlyunderthepressureandthefrictionforce.
Thequalityofthejawisdirectlyrelatedtotheworkingefficiencyandtheservicelifeofthedrillingtools.
Fig.
3FigureofdrillpipefailureFig.
4WearmapofjawDynamicSimulationAnalysisoftheBackClampingMechanismSetsTheModelSimulationParameters.
Settingthecontactforceparametersbetweenthejawandthedrillpipejoint:1.
Normalcontactforce:(1)Where:Generalizednormalcontactforce,N;stiffness):Collidingstiffnessonthesideofthecomponent;penetrationdepthPenetrationstiffnessinthecontactpoint,mm;(forceexponent):Forceindex,whichisalsothecontributionfactorofthestiffnessterm.
Force-Displacementcurveshapecanbedetermined.
:Maximumallowablepenetrationdepth,mm;damping)Maximumlossfactor,;2.
Tangentialforce-frictionThecontacttangentialforceistheproductofthefrictioncoefficientandthenormalforce,TheKunlunfrictionmodelisusedtodealwiththecontacttangentialforceinADAMS,Thefrictioncoefficientofcontactforceisinaccordancewiththerelativeslidingvelocitybetweenthecontactobjects.
Choiceofdynamicfrictioncoefficientorstaticfrictioncoefficient,Accordingtotheactualworkingconditionofthedrillpipejointandthejaw,Setting=0.
35,=0.
30.
SimulationDataOutputandAnalysis.
Inordertobeabletosimulationthehydrauliccylinderthrustintofoursymmetricaldistributionofthejaw,andeffectiveclampingofthedrillpipe,Setthesimulationtimeto110seconds,Setthenumberofsimulationstepsforthe11000step,SetthemaximumnumberofiterationsintheADAMS/solverto6,Theintegralpolynomialorderissetto2,Thiscaneffectivelyimprovethespeedandaccuracyofthecontactimpactforce.
ForceAnalysisoftheJaws.
ThecontactpressureinformationofthefourteethontheleftjawisshowninFig.
5andFig.
6;Fig.
5ContactpressureofthejawsFig.
6ContactpressureFromFig.
5wecanseethatthereisasequenceofcontactbetweenthefourteethontheleftjawandthesurfaceofdrillpipe,whatisinaccordancewiththeactual,Thecontactforceofeachtoothreachedtheirpeakvalueintheintervalof40secondsto50seconds,FNL11=125.
31KN,FNL12=228.
48KN,FNL13=264.
56KN.
Accordingtothecontactpressurestatediagram,Contactpressureoftheteethatthecenterofthehorizontallineisthelargest,whichclosestfromthehorizontallineistheleast.
Thishelpsincreasetherangeoftheclampingandbasicallymeetthedesignrequirements.
EatIntoTheDepthAnalysisOfTheJaws.
EatintothedepthofthedrillpipejointthatbitebyjawsintheprocessofMake-upisshownintheFig.
7,Combinedwiththesimulationcurvetoanalyzeeatintothedepth,Wecanseethebitedepthofeachteethgraduallyincreasedfromzerotomaximumvalues.
Andthenenterthestageofequilibriumandstability.
Hydraulicthrusttomaximumvaluein40secondsto50seconds,Bitedepthofthejawisgraduallyincreasedtothemaximum,Fig.
8.
Schematicdiagramofthejawsbitedepth,FollowingresultscanbeobtainedwiththecombinationofFig.
7andFig.
8,δL11=-0.
2541mm,δL12=-0.
3792mm,δL13=-0.
4182mm,δL14=-0.
1395mm.
Bitedepthvariationofthejawcanbeusedasfoundationofdrillpipejointsplasticdeformation.
Provideareferenceforjawsectionsizeoptimization.
Fig.
7EatintothedepthFig.
8SchematicdiagramofeatintothedepthKeyParametersOptimizationDesignoftheJawThroughtheanalysisofthejaws,weobtainedtherelationshipbetweenthekeyparametersandtheinfluenceonworkingconditionofthedevicewhenparametersvariation,abackclampdevicewithgoodperformanceshouldensurethatthedrillpipeandthejawmusthaveenoughfrictionco-efficient.
Toensurethattherewillbenoslipphenomenon,then,asfaraspossibletoensurethatthedamagetotheouterwallofthedrillpipeissmall,theorthogonalmethodisusedtooptimizethemainparametersofthejaw.
DesignVariable.
Inthispaper,thetoothheight,pitchandthreadangleofthethreecrosssectionparametersareoptimized.
ConstraintCondition.
Accordingtotheactualworkingbackgroundanddesignexperience,thelimitingconditions:threadangle80°~120°,spaceofthetooth2mm~8mm,toothheight~.
OptimizationIndexes.
Thepurposeofthisoptimizationistoselecttheoptimalvalueofeachparameterbycontrollingthedepthofbiteandtheequivalentfrictioncoefficient,Therearetwoaspectsoftheoptimizationindexes,Thebitedepth:,equivalentfrictioncoefficientThecombinationcanbeclassifiedtomulti-objectiveprogrammingproblem,Twoobjectivefunctionsareasfollows:(2)Withinacertainrange,thesmallervalueofthebitedepthfunction(2)is,thebettertheresultsare.
(3)Withinacertainrange,thebiggervalueoftheequivalentfrictioncoefficientfunction(3)is,thebettertheresultsare.
TheOptimizationDesign.
Optimizationofthemainparametersbyorthogonalmethod,comprehensiveconsiderationoftheoreticalanalysis,manufacturingrequirementsanddesignexperience,thedesignvariablesofthreadanglewereselectedas85,95,105,110,120,thetoothheightwereselectedas1.
5,2,2.
5,3,4,andvalueofthepitchwereselectedas3,4,5,6,8,selectstandardorthogonaltableL25(56),tablelinenumberofthetableis25,25testscanbecarriedout,tablecolumnnumberis6,upto6factorscanbeplaced,Thisstudydoesnotconsiderinteraction,Atotalofthreefactorsandfivelevelareinvolved,fromthestandardorthogonaltableL25(56),wecanseeoccupythreecolumnsandidlethreecolumns,ForintuitiveconveniencecanberecordedasL25(53),thelevelfactortableisshownbelow.
Tab.
1FactorlevelLevelFactorsAthreadangle((°)BToothheighth(mm)CPitchP(mm)1851.
532952431052.
55411036512048Aftercalculatingtheobjectivefunction,thestatisticaldataisneeded,inthispaper,wechoosetherangeanalysismethodtoprocessthedata,theresultanalysistableisshowinTab.
2,amongthem,KsisthesumofthefunctionresultsthatthelevelnumberineachcolumnoftheTab.
2forthes.
Inthispaper,s=1,2,3,4,5;ksisthearithmeticmeanvalueofthefunctionresultsthatthelevelnumberineachcolumnoftheTab.
2forthes.
ks=Ks/n,nisthenumberoflevels,n=5Ristherange,ineachcolumn,R=maxks-minks.
Tab.
2ResultanalysisEatintothedepthAthreadangleBtoothheighthCpitchPK13.
64152.
054.
8408K21.
5892.
66764.
9959K34.
13233.
58912.
9184K44.
72274.
96333.
2971K53.
96624.
78171.
9995k10.
72830.
410.
96816k20.
31780.
533520.
99918k30.
826460.
717820.
58368k40.
944540.
992660.
65942k50.
793240.
956340.
3999R0.
626740.
582660.
59928orderACBAthreadangleBtoothheighthCpitchPK14.
08043.
08725.
5713K24.
96263.
53454.
347K32.
50714.
46063.
7545K44.
87234.
32084.
1134K54.
41265.
59093.
1482k10.
816080.
617441.
11426k20.
992520.
70690.
8694k30.
501420.
892120.
7509k40.
974460.
864160.
82268k50.
882521.
118180.
62964R0.
44910.
500740.
48462orderBCAOptimizationResults.
Howtoco-ordinatevariousfactorswithlevelisthebest,thisoptimizationhastwoobjectivefunctions.
Forthebitedepth,thethreadangleisthemaininfluencingfactors,level110isthemostpreferred,Theoptimalcombinationparameter;andfortheequivalentfrictioncoefficient,themaininfluencingfactorsarethetoothheight,level2isthemostpreferred,Theoptimalcombinationparameter:,Accordingtotherequirementsoftheactualworkandtheoreticalanalysis,thedesignparametersofthefinaljawthat,sthebestoption.
FiniteElementAnalysisoftheJawToagreatextent,Strainandstressmagnitudeofthebackclampdevicethatunderstaticload,whatisaffectsthesafetyandreliabilityoftopdrivesystem,Therefore,itisnecessarytocheckthestrengthofthebackclamp,Themaximumstressandthetotaldeformationwereobserved,checkwhetherthedeviceisreliable.
AddModelMaterialProperties.
Thebacktongsmaterialselectionfor20CrMnTi,MaterialpropertiesareshowninTab.
3:Tab.
3Materialpropertiesof20CrMnTiAllowablestressMPaElasticmodulusEGPaDensityKg/m3Poisson'sratioYieldlimitMPa3102077.
81030.
25835DivideandRefinetheGrid.
Athreedimensionalmodelofthejawwasbuiltbythe3DsoftwareofInventor,exportthismodelintoANSYSworkbench,Addthematerialpropertiesofjawas20CrMnTi,andthemeshdivisionofjawisshowninFig.
9.
Fig.
9meshingofclampteethAddedloadanddidtheFEM.
Combinedwiththespecificsituationofthemodel,reasonableboundaryconditionsareaddedtoit,firstofall,toaddafixedconstrainttothebottomsurfaceoftheclamp,addtheloadtothefourteethofjaw,then,addtheappropriatesizeofcontactpressureandshearstressineachtooth,theloadsizeisprovidedbythesimulationresults.
Staticanalysisofthejaw,thecorrespondingstressdistributionanddeformationresultsareobtained,thetotaldeformationisshowninFig.
10,andtheequivalentstressisshowninFig.
11.
Fig.
10ContouroftotaldeformationFig.
11StresscontourofclampteethFromFig.
10andFig.
11wecanseethefollowingconclusions:Tab.
4FiniteelementanalysisresultscategoryminimumvalueMaximumvaluedisplacement00.
00845mmstress0.
31MPa411MPaThemaximumstressofjawis411Mpa,andtheyieldstressofjawis835Mpa,themaximumdisplacementofjawwas0.
00845mm,andthedeformationisrelativelysmall,sowecanconcludethatthestressanddeformationofjawaremeettherequirementsoftheuse.
ConclusionsThetheoreticalanalysisandoptimizationdesignofthebackclampdevicearecarriedout,weselectedthesectionparametersofthejaw,threadangle,thetoothheight,pitch,thisschemeensuresthattheequipmentworkprocessreliable,reducesthewearofjawsandthedamagetothedrill,prolongtheservicelifeoftheequipmentaswell.
Staticsanalysisofthejaws,themaximumstressanddeformationshowsthatjawsstrengthmeetstheapplicationrequirements;clampingprocessofthedeviceisstableandreliable.
AcknowledgementThisworkispartiallysupportedbygrantSinoProbe-09-05oftheChineseNationalScienceFoundation,andmysinceregratitudegoestoit.
References[1]ZhangFeiyu.
DynamicsimulationanalysisofMPR-70Atypefullhydraulicautomaticdrainagepipe[D].
JilinUniversity,2013.
[2]KvernelandH.
2009.
ElectricalCranesandWinchesforImprovedSafetyandBetterOperationalPerformanceforuseinExtremeWeatherConditions[C].
SocietyofPetroleumEngineers,1(5):137-149.
[3]SunMingxing.
Finiteelementanalysisandevaluationofbearingcapacityofdrillingderrick[D].
LanzhouUniversityofTechnology,2010.
[4]LatorreR.
Shiphulldragreductionusingbottomairinjection[J].
OceanEngineering,1997,24(2):161-175.
[5]KeWang,HuaiChen,WeiWangetal.
1997.
ModalAnalysisofOilfieldDerrickStructure[C].
Proceedingsofthe199715thInternationalModalAnalysisConference,1871-1877.
[6]XiaoWensheng.
2004.
DynamicanalysisoftopdrivedrillingdeviceandResearchonVirtualPrototypingTechnology[D].
HuazhongUniversityofScienceandTechnology.
[7]YuanQinghong.
2004.
TDSResearchandpracticeofvirtualprototypesystemofdrillingrig[D].
HuazhongUniversityofScienceandTechnology.
[8]ShuanluLu,YaorongFeng,FaqianLuo,ChangyiQin,XinhuWang.
FailureanslysisofIEUDrillPipeWashout.
InternationalJournalofFatigue[J].
2005,(27):1360-1365.
[8]DickinsonIIIBWO,DickinsonRW,NordlundR.
Multiplelateralhydraulicdrillingapparatusandmethod:U.
S.
Patent6,206,112[P].
2001-3-27.
[9]KeWang,HuaiChen,WeiWangetal.
1997.
ModalAnalysisofOilfieldDerrickStructure[C].
Proceedingsofthe199715thInternationalModalAnalysisConference,1871-1877.
[10]DickinsonIIIBWO,DickinsonRW,NordlundR.
Multiplelateralhydraulicdrillingapparatusandmethod:U.
S.
Patent6,206,112[P].
2001-3-27.
[11]JanPinka,JozefLumtzer,JamilBadran.
1996.
TDS-TopDriveSystem,newdrillingtechnology.
ActaMontanisticaSlovaca,(4):89-295.
[12]VittorioGusella,OstilioSpadaccini,AndreaVignoli.
1996.
In-ServiceDynamicBehaviorofaDrillingDerrickonaJacketPlatform.
InternationalJournalofOffshoreandPolarEngineering,6(7):184-194.
Advinservers,国外商家,公司位于新泽西州,似乎刚刚新成立不久,主要提供美国和欧洲地区VPS和独立服务器业务等。现在有几款产品优惠,高达7.5TB的存储VPS和高达3.5TBDDoS保护的美国纽约高防服务器,性价比非常不错,有兴趣的可以关注一下,并且支持Paypal付款。官方网站点击直达官方网站促销产品第一款VPS为预购,预计8月1日交付。CPU为英特尔至强 CPU(X 或 E5)。官方...
imidc怎么样?imidc彩虹网路,rainbow cloud知名服务器提供商。自营多地区数据中心,是 Apnic RIPE Afrinic Arin 认证服务商。拥有丰富的网路资源。 在2021年 6.18 开启了输血大促销,促销区域包括 香港 台湾 日本 莫斯科 等地促销机型为 E3係,参与促销地区有 香港 日本 台湾 莫斯科 等地, 限量50台,售罄为止,先到先得。所有服务器配置 CPU ...
10GBIZ服务商经常有看到隔壁的一些博客分享内容,我翻看网站看之前有记录过一篇,只不过由于服务商是2020年新成立的所以分享内容比较谨慎。这不至今已经有将近两年的服务商而且云服务产品也比较丰富,目前有看到10GBIZ服务商有提供香港、美国洛杉矶等多机房的云服务器、独立服务器和站群服务器。其中比较吸引到我们用户的是亚洲节点的包括香港、日本等七星级网络服务。具体我们看看相关的配置和线路产品。第一、香...
xyq.cbg.163.com为你推荐
vc组合金钟大奖VC组合的两个人分别叫什么?硬盘工作原理硬盘的读写原理百度商城百度商城知道在哪个地方,怎么找不到啊m.kan84.net经常使用http://www.feikan.cc看电影的进来帮我下啊4400av.com在www.dadady.com 达达电影看片子很快的啊partnersonline国内有哪些知名的ACCA培训机构广告法请问违反了广告法,罚款的标准是什么33tutu.comDnf绝望100鬼泣怎么过www.1diaocha.com请问网络上可以做兼职赚钱吗?现在骗子比较多,不敢盲目相信。请大家推荐下梦遗姐昨晚和姐姐和她朋友一起吃晚饭,我们都喝了酒,我迷糊着回到家的,早上我回想起我好像发生关系射过,会不会是我姐姐,如果是这样我怎么办
域名服务dns的主要功能为 免费域名跳转 国外服务器网站 mobaxterm 贵州电信宽带测速 12306抢票助手 商家促销 发包服务器 台湾谷歌网址 本网站在美国维护 qingyun 服务器维护方案 静态空间 如何注册阿里云邮箱 免费稳定空间 腾讯云平台 wannacry勒索病毒 pptpvpn paypal登陆 回程 更多