setxyq.cbg.163.com

xyq.cbg.163.com  时间:2021-03-20  阅读:()
SimulationAnalysisandOptimalDesignofBackClampDevicePingYU,Si-JieKANGa*,Yan-JiaoLI,En-ChaoJINMechanicalScienceandEngineeringInstituteofJilinUniversity,Changchun,ChinaaKangsijie@163.
com*CorrespondingauthorKeywords:backclampdevice,dynamicanalysis,orthogonaloptimizingdesign.
Abstract.
Backclampdeviceisthekeyequipmentofthetopdrive,whichisrequiredoperationreliableandcompactstructure.
Thispaperintroducestheworkingprocessandworkingprincipleofthebackclamp,Accordingtotheoperationschemeandperformanceparametersofthebackclamp,Dynamicssimulationanalysiswascarriedout.
Obtainthecontactforcebetweenthejawanddrillpipe,aswellasforceandotherperformanceparametersofclampteeth.
Thebasicideaoforthogonaloptimizationmethodistooptimizetheparametersoftoothprofile,toothheightandtoothpitchofthejaw,andtheparameteroptimizationcombinationisgained.
Finally,UsingtheANSYSWorkbenchforthefiniteelementstaticsanalysisofthebackclamp,theresultsshowthatthedesignandfunctionalrequirementsoftheapplicationaremet.
DesignandExistingProblemsofBackClampDeviceDuetotheoverallfloatingofthebackclampingdeviceintheprocessofclampingandloosening,thewholefloatishighlyrequired.
Thereforeneedtoensurethatthefloatingprecisionofthebackclampfloatingmechanism,SchematicdiagramofthebackclampisshownintheFig.
1~Fig.
2,Theconfigurationofthespringhasaveryimportantroleinthebackclampingdevice,Oneistobeabletolimittheposition,andtheotheristoeasetheinertiaofthehydrauliccylindercausedbytherapidmovement.
Theoutershellbodyoftheclampingmechanismadoptsthesplitstructureoftheleftclampbodyandtherightclampbody.
Thesplittypestructuredesignisconvenienttodisassembleandreducetheauxiliarytimetomaintenanceoftheequipment,andimproveworkefficiency.
Fig.
1BackclampdeviceFig.
2BackclampfloatingmechanismThewholestructureoftheexistingbackclampingmechanismiscompactandcomplete,andtheoperationisflexible,Safeandreliable,Buttheactualoperationoftheprocessalsofoundthatthenumberofdiscardedclamptoothanddrillpipeisrelativelylarge,Themainreasonforthefailureisthewearorfractureofthejaw,Thejawisapartofthebackclampdevice,whichisdirectlyunderthepressureandthefrictionforce.
Thequalityofthejawisdirectlyrelatedtotheworkingefficiencyandtheservicelifeofthedrillingtools.
Fig.
3FigureofdrillpipefailureFig.
4WearmapofjawDynamicSimulationAnalysisoftheBackClampingMechanismSetsTheModelSimulationParameters.
Settingthecontactforceparametersbetweenthejawandthedrillpipejoint:1.
Normalcontactforce:(1)Where:Generalizednormalcontactforce,N;stiffness):Collidingstiffnessonthesideofthecomponent;penetrationdepthPenetrationstiffnessinthecontactpoint,mm;(forceexponent):Forceindex,whichisalsothecontributionfactorofthestiffnessterm.
Force-Displacementcurveshapecanbedetermined.
:Maximumallowablepenetrationdepth,mm;damping)Maximumlossfactor,;2.
Tangentialforce-frictionThecontacttangentialforceistheproductofthefrictioncoefficientandthenormalforce,TheKunlunfrictionmodelisusedtodealwiththecontacttangentialforceinADAMS,Thefrictioncoefficientofcontactforceisinaccordancewiththerelativeslidingvelocitybetweenthecontactobjects.
Choiceofdynamicfrictioncoefficientorstaticfrictioncoefficient,Accordingtotheactualworkingconditionofthedrillpipejointandthejaw,Setting=0.
35,=0.
30.
SimulationDataOutputandAnalysis.
Inordertobeabletosimulationthehydrauliccylinderthrustintofoursymmetricaldistributionofthejaw,andeffectiveclampingofthedrillpipe,Setthesimulationtimeto110seconds,Setthenumberofsimulationstepsforthe11000step,SetthemaximumnumberofiterationsintheADAMS/solverto6,Theintegralpolynomialorderissetto2,Thiscaneffectivelyimprovethespeedandaccuracyofthecontactimpactforce.
ForceAnalysisoftheJaws.
ThecontactpressureinformationofthefourteethontheleftjawisshowninFig.
5andFig.
6;Fig.
5ContactpressureofthejawsFig.
6ContactpressureFromFig.
5wecanseethatthereisasequenceofcontactbetweenthefourteethontheleftjawandthesurfaceofdrillpipe,whatisinaccordancewiththeactual,Thecontactforceofeachtoothreachedtheirpeakvalueintheintervalof40secondsto50seconds,FNL11=125.
31KN,FNL12=228.
48KN,FNL13=264.
56KN.
Accordingtothecontactpressurestatediagram,Contactpressureoftheteethatthecenterofthehorizontallineisthelargest,whichclosestfromthehorizontallineistheleast.
Thishelpsincreasetherangeoftheclampingandbasicallymeetthedesignrequirements.
EatIntoTheDepthAnalysisOfTheJaws.
EatintothedepthofthedrillpipejointthatbitebyjawsintheprocessofMake-upisshownintheFig.
7,Combinedwiththesimulationcurvetoanalyzeeatintothedepth,Wecanseethebitedepthofeachteethgraduallyincreasedfromzerotomaximumvalues.
Andthenenterthestageofequilibriumandstability.
Hydraulicthrusttomaximumvaluein40secondsto50seconds,Bitedepthofthejawisgraduallyincreasedtothemaximum,Fig.
8.
Schematicdiagramofthejawsbitedepth,FollowingresultscanbeobtainedwiththecombinationofFig.
7andFig.
8,δL11=-0.
2541mm,δL12=-0.
3792mm,δL13=-0.
4182mm,δL14=-0.
1395mm.
Bitedepthvariationofthejawcanbeusedasfoundationofdrillpipejointsplasticdeformation.
Provideareferenceforjawsectionsizeoptimization.
Fig.
7EatintothedepthFig.
8SchematicdiagramofeatintothedepthKeyParametersOptimizationDesignoftheJawThroughtheanalysisofthejaws,weobtainedtherelationshipbetweenthekeyparametersandtheinfluenceonworkingconditionofthedevicewhenparametersvariation,abackclampdevicewithgoodperformanceshouldensurethatthedrillpipeandthejawmusthaveenoughfrictionco-efficient.
Toensurethattherewillbenoslipphenomenon,then,asfaraspossibletoensurethatthedamagetotheouterwallofthedrillpipeissmall,theorthogonalmethodisusedtooptimizethemainparametersofthejaw.
DesignVariable.
Inthispaper,thetoothheight,pitchandthreadangleofthethreecrosssectionparametersareoptimized.
ConstraintCondition.
Accordingtotheactualworkingbackgroundanddesignexperience,thelimitingconditions:threadangle80°~120°,spaceofthetooth2mm~8mm,toothheight~.
OptimizationIndexes.
Thepurposeofthisoptimizationistoselecttheoptimalvalueofeachparameterbycontrollingthedepthofbiteandtheequivalentfrictioncoefficient,Therearetwoaspectsoftheoptimizationindexes,Thebitedepth:,equivalentfrictioncoefficientThecombinationcanbeclassifiedtomulti-objectiveprogrammingproblem,Twoobjectivefunctionsareasfollows:(2)Withinacertainrange,thesmallervalueofthebitedepthfunction(2)is,thebettertheresultsare.
(3)Withinacertainrange,thebiggervalueoftheequivalentfrictioncoefficientfunction(3)is,thebettertheresultsare.
TheOptimizationDesign.
Optimizationofthemainparametersbyorthogonalmethod,comprehensiveconsiderationoftheoreticalanalysis,manufacturingrequirementsanddesignexperience,thedesignvariablesofthreadanglewereselectedas85,95,105,110,120,thetoothheightwereselectedas1.
5,2,2.
5,3,4,andvalueofthepitchwereselectedas3,4,5,6,8,selectstandardorthogonaltableL25(56),tablelinenumberofthetableis25,25testscanbecarriedout,tablecolumnnumberis6,upto6factorscanbeplaced,Thisstudydoesnotconsiderinteraction,Atotalofthreefactorsandfivelevelareinvolved,fromthestandardorthogonaltableL25(56),wecanseeoccupythreecolumnsandidlethreecolumns,ForintuitiveconveniencecanberecordedasL25(53),thelevelfactortableisshownbelow.
Tab.
1FactorlevelLevelFactorsAthreadangle((°)BToothheighth(mm)CPitchP(mm)1851.
532952431052.
55411036512048Aftercalculatingtheobjectivefunction,thestatisticaldataisneeded,inthispaper,wechoosetherangeanalysismethodtoprocessthedata,theresultanalysistableisshowinTab.
2,amongthem,KsisthesumofthefunctionresultsthatthelevelnumberineachcolumnoftheTab.
2forthes.
Inthispaper,s=1,2,3,4,5;ksisthearithmeticmeanvalueofthefunctionresultsthatthelevelnumberineachcolumnoftheTab.
2forthes.
ks=Ks/n,nisthenumberoflevels,n=5Ristherange,ineachcolumn,R=maxks-minks.
Tab.
2ResultanalysisEatintothedepthAthreadangleBtoothheighthCpitchPK13.
64152.
054.
8408K21.
5892.
66764.
9959K34.
13233.
58912.
9184K44.
72274.
96333.
2971K53.
96624.
78171.
9995k10.
72830.
410.
96816k20.
31780.
533520.
99918k30.
826460.
717820.
58368k40.
944540.
992660.
65942k50.
793240.
956340.
3999R0.
626740.
582660.
59928orderACBAthreadangleBtoothheighthCpitchPK14.
08043.
08725.
5713K24.
96263.
53454.
347K32.
50714.
46063.
7545K44.
87234.
32084.
1134K54.
41265.
59093.
1482k10.
816080.
617441.
11426k20.
992520.
70690.
8694k30.
501420.
892120.
7509k40.
974460.
864160.
82268k50.
882521.
118180.
62964R0.
44910.
500740.
48462orderBCAOptimizationResults.
Howtoco-ordinatevariousfactorswithlevelisthebest,thisoptimizationhastwoobjectivefunctions.
Forthebitedepth,thethreadangleisthemaininfluencingfactors,level110isthemostpreferred,Theoptimalcombinationparameter;andfortheequivalentfrictioncoefficient,themaininfluencingfactorsarethetoothheight,level2isthemostpreferred,Theoptimalcombinationparameter:,Accordingtotherequirementsoftheactualworkandtheoreticalanalysis,thedesignparametersofthefinaljawthat,sthebestoption.
FiniteElementAnalysisoftheJawToagreatextent,Strainandstressmagnitudeofthebackclampdevicethatunderstaticload,whatisaffectsthesafetyandreliabilityoftopdrivesystem,Therefore,itisnecessarytocheckthestrengthofthebackclamp,Themaximumstressandthetotaldeformationwereobserved,checkwhetherthedeviceisreliable.
AddModelMaterialProperties.
Thebacktongsmaterialselectionfor20CrMnTi,MaterialpropertiesareshowninTab.
3:Tab.
3Materialpropertiesof20CrMnTiAllowablestressMPaElasticmodulusEGPaDensityKg/m3Poisson'sratioYieldlimitMPa3102077.
81030.
25835DivideandRefinetheGrid.
Athreedimensionalmodelofthejawwasbuiltbythe3DsoftwareofInventor,exportthismodelintoANSYSworkbench,Addthematerialpropertiesofjawas20CrMnTi,andthemeshdivisionofjawisshowninFig.
9.
Fig.
9meshingofclampteethAddedloadanddidtheFEM.
Combinedwiththespecificsituationofthemodel,reasonableboundaryconditionsareaddedtoit,firstofall,toaddafixedconstrainttothebottomsurfaceoftheclamp,addtheloadtothefourteethofjaw,then,addtheappropriatesizeofcontactpressureandshearstressineachtooth,theloadsizeisprovidedbythesimulationresults.
Staticanalysisofthejaw,thecorrespondingstressdistributionanddeformationresultsareobtained,thetotaldeformationisshowninFig.
10,andtheequivalentstressisshowninFig.
11.
Fig.
10ContouroftotaldeformationFig.
11StresscontourofclampteethFromFig.
10andFig.
11wecanseethefollowingconclusions:Tab.
4FiniteelementanalysisresultscategoryminimumvalueMaximumvaluedisplacement00.
00845mmstress0.
31MPa411MPaThemaximumstressofjawis411Mpa,andtheyieldstressofjawis835Mpa,themaximumdisplacementofjawwas0.
00845mm,andthedeformationisrelativelysmall,sowecanconcludethatthestressanddeformationofjawaremeettherequirementsoftheuse.
ConclusionsThetheoreticalanalysisandoptimizationdesignofthebackclampdevicearecarriedout,weselectedthesectionparametersofthejaw,threadangle,thetoothheight,pitch,thisschemeensuresthattheequipmentworkprocessreliable,reducesthewearofjawsandthedamagetothedrill,prolongtheservicelifeoftheequipmentaswell.
Staticsanalysisofthejaws,themaximumstressanddeformationshowsthatjawsstrengthmeetstheapplicationrequirements;clampingprocessofthedeviceisstableandreliable.
AcknowledgementThisworkispartiallysupportedbygrantSinoProbe-09-05oftheChineseNationalScienceFoundation,andmysinceregratitudegoestoit.
References[1]ZhangFeiyu.
DynamicsimulationanalysisofMPR-70Atypefullhydraulicautomaticdrainagepipe[D].
JilinUniversity,2013.
[2]KvernelandH.
2009.
ElectricalCranesandWinchesforImprovedSafetyandBetterOperationalPerformanceforuseinExtremeWeatherConditions[C].
SocietyofPetroleumEngineers,1(5):137-149.
[3]SunMingxing.
Finiteelementanalysisandevaluationofbearingcapacityofdrillingderrick[D].
LanzhouUniversityofTechnology,2010.
[4]LatorreR.
Shiphulldragreductionusingbottomairinjection[J].
OceanEngineering,1997,24(2):161-175.
[5]KeWang,HuaiChen,WeiWangetal.
1997.
ModalAnalysisofOilfieldDerrickStructure[C].
Proceedingsofthe199715thInternationalModalAnalysisConference,1871-1877.
[6]XiaoWensheng.
2004.
DynamicanalysisoftopdrivedrillingdeviceandResearchonVirtualPrototypingTechnology[D].
HuazhongUniversityofScienceandTechnology.
[7]YuanQinghong.
2004.
TDSResearchandpracticeofvirtualprototypesystemofdrillingrig[D].
HuazhongUniversityofScienceandTechnology.
[8]ShuanluLu,YaorongFeng,FaqianLuo,ChangyiQin,XinhuWang.
FailureanslysisofIEUDrillPipeWashout.
InternationalJournalofFatigue[J].
2005,(27):1360-1365.
[8]DickinsonIIIBWO,DickinsonRW,NordlundR.
Multiplelateralhydraulicdrillingapparatusandmethod:U.
S.
Patent6,206,112[P].
2001-3-27.
[9]KeWang,HuaiChen,WeiWangetal.
1997.
ModalAnalysisofOilfieldDerrickStructure[C].
Proceedingsofthe199715thInternationalModalAnalysisConference,1871-1877.
[10]DickinsonIIIBWO,DickinsonRW,NordlundR.
Multiplelateralhydraulicdrillingapparatusandmethod:U.
S.
Patent6,206,112[P].
2001-3-27.
[11]JanPinka,JozefLumtzer,JamilBadran.
1996.
TDS-TopDriveSystem,newdrillingtechnology.
ActaMontanisticaSlovaca,(4):89-295.
[12]VittorioGusella,OstilioSpadaccini,AndreaVignoli.
1996.
In-ServiceDynamicBehaviorofaDrillingDerrickonaJacketPlatform.
InternationalJournalofOffshoreandPolarEngineering,6(7):184-194.

UCloud:美国云服务器,洛杉矶节点大促,低至7元起/1个月

ucloud美国云服务器怎么样?ucloud是国内知名云计算品牌服务商家,目前推出全球多地机房的海外云服务器。UCloud主打的优势是海外多机房,目前正在进行的2021全球大促活动参与促销的云服务器机房就多达18个。UCloud新一代旗舰产品快杰云服务器已上线洛杉矶节点,覆盖北美和亚太地区,火热促销中, 首月低至7元,轻松体验具备优秀性能与极高性价比的快杰云服务器。点击进入:ucloud美国洛杉矶...

DiyVM:2G内存/50G硬盘/元起线路香港vps带宽CN2线路,香港VPS五折月付50元起

DiyVM是一家低调国人VPS主机商,成立于2009年,提供的产品包括VPS主机和独立服务器租用等,数据中心包括香港沙田、美国洛杉矶、日本大阪等,VPS主机基于XEN架构,均为国内直连线路,主机支持异地备份与自定义镜像,可提供内网IP。最近,商家对香港机房VPS提供5折优惠码,最低2GB内存起优惠后仅需50元/月。下面就以香港机房为例,分享几款VPS主机配置信息。CPU:2cores内存:2GB硬...

百纵科技(19元/月),美国洛杉矶10G防御服务器/洛杉矶C3机房 带金盾高防

百纵科技官网:https://www.baizon.cn/百纵科技:美国云服务器活动重磅来袭,洛杉矶C3机房 带金盾高防,会员后台可自助管理防火墙,添加黑白名单 CC策略开启低中高.CPU全系列E52680v3 DDR4内存 三星固态盘列阵。另有高防清洗!美国洛杉矶 CN2 云服务器CPU内存带宽数据盘防御价格1H1G10M10G10G19元/月 购买地址2H1G10M10G10G29元/月 购买...

xyq.cbg.163.com为你推荐
金评媒朱江雷克萨斯中国朱江简历摩拜超15分钟加钱怎么领取摩拜单车免费卷李子柒年入1.6亿宋朝鼎盛时期 政府财政收入有将近1亿贯铜钱,那么GDP是多少呢?比肩工场比肩接踵的意思22zizi.com福利彩双色球22号开奖号22zizi.comwww 地址 didi22怎么打不开了,还有好看的吗>com丑福晋历史上真正的八福晋是什么样子的?同ip网站一个域名能对应多个IP吗16668.com香港最快开奖现场直播今晚开www.zhiboba.com网上看nba
主机屋免费空间 http500内部服务器错误 创宇云 南昌服务器托管 绍兴高防 网站挂马检测工具 777te gspeed 服务器是干什么的 太原网通测速平台 天翼云盘 paypal注册教程 Updog 吉林铁通 网购分享 中国电信网络测速 德隆中文网 免备案cdn加速 黑科云 密钥索引 更多