Cappedse95se.com

se95se.com  时间:2021-03-19  阅读:()
REVIEWOpenAccessPlantsandmicrobesassistedseleniumnanoparticles:characterizationandapplicationAzamalHusen1*andKhwajaSalahuddinSiddiqi2AbstractSeleniumisanessentialtraceelementandisanessentialcomponentofmanyenzymeswithoutwhichtheybecomeinactive.
TheSenanoparticlesofvaryingshapeandsizemaybesynthesizedfromSesaltsespeciallyseleniteandselenatesinpresenceofreducingagentssuchasproteins,phenols,alcoholsandamines.
ThesebiomoleculescanbeusedtoreduceSesaltsinvitrobutthebyproductsreleasedintheenvironmentmaybehazardoustofloraandfauna.
Inthisreview,therefore,weanalysedindepth,thebiogenicsynthesisofSenanoparticles,theircharacterizationandtransformationintot-Se,m-Se,Se-nanoballs,Se-nanowiresandSe-hollowspheresinaninnocuouswaypreventingtheenvironmentfrompollution.
Theirshape,size,FTIR,UV–vis,Ramanspectra,SEM,TEMimagesandXRDpatternhavebeenanalysed.
Theweakforcesinvolvedinaggregationandtransformationofonenanostructureintotheotherhavebeencarefullyresolved.
Keywords:Nanotechnology,Selenium,Plantextracts,Microbes,BiofabricationIntroductionSeleniumwasknownasanotoriouselementuntilitwasrecognizedbySchwarzandFoltzin1957asanessentialtraceelementforbothplantsandmammals.
NormallySeisavailableasselenateandseleniteoxoanions.
ThereductionofsolubleSe4+andSe6+bymicrobestoinsol-ublenontoxicelementalSeisaneffectivewaytore-moveitfromcontaminatedsoil,wateranddrainage[1].
SeisoneofthechalcogensoccurringasselenateSeO42,seleniteSeO32andselenideSe2whichmaybereducedtoatomicstatebyaprecursorcontaininganappropriatereducingagent.
BiogenicsynthesisofSenanoparticlesisfrequentlyachievedbyreductionofselenate/seleniteinpresenceofbacterialproteinsorplantextractscontainingphenols,flavonoidsamines,alcohols,proteinsandalde-hydes.
ThedeficiencyofSeisknowntobeassociatedwithover40diseasesinman[2,3].
Atlowdosageitcanstimu-latethegrowthoftheplantwhereasathighdosagesitcancausedamagetoit[4-6].
Sehasalsobeenshowntobeef-fectiveagainstcancer[7,8].
Theircompoundsintheformofselenocysteineandselenomethioninearemetabolizedinbiologicalsystem[7,8].
Avarietyofmicroorganisms,enzymesandfungi,besidesplantextractshavebeenusedtosynthesiseSenanoparti-clesofdifferentsizeandmorphology.
Seitselfisusedinrectifier,solarcells,photocopierandsemiconductor.
Inaddition,theyexhibitbiologicalactivityowingtotheirinteractionwiththeproteinsandotherbiomoleculespresentinthebacterialcellsandplantextracts,contain-ingfunctionalgroupssuchasNH,C=O,COOandC-N[9].
Se-nanobeltshavebeensynthesisedonlargescalewithanapproximatediameterof80nmandlengthupto5μm[10].
Seexistsinmanycrystallineandamorph-ousformsbuttheshape,sizeandstructureofthenano-particlesdependontheconcentration,temperature,natureofbiomoleculesandpHofthereactionmixture.
ThepropertiesofSenanoparticlesvarieswithsizeandshapeforinstance,SenanosphereshavehighbiologicalactivityandlowtoxicitywhileSenanowiresoft-Sehavehighphotoconductivity[11].
VariousmethodshavebeenemployedtoproducelargescaleSe-nanowiresandtrigonalselenium(t-Se)[12,13].
Pulselaserablation,electro-kinetictechnique,hydrothermaltreatment,vapourdepositionmethods[10,14-16]generallyusedforproductionofSenanoparticlesonlargescalerequireeithersophisticatedin-strumentsorspecificchemicalswhicharetimeconsuminganduneconomical.
Suchmethodsoftenemploytoxic*Correspondence:adroot92@yahoo.
co.
in1DepartmentofBiology,CollegeofNaturalandComputationalSciences,UniversityofGondar,P.
O.
Box196,Gondar,EthiopiaFulllistofauthorinformationisavailableattheendofthearticle2014HusenandSiddiqi;licenseeBioMedCentralLtd.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/4.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycredited.
TheCreativeCommonsPublicDomainDedicationwaiver(http://creativecommons.
org/publicdomain/zero/1.
0/)appliestothedatamadeavailableinthisarticle,unlessotherwisestated.
HusenandSiddiqiJournalofNanobiotechnology2014,12:28http://www.
jnanobiotechnology.
com/content/12/1/28chemicalsorhightemperatureandhighpressurewhichfurtherpollutetheenvironment.
Inordertocircumventtheeffectoftoxicchemicalsinthefabricationofnanoparticles,biogenicprotocolisgenerallyfollowed[17,18].
Scientistshavedevelopedbe-nignandharmlessmethodsforthefabricationofnano-particlesusingplantextracts,bacteriaandfungi.
Forinstance,Capsicumannum,EscherichiacoliandBacillussubtilis[19-21]haverecentlybeenusedtoproducenanoparticles.
Over16differentspeciesofbacteriaandArechaeahavebeenfoundtoreducecolourlessselenateandselenitetoredelementalSeofdifferentshapeandsize[22,23].
Plantsandmicrobesactasproducersandprotectorsoftheenvironmentwhentheyareproperlyused.
Pureelementinits,atomicstatemaybeproducedbymanybacteria[24,25]mainlyduetothechemicalspresentinthemorproteinexudedbythem.
WehavelimitedknowledgeofthemechanismoftheformationofSenanoparticlesbymicrobesandplantextract,never-thelessforabetterunderstandingattemptsarebeingmadetoexplorethechemicalreactionsoccurringinthesemedia.
Manybacterialstrainshavebeenfoundtoreduceselenate/selenitetoSenanoparticlesindifferentenvironment[26]eveninsewageandsludgeunderbothaerobicandanaerobicconditions[27-29].
Ithasbeensuggestedthatsubstantialquantityofsolubletoxicselen-ate/seleniteisreducedbybacterialstraintoproducenontoxicinsolubleSenanoparticles,althoughindoingsomanysuchmicrobeswoulddie.
TheproductionofSe0/Te0bytwoanaerobicbacteriaSulfurospirillumbar-nesiiandBacillusselenireducenshasbeendemonstratedbyOremlandetal.
andBaesmanetal.
[25,24].
Themainobjectiveofthisreviewistoidentifytheplantextractsandbacterialstrainsinvolvedinthebio-synthesisofSenanoparticles.
AlsothecharacterizationandidentificationofSe-nanoballs,nanorods,nanowiresandhollowsphereshavebeenundertakenwithaviewtoupdatethenanobiotechnologyofSenanoparticlesandtheirapplicationindiverseareas.
Senanoparticlesfromplants,characterizationandapplicationThereisafinelinebetweenoptimumlimit/ordeficiencyandexcessofSeinlivingsystemwhichmaycausetox-icity.
ItisknownthattheSenanoparticlespreparedfrombiologicalmaterialarelesstoxicthanthebulkSenanoparticlespreparedfromchemicals.
Thebiomole-culespresentintheextractactbothasreducingagentandstabilizersofSenanoparticles.
Bacteria,algae,dryfruitsandplantextractsareusedtoproducenanoparti-cles.
Greensynthesisofseleniumnanoparticlesfromsel-eniousacidwasachievedbydriedextractofraisin(Vitisvinifera)[30].
Likeotherbiologicalmaterials,raisinalsocontainssugar,flavonoidsandphenolsinadditiontomineralssuchasiron,potassiumandcalcium[19,31].
Achangefromcolourlesstodeeplybrick-redcolourindi-catedtheformationofnanoparticles.
TheformationofSe-nanoballswasexaminedatdifferentintervaloftime.
Ittooknearly6mintostartconversionofSeiontoSenanoparticleswhichwasindicatedbyadecreaseinSeionconcentrationinthesolution.
Thenatureofnano-particleswasanalysedbyTEMimages.
Itshowedthatthediameterofnanoballsrangesbetween3and18nm.
Theywerefoundtobeencapsulatedwithathinpoly-morphiclayer.
TheformationofSenanoparticleswasconfirmedfromtheenergydispersivex-rayspectros-copy.
TheSenanoballswereidentifiedfromtheirchar-acteristicabsorptionpeaksat1.
37KeV,11.
22KeVand12.
49KeV[32].
ThemorphologyofSenanoparticlescanbeanalysedbyx-raydiffraction(XRD)analysis.
Thebroaddiffractionpeaksuggeststhepresenceofamorph-ousnatureofSenanoparticles[33].
Theirparticlesize[34]hasbeenfoundtobeoftheorderof12nm.
Sharmaetal.
[30]havecharacterizedSenanoballsfab-ricatedfromV.
viniferabyFTIRspectralstudies.
Thespectrumexhibitedtwosharpabsorptionpeaksat3420cm1attributedtoOHand,thesecondpeakat1620cm1toC-Hvibrationoftheorganicmolecules.
Adistinctpeakat1375cm1hasbeenassignedtophenolicOH.
Theotherpeaksofmediumintensityaredueto–CH3andOCH3groupsassociatedwiththebiopolymers,presentintheV.
viniferaextractactingasreducingagentandstabilizerfortheSenanoballs.
Sinceligninisacomponentofallvegetables,fruitsandcellwall,itcanbeextractedfromthemandthecompoundspresentinthemmaybeidentified.
Inthepresentwork,phenolicgrouphasbeenidentifiedwhichgenerallyactsasredu-cingagentand,itisoxidisedtoketoneduringtheredoxprocess.
However,theextractalsocontainsfairlysub-stantialamountofreducingsugarsandtherefore,theyalsohelpinthereductionandformationofSenanoballs.
TheseauthorshavegivenaflowdiagramforSenanopar-ticlessynthesisbutitdoesnotrevealthechemicalchangeswhichoccurasaconsequenceofredoxreac-tions.
WenowproposethefollowingschemeFigure1basedonthegeneralsyntheticroute.
Although,biochemicalsmayoftenbeusedforthesynthe-sisofnanomaterials,thebiogenicsyntheticrouteisfre-quentlyappliedduetoitseaseandsimplicityand,alsobecausenohazardousandtoxicresiduesarereleasedintheenvironment[35,36].
Ingeneral,avarietyofSenanoparti-clesareproducedwhenH2SeO3istreatedwithplantex-tractsforinstance,α-SenanoparticleshavebeenfabricatedfromCapsicumannumextractinaqueousmediumatlowpHandatambienttemperature[19].
ThelightgreenextractofC.
annumturnspaleafter5hoftheadditionofH2SeO3,andthengraduallyturnedredafter12h(Figure2a).
ThisredcolouristhecharacteristicsignatureHusenandSiddiqiJournalofNanobiotechnology2014,12:28Page2of10http://www.
jnanobiotechnology.
com/content/12/1/28ofα-Seinthex-rayphotoemissionspectroscopy(XPS)whichisduetoexcitationoftheirsurfaceplasmonvibra-tion[37].
ItsXPSspectrum(Figure2b)showsasharppeakat54.
4eVwhichcorrespondstotheelementalselenium[38].
TheXRDpatternoftheSenanoparticlesshowsabroadpeakat2θanglesof15-350(Figure2c)whichsug-geststhatthenanoparticlesarenotcrystalline.
TheirRa-manspectrumdisplayedaresonancepeakat263.
7cm1which(Figure2d)furtherconfirmstheformationofα-Senanoparticles[39].
Anadditionalpeakat474cm1hasbeenattributedtotheproteinvibrationwhichismixedwithamorphousSe.
SEMandTEMimagesoftheα-SenanoparticlesshowedthattheyconsistofnanorodsandnanoballslacedwithC.
annumproteinwhichmakesthemslightlyirregularinshape.
Thelengthanddiameterofrodsandnanoballsrangebetween1–3μmand0.
4μm,respect-ively.
Acloserlookatthehighlymagnifiedfieldemissionscanningelectronmicroscopy(FESEM)imagesuggeststhatrodlikenanoparticlesareactuallyaggregatesofsphericalparticleswithproteincoating,makingthesur-faceroughanduneven.
ItisquitelikelythatproteinsareheldtogetherbyhydrogenbondingandSenanoparticlesareheldbyvanderWaalsforces.
WhenthepHofthereactionmixtureisloweredto2thetimetoproduceα-Senanoparticlesincreases.
IthasbeenobservedfromtheirFESEMimagesthatavarietyofpolygonalSenanoparticlesareproducedwithsizevaryingfrom200–500nm.
Itisofinteresttonotethatsomehollowsphericalparticleswerealsoproducedwithaporediameterof160nm.
Lietal.
[19]havehypothesizedthathollowspheresareformedasaconsequenceofriseintemperaturewhenthereactionproductisplacedinanelectricfield.
Although,themeltingpointofα-Senanopar-ticlesisnotverylow(~490K)eventhenthistemperatureisseldomachievedinsuchsystem,sothatitmaymeltandproducehollowspheres.
Itistobenotedthatevenifmicrowaveenergyissuppliedwithoutriseintemperatureonlytheoutersurfaceofα-Senanoballs,madeofproteinlayerwouldmelt,becauseorganicmaterialshaveinher-entlylowermeltingpointthanmetalloidSe.
However,iftheseα-Separticlesalsomeltwithelectronicimpacteventhenthehollowspherewouldnotbeproducedbecausethelatticewouldruptureresultingintheformationofirregularsheetsanddotlikestructures.
Itismorelikely,thathollowspheresofα-Searealsoformedalongwithsolidnanoballsandpolygonalstructuresduringthesynthesisofnanoparticles.
AcomparisonofFTIRspectrumofpureC.
annumextractwiththereactionmixture(C.
annumextract+SeO32)showedmanypeaksat1652,1542and1241cm1correspondingtoamideI,IIandIIIbandsowingto(C=O),(N-H)and(C-N)respectively[36].
Thesebandsslightlyshiftaftertheformationofnano-particles.
TheUV–visspectrumoftheC.
annumpro-tein(washedwithSDS-PAGEgel)withmolecularweightof30kDa,showedpeak(210nm)correspondingtopeptidebondsandaminoresidues(280nm).
Asthesearereducingagentstheyhelpintheformationofnano-particles.
Ithasalsobeenconfirmedfromcyclicvoltam-mogramthattheredoxreactionoccursbetween-0.
7and0.
9V[19].
+SeleniousacidVitisviniferaaq.
extractH2SeO34Lignin–OH(phenolicgroup)Se+3H2O+4Lignin=OCappedSenanoparticles+SeleniousacidVitisviniferaaq.
extractH2SeO34Lignin–OH(phenolicgroup)Se+3H2O+4Lignin=OCappedSenanoparticlesFigure1SenanoparticlesynthesisusingVitisviniferaextract.
HusenandSiddiqiJournalofNanobiotechnology2014,12:28Page3of10http://www.
jnanobiotechnology.
com/content/12/1/28InorganicSe(seleniteorselenate)alsooccurasseleno-methionine,selenocysteine,selenocystathione,methylselenol,dimethylselenideandseleniummethylseleno-cysteine.
AbsorptionofSedependsonitsmorphologyandsolubilityinaqueousmedium.
SodiumsaltsofSearegenerallysolubleinwater.
Oneformmaychangeintoanothertosuitthebasicrequirementsofbindingtocertainfunctionalgroupssuchasproteins.
DifferentplantsabsorbSeindifferentquantitiesforinstance;wheataccumulatesSeproportionaltoitsavailabilityinthesoilwhileAstragalusgrowninthesamesoilhadmanifoldexcessoftheelementinit.
BroccoliisknownasSeaccumulator.
Finley[40],showedfromanexperi-ment,onbroccoligrowninsodiumselenateladensoil,thatitaccumulated~103μgSe/gmdryweightoftheplanttissue.
Broccoliisknowntocontainfairly[41]largequantityofseleniumasmethylselenocysteine,perhapsduetoitsgreatersolubilityinaqueousmedium.
However,itisstrangethatSefrombroccolidoesnotaccumulateefficientlyinmanorrats[42,43]becauseitsmajorpartasseleniummethylselenocysteineisperhapsmetabolisedtomethylselenol[44].
Ithasbeendemon-stratedexperimentallythat,methylsubstitutedformsofSeisaneffectiveanticanceragentthantheotherderiva-tivesoforgano-Secompounds[45].
GarlicwithasmuchSeas1000μg/gmofdryweighthasbeengrown[46]andfoundtocontainSeasseleniummethylselenocysteinebutwhentheSeconcentrationfallsbelow200μg/gm,itisfoundasq-glutamylseleniummethylselenocysteine.
Al-thoughSefromhighSegarlicisachemoprotectiveagent[47]itisparticularlyselectiveagainstbreastcancerinrats[48,49]inducedby7,12-dimethylbenzene(a)anthracene.
Eventheaqueoussolutionofgarlicischemoprotective[50].
GlucosinolateassecondaryplantcompoundknownFigure2SenanoparticlesynthesisusingCapsicumannumextract(a)Thetime-dependentcolorchangesofthereactionsolution;(i),(ii),(iii)represents0,5,15h,respectively.
(b)XPSspectrumoftheproductobtainedfromreactionsolution(I).
(c)TypicalXRDpatternofthesameproductofreactionsolution(I).
(d)Ramanspectrumofthesamereactionproductasin(c)[19].
HusenandSiddiqiJournalofNanobiotechnology2014,12:28Page4of10http://www.
jnanobiotechnology.
com/content/12/1/28toinducephaseIIenzymes[42]ischemoprotectiveagainstbladdercancer.
Sefedexperimentalratsintheformsofselenite,selenate,selenomethioninedidnotacumulateinmostratswhichmeansitiseithernotabsorbedorexcretedthroughurine.
TrigonalSenanowiresandnanotubeshavebeensyn-thesizedinabsolutelyecofriendlyway.
TheSenanowiresof70–100nmwidthandlengthinseveralμmwerepre-paredinabsoluteethanolatroomtemperaturewhiletri-gonalSenanotubesofdiameter180–350nmwereobtainedinaqueousmediumat85°C(358K).
Itwasob-servedthatamorphousSenanoparticleswereformedinthebeginningandsubsequentlytransformedintonano-wiresandtubes[51].
StableSenanoparticlesincolloidalformwerepreparedfromTerminaliaarjunaextractinaqueousmedium.
TheywerecharacterizedbyUV–vis,energydispersiveX-rayanalysis(EDAX),transmissionelectronmicroscopy(TEM),FTIRandXRDanalysis.
Thecolloidalsolutionhadanabsorbancemaximumat390nm.
ItsIRspectrumshowedpeakscorrespondingtoO-H,NH,C=OandC-Ostretchessuggestingthepresenceofhydroxyl,amino,ketonicandcarbonylfunctionalgroupsintheextractwhichactbothasstabilizerandcappingagentfortheSenanoparticles[52].
TheSenanoparticlessynthesizedfromfenugreekseedextractinaquousmediumatroomtemperaturearebetween50–150nm.
Theyhavebeenfoundtobeactiveagainsthumanbreastcancercells[53].
Senanoparticlesofapproximately35nmhavebeensynthesizedfromgumarabicwhichremainstableinso-lutionforabout30days.
ThegumarabicwasfoundtobeabetterstabilizerforSenanoparticlesthanthehy-drolysedgumarabic[54].
TheSenanoparticlessynthe-sizedfromlemonleafextractexhibitedanabsorptionmaximumat395nmintheUV–visregion.
Initially,themixtureofleafextractandSeO32remainscolourlessbutafterstirringandincubatingitfor24hrat30°C,itturnsred[55].
Thephotoluminescencespectraexhibitedexcitationpeakat395andemissionpeakat525nm(Figure3).
IthasbeenfoundfromTEMimagethatthesizeofparticlesrangesbetween60–80nm.
Theyarepolydispersedincolloidalsolutionbutcrystallineinna-ture[55].
TheFTIRspectraofthesampleswithandwithoutSenanoparticleswerecomparedtoexaminethechangesinthefunctionalgroupsofthebiomolecules.
Thebroadpeakat3415dueto(NH)shiftsto3418cm1butnewpeaksappearat2930and3456cm1inthecolloidalsolutioncontainingSenanoparticles.
Theregion1500–1800cm1isduetovariousamidebandswhichsplitintosomenewbandsincolloidalsolution.
However,afterreductionoftheNa2SeO3toSenanopar-ticlesbythebiomoleculesintheextractcontainingfunc-tionalgroupssuchasalcohol,aldehyde,phenoletc.
,theyareoxidizedtothefollowingspecies:Na2SeO3+H2O→H2SeO3+Na2OH2SeO3SeO32+2H+Alcohol+SeO32→Se+CarboxylicacidAldehyde+SeO32→Se+KetonePhenol+SeO32→Se+PhenoneIthasalsobeendetectedfromgelelectrophoresisthatSenanoparticlespreventedDNAdamagewhencellswereexposedtoUVB[55].
PolyphenolgallicacidnanoparticlesfromplanthavebeenusedtofabricateSenanoparticlessincethegallicacidnanoparticlesmaybehavedifferentlythanthebulkgallicaicd.
SincegallicacidcanquantitativelycoordinatewiththeSeions,anotherreducingagentdithioerthreitolwasaddedtogallicacid-coatedwithSeions.
AchangeincolourwastakenasanindicationoftheformationofnanoparticleswhichwasconfirmedbyUV–visandemis-sionspectroscopy[56].
AslightlydifferentmethodhasalsobeenemployedbyIngoleetal.
[34]toprepareSenanoparticlesfromglucose.
Na2SeSO3preparedfromSepowderwastreatedwithglucosesolutionaccordingtothefollowingchemicalreactions:Sepowder+Na2SO3→Na2SeSO3Na2SeSO3+H2O→H2SeO4+Na2SH2SeO42H++SeO42SeO42+Glucose→Se+GluconicacidThecolourlesssolutioninthebeginningbecomesyellowthenorangeandfinallyturnsredwhichdoesnotchangeevenafterheatingforover1h.
ThesechangeshavebeenascribedtothechangesinsizeofSenanoparticles.
Senanoparticlesfrommicrobes,characterizationandapplicationMicroorganismsreducethetoxic,selenateandseleniteoxoanionsintonontoxicelementalseleniumwhichisinsolubleinwater.
ContinuoususeofwateroredibleplantsfromSerichsoilcancauseskinlesionandearlyhairfall.
Effortistherefore,madetoreduceSecom-poundstoelementalSewiththehelpofbacteria.
Itisasimpleprocessofdetoxificationofselenites/selenatestoSenanoparticlesasthereversereactionistooslowtoproduceSecompounds[57].
Fast(forwardreaction)Se(IV)/Se(VI)Se(o)Slow(backwardreaction)DuetotheiruniquepropertySenanoparticlesarephotovoltaicandsemiconductor,antioxidantandchemo-protectiveagents[58].
SinceSenanoparticlesinhibitthegrowthofStaphylococcusaureusitcanbeusedasaHusenandSiddiqiJournalofNanobiotechnology2014,12:28Page5of10http://www.
jnanobiotechnology.
com/content/12/1/28medicineagainstS.
aureusinfection.
Differentconcentra-tionofSestartingfrom65to230mg/LofSe(IV)wereallowedtointeractwithdifferenttypesofmicrobes.
Ap-pearanceofredcolourwastakenassignofreductionofSe(IV)toSe(0)asshowninforwardreactionabove.
How-ever,therewasnodecolourationlater,indicatingtheab-senceofanyspeciescausingoxidationofSe(IV)→Se(VI)(Figure4).
Theredoxprocessistimeandconcentrationdependent.
Whenbacterialculturewasgrowninpresenceof40–100mg/Lselanate,nochangeincolourwasob-servedevenafterlongtime.
ItappearsasifthebacteriaareresistanttoSe(VI)reduction.
However,suchbacterialculturemaybeusedtoreducesolubleandtoxicSe(IV)tonontoxicandinsolubleSenanoparticles.
Itisalsoindica-tiveofbioremediationofSefromselenites.
AmporphousSenanoparticleshavebeensynthesizedfromsodiumseleniteinpresenceofShewanellasp.
HN-41inaqueousmediumunderanaerobicconditionstakingcareofreactiontime,seleniteconcentrationandbiomassofShewanella[59].
DifferenttypesoftheSenanopar-ticlesaresynthesizedusingprotein,peptidesandseveralotherreducingagents[1,60,61].
NanowiresandnanorodshavebeenfabricatedfromRhizobiumselenireducenssp.
,Dechlorosomasp.
,Pseudomonassp.
,Paracoccussp.
,Enter-obactorsp.
,Thaureasp.
,Sulfurospirilliumsp.
,Desulfovibriosp.
,andShewanellasp.
,[61-63].
IthasbeenreportedthattheparticlesizeisdecreasedinpresenceofO2.
Itisobvi-ousthatoxygenwillpromoteoxidationofSe(forwardre-action)asaconsequenceofwhichtheredoxstepbecomesslowerproducingsmallerSenanoparticles.
Selenitereduc-taseisalsohelpfulinthesynthesisofSenanoparticles.
Awiderangeofseleniteconcentrationstartingfrom0.
01,0.
05,0.
15,0.
25,0.
050,0.
75and1mMwereusedtostudytheeffectofconcentration,sizeandmorphology.
Averageparticlesizeforalltheaboveconcentrationswasnearly103±5.
1nm.
Forlargequantityofnanoparticlestheselen-iteconcentrationnotexceeding0.
1mMisneeded.
IthasbeenobservedfromTEMandSAEDimagethatSenano-particlesareamorphous[59].
Extracellularsynthesis[64]offairlysmallerparticlesoftheorderof47nmfromthefun-gus,Aspergillusterreuswasdonein60min.
Figure4Selenitereductionbythemixedmicrobialcultureisolatedfromagriculturalsoil.
SelenitereductionatdifferentSe(IV)concentrations(a)anddevelopmentofredcolorationinculturesafter5.
5h(b),23h(c)and48h(d)ofincubation[58].
Figure3Photoluminescencespectraofseleniumnanoparticlessynthesizedusingleafextract[55].
HusenandSiddiqiJournalofNanobiotechnology2014,12:28Page6of10http://www.
jnanobiotechnology.
com/content/12/1/28MicrobeslikeKlebsiellapneumoniae[31]andPseudo-monasalcaliphila[65]havealsobeenusedtosynthesizeSenanoparticlesingoodyield.
WhenNa2SeO3wasaddedtotheactivatedcultureofP.
alcaliphilathereactionstartedimmediatelybutcompletedafter48h[65].
Agradualcolourchangewithtimewasobservedinthefollowingorder:Grey→Red→IntenseRed0h6h48hThecharacteristicredcolourofSenanoparticles[37]wasdetectedspectrophotometricallyandhasbeenas-cribedtotheexcitationofthesurfaceplasmonvibrationofthemonoclinicSe.
Ithasbeennoticedthatparticlesizeisdirectlyproportionaltoreactiontimeanditrangesbetween50–500nm[21].
Fieldemissionscan-ningelectronmicroscopic(FESEM)imageshowsnano-particlesofvaryingsizeandshape.
TheFTIRspectraofthesampleswithandwithoutSenanoparticlesshowedthattheintensityofthespectralpeakscontainingSenanoparticlesisdrasticallydimin-ished[65]whichsuggestsstronginteractionbetweenSeatomsandtheproteinmoleculespresentintheP.
alcali-phila.
ThisistobenotedthattheinteractionbetweenSenanoparticlesandproteinissimplyelectrostaticbe-causetheintensityofsamplecontainingSeatomswasdecreasedfollowedbyanincreasein(NH)from3421to3435cm1.
TheRamanspectraalsosupportthefor-mationoftrigonalselenium(t-Se)andmonoclinicselen-ium(m-Se)bytheappearanceofpeaksat234and254cm1,respectively(Figure5).
Apeakat235cm1ismainlyduetochainlikestructureoft-Se.
Asthepeakat234cm1appearsafter48hofinoculation,itisconsid-eredasthetransformationofoneformofSeintoother.
TheFESEMimageswhichshowtheaccumulationofnanorodsonthenanoballs.
ThesizecanbecontrolledbyPVPatdifferenttimeofincubationofnanospheresrangingfrom20–200nm.
OnthebasisofabovestudiesapossiblemechanismfortheformationandtransformationofSenanoballstoSenanorodshasbeenproposed.
Zhangetal.
[65]pre-sumethatSeO32isreducedtoelementalseleniumbytheproteinexcretedbytheP.
alcaliphilaand,theirag-gregationgivesSenanoparticlesofvaryingsize[13].
ItistruethatproteinactsasreducingagentforSeO32butitisavailableasexcretionfromP.
alcaliphilaisnotcon-vincing.
Theexcretioncontainstoxins,pyrogensandtracesofproteinbuttheymaynotbesufficientforre-ductionofselenite.
Authorsalsosuggestthatlargem-SenanoballsarenotstableinsolutionandtheydissolvetoformSeatoms.
AfractionofdissolvedSeatomscrystallizeast-Seformingnanorods[66].
ItisnotruebecauseSeinatomicstateisnotsolubleinasolventbutstaysincolloidalform.
Itisamisconception.
However,PVPcontrolsthesizeofSenanoparticles.
IftheSenano-particleswithoutPVPareleftfor2–3weekstheyformaggregatesofdifferentshapesandsize.
SinceSeO32inionicformistoxictobacterialculture,thebacteriainselenitesolutionmaytherefore,dieandthedisintegratedproteinmaythenactasreducingagentforselenite.
Thelargem-SenanoparticlecannotdissolveinsolutiontogiveSeatomformingSe-nanorods.
Itisquitelikelythattheymaybesegregatedandrearrangedintonanorods.
SenanoparticlessynthesizedfromsodiumseleniteandglutathioneinaqueousmediumhadbeentestedforitsgrowthinhibitionefficacyagainstStaphylococcusaureus[67].
ItwasfoundthatgrowthofS.
aureuswasinhibitedinpresenceofSenanoparticleswithin3–4hwithaslowconcentrationas7–15μg/mlwhichsuggeststhatSenanoparticlesmaybeusedagainstbacterialinfections.
BiogenicSenanoparticlesfabricatedfromproteinpro-ducedbyE.
colihavebeencomparedwiththosesynthe-sizedfromchemicalreactionviaredoxmechanism[68].
TherearespecifictypesofproteinproducedbyE.
coli(AdhP,Idh,OmpC,AceA)whichareassociatedwithSenanoparticles.
TheyarealsoresponsiblefortheirFigure5RamanscatteringspectraofSeNPstrappedatdifferentincubationtimes:(a)24hand(b)48h[65].
HusenandSiddiqiJournalofNanobiotechnology2014,12:28Page7of10http://www.
jnanobiotechnology.
com/content/12/1/28uniformsizeanddistribution.
Oneoftheproteins(AdhP)wasfoundtobindstronglytoSenanoparticles.
E.
coliwasfoundtoproduceSenanoparticlesfrom2mMofSeO32inabout48hwhichwasdistinguishedbythechangeincolourfromcolourlesstodarkred.
TheamorphousSenanoparticlesthusproducedwerebe-tween10–90nm.
Sincethebacterialgrowthcontinuedeveninpresenceofselenite,itisconfirmedthatseleniteisnottoxictoE.
coliatthisconcentration.
Theenzymesalcoholdehydrogenase,propanol-preferring(ADHP),ACEP(Isocitratelyase),ENO,KPYKI,IDHandGLPKrequiremetalionsascofactorfortheiractivitywhiletheenzymesDCEP,ASTCandTNAArequirepyridoxalphosphateascoenzymewithoutwhichtheiractivityislost.
Theauthorshavenotdistinguishedbetweencofac-torandco-enzyme,theyhavetermedbothasmetalliccofactorandnon-metalliccofactorwhichismisleading.
Thecofactorsintheenzymearemetalionsbondedthroughacoordinatecovalentbondandcanacceptlonepairofelectronsfromthedonoratomsintheenzymeintotheirvacantorbitaltoformthebond.
TheSenano-particleisintheelementalstateandnometalinatomicstatecanbindtoproteinoranyelectrondonatingspe-cies.
Itistherefore;propertousethewordassociationofSenanoparticlestoproteinratherthanbonding.
ThesizeofSenanoparticlesproducedinpresenceofthepro-tein,alcoholdehydrogenasepropanol-preferring(AdhP)weremuchsmallerthanthoseproducedintheirab-sence.
However,sinceE.
colicontainsmanyotherpro-teinsthanonlypAdhP(purifiedprotein),thedecreaseinSenanoparticlesizemaybethecumulativeeffectofallproteinsavailableinE.
coli.
ConclusionBioreductionofselenateorselenitefrommicroorganismsuchasbacteria,fungiandplantextracthavebecomethefavouritepursuitofbiologist,chemistandengineers.
Itisexpectedthatinfuturethemetalwouldbeex-tractedbybiomineralizationbecausetheyproducethepurestformoftheelement.
Manyrawmaterialslikewastevegetables,fruitpeelsandleathercuttingsmaybeutilizedtoproduceelementalmetal/metalloidfromtheiroxide,halide,nitrate,sulphideandcarbonates.
Generally,protein,phenol,alcohol,flavonoidorsugararerequiredforthereductionofSeO32,SeO42andatleastoneoftheaboveorganicmoleculesispresentinmicrobesandplantextracts.
Theymaytherefore,beexploitedforthebiotransformationofselenateandselenidetoelementalSeofvariousshapeandsize.
Sincethereducedmetalsormetalloidsareinsolubleinaqueousmediumtheycanbeeasilysequestered.
Growthinhibitionofsomeofthebacterialstainsoccursduringtheredoxprocesswhichsuggeststhatselenite/selenatemaybeusedagainstinfec-tioncausedbysuchmicrobes.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsAHgatheredtheresearchdata.
AHandKSSanalysedthesedatafindingsandwrotethisreviewpaper.
Bothauthorsreadandapprovedthefinalmanuscript.
AcknowledgementsTheauthorsarethankfultothepublishersforthepermissiontoadopttheirfiguresforthisreview.
Authordetails1DepartmentofBiology,CollegeofNaturalandComputationalSciences,UniversityofGondar,P.
O.
Box196,Gondar,Ethiopia.
2DepartmentofChemistry,CollegeofNaturalandComputationalSciences,UniversityofGondar,P.
O.
Box196,Gondar,Ethiopia.
Received:15May2014Accepted:31July2014Published:16August2014References1.
DunganRS,FrankenbergerTJr:Microbialtransformationsofseleniumandthebioremediationofseleniferousenvironments.
BioremJ1999,3:171–188.
2.
TapieroH,TownsendDM,TewKD:Theantioxidantroleofseleniumandseleno-compounds.
BiomPharmaco2003,57:134–144.
3.
CoxDN,BastiaansK:UnderstandingAustralianconsumers'perceptionsofseleniumandmotivationstoconsumeseleniumenrichedfoods.
FoodQuaPref2007,18:66–76.
4.
TurakainenM,HartikainenH,SeppanenMM:Effectsofseleniumtreatmentsonpotato(SolanumtuberosumL.
)growthandconcentrationsofsolublesugarsandstarch.
JAgricFoodChem2004,52:5378–5382.
5.
HartikainenH,XueT,PiironenV:Seleniumasanantioxidantandpro-oxidantinryegrass.
PlantSoil2000,225:193–200.
6.
LyonsGH,GencY,SooleK,StangoulisJCR,LiuF,GrahamRD:SeleniumincreasesseedproductioninBrassica.
PlantSoil2009,318:73–80.
7.
IpC,ThompsonHJ,ZhuZ,GantherHE:Invitroandinvivostudiesofmethylseleninicacid:evidencethatamonomethylatedseleniummetaboliteiscriticalforcancerchemoprevention.
CancerRes2000,60:2882–2886.
8.
MillerS,WalkerSW,ArthurJR,NicolF,PickardK,LewinMH,HowieAF,BeckettGJ:Seleniteprotectshumanendothelialcellsfromoxidativedamageandinducesthioredoxinreductase.
ClinSci2001,100:543–550.
9.
ZhangY,ZhangJ,WangHY,ChenHY:Synthesisofseleniumnanoparticlesinthepresenceofpolysaccharides.
MaterLett2004,58:2590–2594.
10.
XieQ,DaiZ,HuangWW,ZhangW,MaDK,HuXK,QianYT:Large-scalesynthesisandgrowthmechanismofsingle-crystalSenanobelts.
CrystalGrowthDes2006,6:1514–1517.
11.
LiuMZ,ZhangSY,ShenYH,ZhangML:Seleniumnanoparticlespreparedfromreversemicroemulsionprocess.
ChinChemLett2004,15:1249.
12.
QuintanaM,Haro-PoniatowskiE,MoralesJ,BatinaN:Synthesisofseleniumnanoparticlesbypulsedlaserablation.
AppSurfSci2002,195:175–186.
13.
GatesB,MayersB,CattleB,XiaY:Synthesisandcharacterizationofuniformnanowiresoftrigonalselenium.
AdvFunMat2002,12:219–227.
14.
WangMCP,ZhangX,MajidiE,NedelecK,GatesBD:Electrokineticassemblyofseleniumandsilvernanowiresintomacroscopicfibers.
ACSNano2010,4:2607–2614.
15.
YangL,ShenY,XieA,LiangJ:Orientedattachmentgrowthofthree-dimensionallypackedtrigonalseleniummicrospheresintolargeareawirenetworks.
EurJInorChem2007,2007:4438–4444.
16.
FilippoE,MannoD,SerraA:Characterizationandgrowthmechanismofseleniummicrotubessynthesizedbyavaporphasedepositionroute.
CrystalGrowthDes2010,10:4890–4897.
17.
HusenA,SiddiqiKS:Carbonandfullerenenanomaterialsinplantsystem.
JNanobiotechno2014,12:16.
18.
HusenA,SiddiqiKS:Phytosynthesisofnanoparticles:concept,controversyandapplication.
NanoResLett2014,9:229.
HusenandSiddiqiJournalofNanobiotechnology2014,12:28Page8of10http://www.
jnanobiotechnology.
com/content/12/1/2819.
LiSK,ShenYH,XieAJ,YuXR,ZhangXZ,YangLB,LiCH:Rapid,room-temperaturesynthesisofamorphousselenium/proteincompositesusingCapsicumannuumL.
extract.
Nanotechno2007,18:405101–405109.
20.
GurunathanS,KalishwaralalK,VaidyanathanR,VenkataramanD,PandianSRK,MuniyandiJ,HariharanN,EomSH:Biosynthesis,purificationandcharacterizationofsilvernanoparticlesusingEscherichiacoli.
CollSurfB2009,74:328–335.
21.
WangT,YangL,ZhangB,LiuJ:ExtracellularbiosynthesisandtransformationofseleniumnanoparticlesandapplicationinH2O2biosensor.
CollSurfB2010,80:94–102.
22.
OremlandRS,StolzJ:Dissimilatoryreductionofselenateandarsenateinnature.
InEnvironmentalMetal–MicrobeInteraction.
EditedbyLovleyDR.
Washington,DC:ASMPress;2000:25.
23.
StolzJF,OremlandRS:Bacterialrespirationofarsenicandselenium.
FEMSMicroRev1999,23:615–627.
24.
BaesmanSM,BullenTD,DewaldJ,ZhangD,CurranS,IslamFS,BeveridgeTJ,OremlandRS:FormationoftelluriumnanocrystalsduringanaerobicgrowthofbacteriathatuseTeoxyanionsasrespiratoryelectronacceptors.
ApplEnvironMicrobiol2007,73:2135–2143.
25.
OremlandRS,HerbelMJ,BlumJS,LangleyS,BeveridgeTJ,AjayanPM,SuttoT,EllisAV,CurranS:StructuralandspectralfeaturesofseleniumnanospheresproducedbySe-respiringbacteria.
ApplEnvironMicrobiol2004,70:52–60.
26.
NarasingaraoP,HaggblomMM:Identificationofanaerobicselenate-respiringbacteriafromaquaticsediments.
ApplEnvironMicrobiol2007,73:3519–3527.
27.
LortieL,GouldWD,RajanS,McCreadyRG,ChengKJ:ReductionofSelenateandSelenitetoElementalSeleniumbyaPseudomonasstutzeriIsolate.
ApplEnvironMicrobiol1992,58:4042–4044.
28.
OremlandRS,BlumJS,CulbertsonCW,VisscherPT,MillerLG,DowdleP,StrohmaierFE:Isolation,growth,andmetabolismofanobligatelyanaerobic,selenate-respiringbacterium,strainSES-3.
ApplEnvironMicrobiol1994,60:3011–3019.
29.
SabatyM,AvazeriC,PignolD,VermeglioA:Characterizationofthereductionofselenateandtelluritebynitratereductases.
ApplEnvironMicrobiol2001,67:5122–5126.
30.
SharmaG,SharmaAR,BhaveshR,ParkJ,GanboldB,NamJS,LeeSS:Biomolecule-mediatedsynthesisofseleniumnanoparticlesusingdriedVitisvinifera(raisin)extract.
Molecules2014,19:2761–2770.
31.
FesharakiPJ,NazariP,ShakibaieM,RezaieS,BanoeeM,AbdollahiM,ShahverdiAR:BiosynthesisofseleniumnanoparticlesusingKlebsiellapneumoniaeandtheirrecoverybyasimplesterilizationprocess.
BrazJMicrobiol2010,41:461–466.
32.
DhanjalS,CameotraSS:AerobicbiogenesisofseleniumnanospheresbyBacilluscereusisolatedfromcoalminesoil.
MicrobCellFact2010,9:52.
33.
IngoleAR,ThakareSR,KhatiNT,WankhadeAV,BurghateDK:Greensynthesisofseleniumnanoparticlesunderambientcondition.
ChalcogenideLett2010,7:485–489.
34.
KlugHP,AlexanderLE:X-rayDiffractionProceduresforPolycrystallineandAmorphousMaterials.
NewYork,NY,USA:Wiley;1967.
35.
MukherjeeP,SenapatiS,MandalD,AhmadA,KhanMI,KumarR,SastryM:Extracellularsynthesisofgoldnanoparticlesbythefungusfusariumoxysporum.
ChemBioChem2002,5:461–463.
36.
MukherjeeP,AhmadA,SastryM,KumarR:BioreductionofAuCl4ionsbythefungus,Verticilliumsp.
andsurfacetrappingofthegoldnanoparticlesformed.
AngewChemIntEd2001,40:3585–3588.
37.
LinZH,WangCRC:Evidenceonthesize-dependentabsorptionspectralevolutionofseleniumnanoparticles.
MaterChemPhys2005,92:591–594.
38.
XiGC,XiongK,ZhaoQB,QianYT:Nucleation–dissolution–recrystallization:anewgrowthmechanismfort-Seleniumnanotubes.
CrystGrowthDes2006,6:577–582.
39.
CaoXB,XieY,ZhangSY,LiFQ:Ultra-thintrigonalseleniumnanoribbonsdevelopedfromseries-woundbeads.
AdvMater2004,16:649–653.
40.
FinleyJ:SeleniumfrombroccoliismetabolizeddifferentlythanSefromselenite,selenateorselenomethionine.
JAgricFoodChem1998,46:3702–3707.
41.
RobergeMT,BorgerdingAJ,FinleyJW:Speciationofseleniumcompoundsfromhighseleniumbroccoliisaffectedbytheextractingsolution.
JAgricFoodChem2003,51:4191–4197.
42.
FinleyJ:Theretentionanddistributionbyhealthyyoungmenofstableisotopesofseleniumconsumedasselenite,selenateorhydroponically-grownbroccoliaredependentonthechemicalform.
JNutr1999,129:865–871.
43.
FinleyJW,DavisC,FengY:Seleniumfromhigh-seleniumbroccoliprotectsratsfromcoloncancer.
JNutr2000,130:2384–2389.
44.
GantherHE,LawrenceJR:Chemicaltransformationsofseleniuminlivingorganisms:improvedformsofseleniumforcancerprevention.
Tetrahedron1997,53:12299–12310.
45.
IpC,GantherHE:Activityofmethylatedformsofseleniumincancerprevention.
CancerRes1990,50:1206–1211.
46.
IpC,LiskD:Characterizationoftissueseleniumprofilesandanticarcinogenicresponsesinratsfednaturalsourcesofselenium-richproducts.
Carcinogen1994,15:573–576.
47.
IpC,LiskD:Enrichmentofseleniuminalliumvegetablesforcancerprevention.
Carcinogen1994,9:1881–1885.
48.
IpC,LiskJ,StoewsandG:Mammarycancerpreventionbyregulargarlicandseleniumenrichedgarlic.
NutrCancer1992,17:279–286.
49.
IpC,LiskDJ:Efficacyofcancerpreventionbyhighseleniumgarlicisprimarilydependentontheactionofselenium.
Carcinogen1995,16:2649–2652.
50.
LuJ,PeiH,IpC,LiskDJ,GantherH,ThompsonHJ:Effectofanaqueousextractofselenium-enrichedgarliconinvitromarkersandinvivoefficacyofcancerprevention.
Carcinogen1996,17:1903–1907.
51.
ChenH,ShinDW,NamJG,KwonKW,YooJB:Seleniumnanowiresandnanotubessynthesizedviaafaciletemplate-freesolutionmethod.
MatResBull2010,45:699–704.
52.
PrasadKS,SelvarajK:BiogenicsynthesisofseleniumnanoparticlesandtheireffectonAs(III)-inducedtoxicityonhumanlymphocytes.
BiolTraceElemRes2014,157:275–283.
53.
RamamurthyC,SampathKS,ArunkumarP,KumarMS,SujathaV,PremkumarK,ThirunavukkarasuC:Greensynthesisandcharacterizationofseleniumnanoparticlesanditsaugmentedcytotoxicitywithdoxorubicinoncancercells.
BioprocessBiosystEng2013,36:1131–1139.
54.
KongH,YangJ,ZhangY,FangY,NishinariK,PhillipsGO:Synthesisandantioxidantpropertiesofgumarabic-stabilizedseleniumnanoparticles.
IntJBiolMacromol2014,65:155–162.
55.
PrasadKS,PatelH,PatelT,PatelK,SelvarajK:BiosynthesisofSenanoparticlesanditseffectonUV-inducedDNAdamage.
CollSurfB2013,103:261–266.
56.
StaceyB,SarkerN,DowdellA,BanerjeeI:Thespontaneousformationofseleniumnanoparticlesongallicacidassembliesandtheirantioxidantproperties.
FordUnderResJ2011,1:41–46.
57.
BajajM,SchmidtS,WinterJ:FormationofSe(0)nanoparticlesbyDuganellasp.
andAgrobacteriumsp.
isolatedfromSe-ladensoilofNorth-EastPunjab,India.
MicrobialCellFact2012,11:64.
58.
ChenT,WongYS,ZhengW,BaiY,HuangL:SeleniumnanoparticlesfabricatedinUndariapinnatifidapolysaccharidesolutionsinducemitochondria-mediatedapoptosisinA375humanmelanomacells.
CollSurfB2008,67:26–31.
59.
TamK,HoCT,LeeJH,LaiM,ChangCH,RheemY,ChenW,HurHG:GrowthmechanismofamorphousseleniumnanoparticlessynthesizedbyShewanellasp.
HN-41.
BiosciBiotechBioch2010,74:696–700.
60.
HunterWJ,KuykendallLD,ManterDK:Rhizobiumselenireducenssp.
nov.
:aselenite-reducingα-Proteobacteriaisolatedfromabioreactor.
CurrMicrobiol2007,55:455–460.
61.
RathgeberC,YurkovaN,StackebrandtE,BeattyJT,YurkovV:Isolationoftellurite-andselenite-resistantbacteriafromhydrothermalventsofthejuandefucaridgeinthepacificocean.
ApplEnvironMicrobiol2002,68:4613–4622.
62.
MoritaM,UemotoH,WatanabeA:Reductionofseleniumoxyanionsinwastewaterusingtwobacterialstrains.
EngLifeSci2007,7:235–240.
63.
KlonowskaA,HeulinT,VermeglioA:SeleniteandtelluritereductionbyShewanellaoneidensis.
ApplEnvironMicrobiol2005,71:5607–5609.
64.
ZareB,BabaieS,SetayeshN,ShahverdiAR:Isolationandcharacterizationofafungusforextracellularsynthesisofsmallseleniumnanoparticles.
NanomedJ2013,1:13–19.
65.
ZhangW,ChenZ,LiuH,ZhangL,GaoaP,LiD:BiosynthesisandstructuralcharacteristicsofseleniumnanoparticlesbyPseudomonasalcaliphila.
CollSurfB2011,88:196–201.
HusenandSiddiqiJournalofNanobiotechnology2014,12:28Page9of10http://www.
jnanobiotechnology.
com/content/12/1/2866.
GatesB,YinY,XiaY:Asolution-phaseapproachtothesynthesisofuniformnanowiresofcrystallineseleniumwithlateraldimensionsintherangeof10–30nm.
JAmChemSoc2000,122:12582–12583.
67.
TranPA,WebsterTJ:SeleniumnanoparticlesinhibitStaphylococcusaureusgrowth.
IntJNanome2011,6:1553–1558.
68.
DobiasJ,SuvorovaEI,Bernier-LatmaniR:Roleofproteinsincontrollingseleniumnanoparticlesize.
Nanotechno2011,22:195605.
doi:10.
1186/s12951-014-0028-6Citethisarticleas:HusenandSiddiqi:Plantsandmicrobesassistedseleniumnanoparticles:characterizationandapplication.
JournalofNanobiotechnology201412:28.
SubmityournextmanuscripttoBioMedCentralandtakefulladvantageof:ConvenientonlinesubmissionThoroughpeerreviewNospaceconstraintsorcolorgurechargesImmediatepublicationonacceptanceInclusioninPubMed,CAS,ScopusandGoogleScholarResearchwhichisfreelyavailableforredistributionSubmityourmanuscriptatwww.
biomedcentral.
com/submitHusenandSiddiqiJournalofNanobiotechnology2014,12:28Page10of10http://www.
jnanobiotechnology.
com/content/12/1/28

Pia云服务商春节6.66折 美国洛杉矶/中国香港/俄罗斯和深圳机房

Pia云这个商家的云服务器在前面也有介绍过几次,从价格上确实比较便宜。我们可以看到最低云服务器低至月付20元,服务器均采用KVM虚拟架构技术,数据中心包括美国洛杉矶、中国香港、俄罗斯和深圳地区,这次春节活动商家的活动力度比较大推出出全场6.66折,如果我们有需要可以体验。初次体验的记得月付方案,如果合适再续约。pia云春节活动优惠券:piayun-2022 Pia云服务商官方网站我们一起看看这次活...

LayerStack$10.04/月(可选中国香港、日本、新加坡和洛杉矶)高性能AMD EPYC (霄龙)云服务器,

LayerStack(成立于2017年),当前正在9折促销旗下的云服务器,LayerStack的云服务器采用第 3 代 AMD EPYC™ (霄龙) 处理器,DDR4内存和企业级 PCIe Gen 4 NVMe SSD。数据中心可选中国香港、日本、新加坡和洛杉矶!其中中国香港、日本和新加坡分为国际线路和CN2线路,如果选择CN2线路,价格每月要+3.2美元,付款支持paypal,支付宝,信用卡等!...

Megalayer优化带宽和VPS主机主机方案策略 15M CN2优化带宽和30M全向带宽

Megalayer 商家主营业务是以独立服务器和站群服务器的,后来也陆续的有新增香港、菲律宾数据中心的VPS主机产品。由于其线路的丰富,还是深受一些用户喜欢的,有CN2优化直连线路,有全向国际线路,以及针对欧美的国际线路。这次有看到商家也有新增美国机房的VPS主机,也有包括15M带宽CN2优化带宽以及30M带宽的全向线路。Megalayer 商家提供的美国机房VPS产品,提供的配置方案也是比较多,...

se95se.com为你推荐
百花百游百花净斑方多少钱一盒百度关键词工具如何通过百度官方工具提升关键词排名长尾关键词挖掘工具怎么挖掘长尾关键词,可以批量操作的那种www.bbb336.comwww.zzfyx.com大家感觉这个网站咋样,给俺看看呀。多提意见哦。哈哈。www.gegeshe.com有什么好听的流行歌曲www.7788dy.com回家的诱惑 哪个网站更新的最快啊www.7788dy.comwww.tom365.com这个免费的电影网站有毒吗?javmoo.com找下载JAV软件格式的网站杨丽晓博客杨丽晓今年高考了吗?www.se222se.comhttp://www.qqvip222.com/
全能虚拟主机 域名大全 我的世界服务器租用 evssl证书 xfce 线路工具 免费个人博客 java虚拟主机 智能骨干网 免空 免费活动 服务器是干什么的 免费网页申请 shopex主机 服务器是干什么用的 空间登入 百度云加速 lamp是什么意思 稳定空间 免费稳定空间 更多