initial75ff.com
75ff.com 时间:2021-03-17 阅读:(
)
1MoralImpossibilityinthePetersburgParadox:ALiteratureSurveyandExperimentalEvidenceTiborNeugebauerUniversityofLuxembourgAbstract:ThePetersburggambleconstitutesanimportantparadoxinthehistoryofideas.
Ithasbeenthought-provokingandledtoimportantdevelopmentsinthenaturalandbehavioralsciences.
Theproposedresolutionsoftheparadoxhaveinvolveddeepreflectionsaboutthehumanmindbysomeofthemostcelebratedscientistsofthepastthreecenturies.
Thispaperdescribestheparadox,andfocusesontheresolutionsthathavebeenadvancedintheliteraturewhilealludingtothehistoricalcontext.
Inparticular,Bernoulli'smoralimpossibilityconceptisrevisitedanddiscussed.
Thestudycontributesexperimentaldatatothediscussionoftheparadox.
Thedecision-makingofsubjectsisinlinewiththenotionofmoralimpossibility;invaluingthegamble,peopleneglecttheeventsthatoccuronlywithsmallprobability.
Thestudyelicitsthesizeoftheprobabilitythatexperimentalsubjectsseemtoneglectwhentheyformulatetheirwillingness-to-payforthePetersburggamble.
Itisarguedthatthisbehaviorisboundedlyrational,astheindividuallevelofmoralimpossibilitycanbeinterpretedasanindividualaspirationlevelintheartofconjecturing.
Keywords:Petersburggamble;experimentJEL-code:B3;C44;C9;D8;G1;N0Author'saddress:UniversitédeLuxembourgFacultédeDroit,d'EconomieetdeFinanceCampusKirchberg,K24,rueAlbertBorschetteL-1246Luxembourg+352466644-6285(telephone);-6811(fax)Tibor.
Neugebauer@uni.
luIthankStephanLengsfeld,FrancisLagos,JuanAntonioLacomba,HikmetArslanoluandzgürToparlakfortheirsupportinthedatacollectionprocessandJohnHeyforrevisinganddiscussingtheinstructions.
HelpfulcommentsbyOttwinBecker,MichaelBirnbaum,JimCox,RachelandDavidCroson,ErnanHaruvy,JohnHey,GuillaumeHollard,AstridHopfensitz,RudolfKerschbamer,PatrickKinsch,MartinKocher,LouisLevy-Garboua,UlrichSchmidt,KlausSchredelseker,ReinhardSelten,MatthiasSutterandseminarparticipantsatLUISS,UCFullerton,UniversityofInnsbruck,UniversityofLuxembourg,UniversityIofParis,UniversityofDallas,2008ESAmeetingTucsonandthe2008GEW-TagungMannheimareacknowledged.
PartofthisworkwasdoneduringmyresearchstayatLUISSinFebruary2007.
IthankLUISSandespeciallyJohnHeyforthehospitalityreceived.
2[Since]itisonlyrarelypossibletoobtaincompletecertaintythatiscompleteineveryrespect,necessityanduseordainthatwhatisonlymorallycertainbetakenasabsolutelycertain.
Itwouldbeuseful,accordingly,ifdefinitelimitsformoralcertaintywereestablishedbytheauthorityofthemagistracy.
Forinstance,itmightbedeterminedwhether99/100ofcertaintysufficesorwhether999/1000isrequired.
Thenajudgewouldnotbeabletofavoroneside,butwouldhaveareferencepointtokeepinmindinpronouncingajudgment.
(JamesBernoulli1713;quotedfromthecommentedtranslation2006,p.
321)1Intheartofconjecturing(JamesBernoulli1713),i.
e.
themeasuringofanevent'sprobability,theapplicabilityofprobabilitytheorytoempiricaldatacruciallyhingesontheconceptofmoralcertainty.
Somethingismorallycertainifitsprobabilitycomessoclosetocompletecertaintythatthedifferencecannotbeperceived.
Incontrast,somethingismorallyimpossibleifithasonlyasmuchprobabilityasthemorallycertainfallsshortofcompletecertainty(Bernoulli2006,p.
316).
Moralimpossibilityisthusdefinedasthesubjectiveprobabilitylevelwhichisnegligiblysmallintheconjecturingonthelikelycasesofevents.
Onlybyestablishmentofsuchaprobabilitylevelcanweachievethecertaintythatweneedforscientificknowledgeaccumulation.
Withoutacceptingsuchaprobabilitylevel,conjecturingaboutthelikelycasesofeventsisonlypossibleinextremecasessincecompletecertaintycannotusuallybeattainedthroughexperimentationandobservation.
Onehistoricallyimportantexampleofthegamesofchanceinwhichmoralcertaintyandcompletecertaintyleadtoextremelydifferentvaluationsistheso-calledPetersburgparadoxinwhichafaircoinisrepeatedlytosseduntilheadsshowsupforthefirsttime.
Whileanon-zeroprobabilityexiststhatthecoinistossedforever,afactthatposesanon-finitemathematicalexpectedpayoffforthegamble,theoccurrenceofaninfiniterunoftailsismorallyimpossible.
2Alongfiniterunisalsomorallyimpossible,however,inasingletrialofthegamble.
Longsimulationsinexperimentalstatisticshardlyeverreporttheoccurrenceofmorethantwentysubsequenttosses.
Arunoftwentytailsapproximatelycorrespondstotheoddsofoneinamillion.
Inthehistoryofthought,ithasbeenproposedthatinasingletrialofthePetersburggambleevenarelativelysmallnumberoftossescanbeconsideredasmorallyimpossible.
Inthispaper,thispropositionisexperimentallytestedthroughtheelicitationofsubjects'willingness-to-payforvarioustruncatedversionsofthePetersburggamblethatdifferinthemaximumpayoff.
TheexperimentaldatashowthatallversionsofthePetersburggamblewhichallowformorethansixrepeatedtossesoftailselicitthesamewillingness-to-pay.
Fromthisevidenceitisconcluded1Throughoutthepaperthe"ArsConjectandi"ofJamesBernoulli(1713)isquotedbyreferringtoDudleySylla'sEnglishtranslationandcommentary,"TheArtofConjecturing…,"whichwaspublishedin2006.
2Anevenmorestrikingexamplewheremoralimpossibilityispittedagainstmathematicalprobabilityistheeventthatamonkeyrandomlyhittingkeysonatypewriterwillwriteagiventext,suchastheBible(EmileBorel1914).
Again,whilethiseventhasamathematicalprobabilitygreaterthanzero,itismorallyimpossiblethatitoccurs.
Orimaginethepossibilitythatwithinagenerationofmankindonlyboysandnogirlsarebornorviceversa;althoughthiseventismorelikelythananinfiniterunoftailswhenafaircoinistossedrepeatedlyitisstillmorallyimpossible.
3thatsubjectsneglectthoseoutcomesinthePetersburggamblewhichoccurwithaprobabilitysmallerthanorequaltooneinsixty-four.
Althoughthenotionofmoralimpossibilityisolderthanexpectedutilitytheory,ithasbeenlargelyneglectedineconomicsand,inparticular,inthemoderndiscussionofthePetersburgparadox.
ExpectedutilityhasbeentheonlystandardsolutiontothePetersburgparadoxineconomicstextbooks.
Nevertheless,thenotionthatthereexistsasmallestprobability-unitofinterestfordecision-makingunderuncertaintyhasapplicationstoeconomicsandthesocialsciencesfarbeyondthePetersburggamble.
3Ineverydaylife,peopleneglectcaseswhoseeventstheyperceiveasbeingunlikely.
Ultimatelytheneglectofsmallprobabilitiesmighthaveincreasedthelikelihoodoftheoccurrenceofgreatdisasters(NassimNicholasTaleb2007;seealsoKlausSpremann2008).
4Thepaperisorganizedasfollows.
ThefollowingsectiondescribesthePetersburggambleandalludestothehistoricalperspective.
5Inadditiontoearliersurveys,thepresentpaperincludestheexperimentalcontributionstothePetersburgparadox(insection3),highlightstheapplicationofmoralimpossibilityanduncoversinterestingdetailsthathavebeenneglectedinthehistoryoftheparadox.
Theseunnoticeddetailsinclude,forinstance,thetensionbetweentheoutcomeofthelawoflargenumbersandthetheoremoninfiniteserieswhichmusthavepuzzledthefounderofthegamble,NicholasBernoulli,andwhichheproposedtoresolvebyinvokingthemoralimpossibilityconcept;theparadoxicalriskpreferencethatarisesforasellerofthePetersburggamble;andthedilutionconcernthatcanarisewhenaninstitutionoffersthegambleforsale.
Thereviewoftheliteraturecontinuesinsection2withafocusonthesolutionconcepts3Amongotheradvantages,weobtainawell-definedunboundedutilityfunction(PeterWakker1993).
4ApamphletbyColeenRowleyarguesthattheFBIhadpriorinformationabouttheterroristattackof9/11,andifthetracehadbeenseriouslyfolloweduptheattackcouldhavebeenprevented(http://www.
time.
com/time/covers/1101020603/memo.
html).
Evidently,therisksofdeterioratingrealestatemarketswereneglectedinwhatledtothesubprimecrisis(http://knowledge.
wharton.
upenn.
edu/article.
cfmarticleid=1998).
Inrecentmonths,thecolliderexperimenthasstartedinGeneva.
Doubtshavebeenraisedthat,intheexperiment,blackholescanbegeneratedthatmaysubsumetheworld.
Thesefearshavebeenplayeddownbyspecialistsas'baloney',althoughwehavenoexperiencewithblackholesandnomathematicalproofhasbeenprovidedthatrendersthesefearsinvalid.
JohnHuth,aprofessorofphysicsatHarvard,wascited(http://edition.
cnn.
com/2008/TECH/09/08/lhc.
collider/)assayingthat"thegravitationalforceissoweakthatyou'dhavetowaitmany,many,many,many,manylifetimesoftheuniversebeforeoneofthesethingscould[get]bigenoughtoevengetclosetobeingaproblem.
"Thisstatementcouldbetakenasaconfirmationthataterribledisastercanhappenwithavery,very,very,very,verysmallprobabilitygreaterthanzero.
Theworldcommunityseemstoacceptrunningthisrisk.
5ThePetersburgparadoxhasseendedicatedsurveysbyEmanuelCzuber(1882),PaulA.
Samuelson(1977),GérardJorland(1983;1987),GlennShaffer(1988),andJacquesDutka(1988).
Theliteraturehasbeenpartlysurveyedandhistoricallydiscussed,furthermore,inIsaacTodhunter(1865),JohnMaynardKeynes(1921),KarlMenger(1934),GeorgeStigler(1950),KennethArrow(1952),LeonardSavage(1954),OttoSpiess(1975),MauriceAllais(1979),GilbertBassett(1987),andinLorraineDaston(1988).
Furthermore,thestoryiscoveredinmanyinterdisciplinarybooks,includingeconomics(e.
g.
Hans-WernerSinn1980;KlausSchredelseker2002),historyofscience(PeterBernstein1996),mathematicsandstatistics(RichardEpstein1977;WarrenWeaver1982),philosophy(RichardJeffrey1983;MichaelResnik1987;IanHacking2001),sociology(RussellHardin1982),psychology(ScottPlous1993)andappearsonseveralInternetpages(e.
g.
http://www.
wikipedia.
org;http://plato.
stanford.
edu/archives/win1999/entries/paradox-stpetersburg/).
4thatconstitutethetestablehypothesesfortheexperiment,theresultsofwhicharedetailedinsection4.
Inlinewiththepresentedevidence,moralimpossibility(i.
e.
theneglectofsmallprobabilities)seemstobethemostconvincinghypothesis.
Thisconclusionisbackedupwiththepresentationofthreeexperimentalstudies.
ThefirststudyofthePetersburggambleshowsthatunlikelypayoffshavenoimpactonsubjects'revealedwillingness-to-payasthesamevaluationsareelicitedfordifferentlengthofthegamble.
Theothertwostudiesfollowuponthisresultandelicitthethresholdlevelbeyondwhichthesevaluationsdonotchange.
Allgamblesthatinvolvedprobabilitylevelssmallerthan1/16andmaximumpayoffsgreaterthan16Euroelicitedthesamedistributionofvaluations.
Fromthisobservationitisconcludedthatthesmallprobabilitiesofhigherpayoffsareneglected,assumingthatthesmallamountofmaximumpayoffcannotrepresentalevelofmaximumutility.
Section5summarizesanddiscussestheresultsofthepaper.
1ThebirthoftheproblemOnSeptember9,1713,sothestorygoes,NicholasBernoulliproposedthefollowingprobleminthetheoryofgamesofchance,after1768knownastheStPetersburgparadox(SandorCsrg2001,p.
62),inalettermailedfromBaseltothemathematicianPierreReymonddeMontmort(DanielBernoulli1954,p.
33).
6Petertossesacoinandcontinuestodosountilitshouldlandheadswhenitcomestotheground.
HeagreestogivePauloneducatifhegetsheadsontheveryfirstthrow,twoducatsifhegetsitonthesecond,fourifonthethird,eightifonthefourth,andsoon,sothatwitheachadditionalthrowthenumberofducatshemustpayisdoubled.
SupposeweseektodeterminethevalueofPaul'sexpectation.
Theauthoroftheproblem,NicholasBernoulli(1687–1759),wastheleadingfigureinstochasticsintheseconddecadeoftheeighteenthcentury(Csrg2001,p.
60;seealsoAndersHald1990).
In1711,heprovidedageneralsolutiontothemostdifficultprobleminstochasticsofthattime,thedurationofplay(KarlKohli1975),whichwasageneralizationofBlaisePascal's(1623–1662)6ThegamblereceiveditsnamefromthefactthattheseminalpaperofDanielBernoulliwaspresentedandpublishedinthejournaloftheImperialAcademyofSciencesinSaintPetersburg,whichwasfoundedbyCatherinetheGreatin1725.
IhavefoundafirstreferencetothePetersburgprobleminthememoir23ofJeanleRondd'Alembert(1768,p.
78);inhiscontribution,d'Alembertrefersfirsttothe"probleminthememoirsofPetersburg"beforeheswitchestotheterm"Petersburgproblem"whichheusesthereafterinalllatercontributions(seealsoJorland1987,p.
165).
TheoriginalproblembyNicholasBernoulliinvolvedtherollofthedie(Montmort1713,p.
402).
TheflipofthecoinwasintroducedtotheproblembyGabrielCramer,whothusreformulatedtheproblemofNicholasBernoulliintoitsdefiniteforminaletterfromLondondatedMay21,1728(seeSpiess1975).
Intheoriginalproposal,NicholasBernoullipostedfiveproblemstoMontmort,ofwhichthelasttwowerepredecessorsofthePetersburggamble(seeequations(1)and(2)below).
Thefourthprobleminvolvedalotterythatpaidone"ECU"foreachrollofanordinarydieuntilsixpointswereachievedforthefirsttime,i.
e.
thelotterypaysk+1ifkisthenumberofrollsofthediebeforesixpointsshowupfirst.
Thefifthprobleminvolvedthepowerseriesofpayoffs2k,3k,k2,andk3,substitutingforkinthelotteryofthefourthproblem.
Thedifferencebetweenthefourthandthefifthproblemisthatthefourthproblemyieldsanexpectedpayoffofsix,whiletheexpectationsinproblem5donotallexist.
5problemofpointsandHuygens'sgambler'sruinproblem(seealsoKeithDevlin2008).
ItshouldbenotedthattheproblemofthedurationofplaywasintroducedbyMontmort(1708)andthatitismethodologicallysimilartothePetersburggamble.
7Nicholaswasthestudentandnephewofthefounderofprobabilitytheory,JamesBernoulli,andwrotetheforewordtotheposthumouslypublishedArsConjectandi,i.
e.
theunfinishedmasterpieceofhisuncle,in1713,whichcontainedthefirstproofofthelawoflargenumbers.
8NicholasalsoprovidedaproofofthelawoflargenumbersinalettertoMontmortwhereheindirectlyintroducedthenormaldistributionthusprecedingAbrahamdeMoivre(OscarSheynin1970,p.
232).
James,themostfamousrepresentativeofthewholeBernoullihadthegreatvisiontoprovide,viathelawoflargenumbers,ajustificationforthemeasurementofempiricalprobabilitiesfromobservedfrequencies.
Withincreasingsamplesize,heargued,onecanlearnfromexperiment,aposteriori(i.
e.
aftertheeventhashappened),thehiddenprobabilitiesofcasesinwhichaneventcanoccur.
Owingtohisearlydeath,however,hecouldnotfinishtheimportantfourthpartoftheArsConjectandi,whosetitleindicatesapplicationsofprobabilitytheorytocivil,moralandeconomicaffairsbutwhosecontentlackssuchapplications.
9NicholasBernoulli(1709)carriedonthisprojectandappliedhisuncle'stheorytomoralsandthesocialsciencesinhisthesisDeusuartisconjectandiiniure.
10Healso7Theproblemofthedurationofplay,alsoknownastheruinproblem(seebelowfortheformulationoftheproblemofruinbyMauriceAllais1979),maybeformulatedasfollows:twoplayers,PeterandPaul,areendowedwithmandnducatsrespectively.
TheyrepeatedlyplayagameinwhichPaulhasprobabilityofwinningpandPeterhasprobabilityq=1–p.
Thewinnerinagamegetsaducatfromtheloser.
Thegameisrepeateduntiloneoftheplayershaslostallhisducats.
WhatistheprobabilitythatthegameendsatthekthgambleorbeforeMontmort(1708)solvedthisgameforthespecialcaseofm=n=3andp=q=.
8ThelawoflargenumbersshowsthatthesequenceofindependentBernoullitrialsconvergestoitsexpectationwithanincreasingnumberofobservations.
Beforethename"thelawoflargenumbers"wasintroducedtotheliteraturebySimeonDennisPoisson(1781–1840),itwascalledBernoulli'stheorem(seeTodhunter1865).
9JamesBernoullihadalreadystartedworkingonhismasterpiecetwentyyearsbeforehisdeath.
Fromthereadingofhisscientificdiary,Mediationes,onecanconcludethattheproofforthelawoflargenumberswaswrittenearlier,sometimeduringtheyears1689to1692(ibid.
,p.
32).
Jamessaidthedelayinpublicationwasbecauseofhisbadhealthandlazinessatwriting(ibid.
,p.
36).
Healsosaidthatthemostimportantpart,theapplicationtocivil,moralandeconomicmatters,wasmissing.
Thusithasbeensuggestedthathedidnotpublishthebookbecausehelackedbothdataandknowledgeofeconomicissuestowhichhecouldapplyhistheory(ibid.
,p.
49).
HeaskedGottfriedWilhelmLeibniz(1646–1716)forbothdata(intheformofabookonlifeannuitiesbyJandeWitt(1675),aformerstudentofRenéDescartes(1596–1650))andproposalsforapplications,butdidnotreceiveeitherbeforehisdeath(ibid.
,p.
49).
AsNicholasBernoulliwritesintheforewordtotheArsConjectandi,thepublishersmighthavehopedthatJames'sbrother,John(=Johann)Bernoulli(1667-1748),whowasJames'ssuccessortothechairofmathematicsatBaselandthesupervisorofNicholas'sthesisafterJames'sdeath,wouldsupplythemissingpart.
Nicholasreiteratesthattheyalsotriedtogivethejobtohim,buthedeclinedbecausehefelthimselfunequaltoit(ibid.
,p.
129).
WhileNicholaswrotetheforewordandsuppliedapageoferratatothepublication,hewasnotthepublisheroftheArsConjectandiashasrepeatedlybeenstatedintheliterature.
Asrecentresearchshowed,therehasbeenhistoricalconfusion(possiblyresultingfromtheentrytotheMathematischesLexikonbyChristianvonWolffin1716),asthesonofJames,apainternamedNicholas"theyounger"andborninthesameyearasNicholas,tookthebooktothepublisher(Bernoulli2006,p.
60).
10ThetitleofhisthesistranslatesintoEnglishas"theusageoftheartofconjecturinginjurisprudence.
"NicholassubmittedthethesistothelawfacultyatBaselin1709tobecomeadoctoroflaw.
Intheforewordtohisthesisheacknowledgesthegreatinfluenceofhisuncle'sunpublished6offeredtosupplytheunfinishedpartstotheArsConjectandi(ashementionedinalettertoLeibniz)but,intheend,thefamilydecidedtopublishthemasterpiece"asis"inordertounderlineJames'spriorityinthefoundationofprobabilitytheory(Bernoulli2006,p.
61).
Intheforewordtohisuncle'smasterpiece,Nicholasinvitesthereaderand,namely,MontmortanddeMoivre,toapplythecalculusofprobabilitiestomorals,economicsandpolitics.
Accordingtothetheoryofthesummationofinfiniteseries,whichwealsoowetoJamesBernoulli,oneobtainsthemathematicalexpectationofthePetersburggamblebysummingtheseriesoftheprobabilityweightedpayoffs.
Eachproductofprobabilityandoutcomeinthisseriesyieldsonehalf;thefirsttossofthecoinendsthegameyieldingoneducatwiththeprobabilityonehalf,thesecondtossofthecoinendsthegameyieldingtwoducatswithaprobabilityofonequarter,etc.
LettheexpectationoperatorbedenotedbyE,andXistherandomvariablethatdescribesthepossibleoutcomes;equation(1)givesPaul'sexpectation.
∑=∞→*=+++=niiinXE021221lim.
.
.
844221][(1)Theseriesisdivergent;ithasnofiniteexpectation(foradiscussionseeJohnBroome1995).
Thefactthattherighthandsideisinfinitesuggestsariskneutralgamblershouldbewillingtopayanyfixedamounttopurchasetherighttoplaythegamble.
ThePetersburggamblewasthelastoffivemathematicalproblemswhichNicholaspresentedinthelettertoMontmort.
Thepreceding,fourth,problemwasidenticaltothefifthproblemintermsofprobabilitiesbutinvolvedapayoffstreamthatincreasedbyonlyoneducatpertossofthecoinratherthanbydoublingthestakesoneachtoss,asinequation(1).
Whilethefourthproblemallowsalsoanunboundedpayoff,thepayoff-probabilityproductsareconverging,andthereforetheexpectationisfinite,asacknowledgedinequation(2).
∑=∞→=*=+++=niiniXE0221lim.
.
.
834221][(2)Acomparisonofthesumsin(1)and(2)revealsthatthepayoffpowerfunctionofiproducesthedivergenceoftheexpectationinthefirstequation.
NicholasBernoullistatedthatthediscrepancybetweentheseproblemswas"mostcurious"(Montmort1713,p.
402).
11WithhisexpertiseonmanuscriptArsConjectandionhischoiceofsubject.
Inthethesis,healsoaddressedproblemsthatwerediscussedinJames'sscientificdiary,Meditationes,whichwasnotintendedforpublication.
Beforehisthesis,Nicholasrespondedtohisuncle'sworkonthesummationofinfiniteseriesinhisdefenseforthemaster-of-artsdegreein1704(Bernoulli2006,p.
55).
HetaughtmathematicsattheUniversityofPaduabetween1716and1719whereheworkedondifferentialequationsandgeometry.
AttheUniversityofBaselhebecameaprofessoroflogicsin1722andaprofessoroflawin1731.
HecorrespondedwithMontmort(1678-1719)anddeMoivre(1667-1754)andalsowithLeibnizonconverginganddivergingseriesin1712and1713(JacquesDutka1988,p.
20).
BiographiesofNicholasBernoullihavebeensuppliedbyJoachimOttoFleckenstein(1968),Kohli(1975),AdolpheYouschkevitch(1987),Hald(1990),Csrg(2001),NorbertMeusnier(2006)andBernoulli(2006).
11Itisimaginablethatthisremarkandtheeye-catchingexpositionoftheproblemmayhavehadaninfluenceonsomeofthehistoricalsolutionproposals.
Forinstance,DanielBernoulli(1738)proposedtosumtheprobabilityweightedlogarithmofpayoffsin(1)insteadoftheprobabilityweightedpayoffs(seethefollowingsection).
7infiniteseriesandthelawoflargenumber,theexpectationsinequations(1)and(2)musthaveappearedextremelypuzzlingtoNicholas.
Ononehand,wehavetheapproximationduetotheinfiniteseriestheorem;ifafaircoinyieldsaninfiniterunofheads,theoutcomeexceedsanyboundinbothproblems.
Yet,theprobabilityweightedaverageisassumedtobeasmallfinitenumberinonecasebutinfiniteintheother.
Thequestionseemstobepermittediftherearedegreesofinfinity,andthatiswhatNicholasasked.
12Ontheotherhandandimpliedbythelawoflargenumbers,ifafaircoinistossedinfinitelyoftentherelativefrequencyofheadsandtailsmustbethesamewithprobabilityone.
Asaconsequence,aninfiniterunofheadsisimpossible.
ThisobvioustensionbetweentheoutcomesoftheinfiniteseriestheoremandthelawoflargenumberscanberesolvedinthetheoryofJamesBernoullibyrecurringtothemoralimpossibilityconceptwhichalsomakesitpossibletonarrowthefairvaluesofthetwogambles(1)and(2)whoseintuitivevaluesseemnottodifferbymuch.
Montmortwasnotinterestedintheapplicationofprobabilitytheorytomoralsandethics(Csrg2001,p.
61)andapparentlydidnotcontributetothediscussionoftheproblem.
13AfterMontmort'sdeath,theyoungmathematicianGabrielCramerproposedtoNicholasBernoullitworesolutionstotheproblemin1728.
InaletterwhichisreproducedinandappendedtothepaperofDanielBernoulli(1954,p.
33),Crameralsostatestheparadox;accordingtothecalculation,PaulmustgivetoPeteran"infinitesum"asanequivalent,"whichseemsabsurd,sincenopersonofgoodsense,wouldwishtogive20ducats.
"Thus,thePetersburgparadoxrepresentedacounter-exampletoPascal'swager.
Pascalhadarguedandlivedhisadultlifeinaccordancewiththetheorythatitisworthtoabandonallrichesforthesmallchanceofwinninganinfinitepleasure.
TheresolutionstothePetersburgparadoxwhichhavebeenpresentedintheliterature,includingthatofCramer,arediscussedinthefollowingsection.
2.
ProposedresolutionsoftheparadoxTherehavebeenseveralproposalsfortheresolutionofthePetersburgparadoxintheliteraturethroughoutthecenturies.
Themostfamousconcept,expectedutilitytheory,whichhasbeenthestandardapproachreferredtoineconomicstextbooks,wasproposedbyNicholasBernoulli'scousin,DanielBernoulli.
DanielBernoullisubmittedacopyofhisunpublishedpapertoNicholasBernoullionApril4,1732,anditwaspublishedin1738.
2.
1Expectedutility1412IntheoriginalcorrespondencetoMontmort(1713),NicholasBernoullipointedoutthatthe"expectedinfinitesum"(orevengreatersum"ifitispermitted")cannotbethevalueofthelottery,"sinceitismorallyimpossiblethat[Paul]doesnotachieve[heads]inafinitenumberofthrows"(Spiess1975,p.
558).
AtranslationtoEnglishofSpiess'scollectionofNicholasBernoulli'scorrespondencesonthePetersburggamblehasbeenpublishedbyPulskamp(1999).
13Atfirst,Montmortseemeduninterestedintheproblem.
Laterhepromisedtoprepareamanuscriptontheissue,whichhasneverbeenfoundandtowhichnofurtherreferencewasmadeinanyknowncorrespondenceofNicholasBernoulli(Spiess1975).
Montmortdiedfromsmallpoxin1719.
14NicholasBernoullisenthisproblemsettoDanielBernoulli,whowasaprofessorofmathematicsinPetersburgatthattime.
InhisletterheindicatedtheparadoxaspointedoutbyGabrielCramerandsaidthatitwasirrationaltovaluethegambleabove20ducats.
DanielBernoullirepliedtohiscousininNovember1728thattheparadoxisfoundinthesmallprobabilitythatthegamblewilllastformore8InDanielBernoulli'sexpectedutilitytheory,prospectivewealthisweightedbytheprobabilityofoccurrence.
TheexpectedutilityforthePetersburggambleisthesumoftheprobabilityweightedutilitylevelsofwealthandthusdependsalsoontheinitialwealthαofthedecision-maker.
∑=∞→+=++++++=+niiinuuuuXEu02)2(21lim.
.
.
8)4(4)2(2)1()(ααααα(3)Equation(3)representsPaul'sexpectedutilityfromthePetersburggambleinthegeneralformulation.
15DanielBernoulliusedthelogarithmicutilityfunction,u(X)=logX.
Hearguedthat,atthemargin,utilityofadditionalwealthisinverselyproportionaltothepossessedwealth.
16Apersonwhosewealthamountsto100ducatsappreciatesanothercentapproximatelyasmuchasapersonwhohasaninitialwealthof1,000ducatsappreciatesanothertencents.
Inotherwords,themarginalutilitydecreasesininverseproportiontothepossessedwealth.
ThecertaintyequivalentforthePetersburggambleisthereforeanincreasingfunctionofpossessedwealth;theopportunityofplayingthePetersburggamblewouldbeworthtwoducatsifPaulpossessednothing,aboutthreeducatsifhisinitialwealthweretenducats,aboutfourifhisinitialwealthwere100ducats,andaboutsixifhisinitialwealthwere1,000ducats.
17Averyrichpersonwouldhavethecertaintyequivalentof20ducats(Bernoulli1954,p.
32).
GabrielCramerhadalreadysuggestedin1728that"menofgoodsense"valueaprospectbyits"moralexpectation"ratherthanbyits"mathematicalexpectation"(Bernoulli1954,p.
34).
Heassumed,inaseeminglyarbitrarymanner,thattheutilityfunctiontakestheformofthesquareroot,ashearguedthatonemayreceivedoublethepleasurefrom40millionthanfrom10million.
Hecomputedthecertaintyequivalentwithoutpayingattentiontoinitialwealthyieldinganapproximateequivalentof2.
9.
Hecanbecreditedwithbeingthefirsttoproposetheideaofdiminishingmarginalutility.
Hissolution,however,didnottakeintoaccounttheinitialwealththan20or30throws,andinafollow-upletterayearandahalflaterhestatedthatapersonwouldnotwageraninfinitesumwhentherewasonlyaninfinitesimallysmallprobabilityofwinning.
OnlyinJuly1731didhecomposeadraftofhisfamousexpectedutility.
TherehasbeenspeculationthatthedraftbenefitedfromdiscussionswithhisfriendandcolleagueLeonhardEuler(1707-1783),whopreparedbutdidnotfinishapaperonthesameissue,(itwasonlypublished79yearsafterEuler'sdeath)(Euler1862;seealsothediscussionofEuler'scontributionbyEdSandifer2004).
15ThegeneralformulationofexpectedutilityisowedtoJohnvonNeumannandOscarMorgenstern(1947),whoestablishedtheaxiomaticapproach(inthistheywereanticipated,however,byFrankRamsey1931).
Thestandardterm"expectedutility"isamoderntranslationoftheterm"emolumentummedium"usedbyDanielBernoulli(1738).
IntheEconometricatranslationofBernoulli'sarticle,theterm"moralexpectation"or"meanutility"isused(seeBernoulli1954,p.
24,footnote3).
Theterm"moralexpectation"or"moralvalue",however,wasintroducedbyGabrielCramer(1728),whenhediscussedthePetersburggamble.
ThetermwaslaterusedbyPierre-SimonLaplace(1820).
16Forhumanperceptionsofjustnoticeabledifferences,thepsychophysical"Weber-Fechner"lawsuggestsalogarithmicrelationshipbetweenstimulusandperception(forasurveyseeDuncanLuceandPatrickSuppes2002).
17Thecertaintyequivalentistheamounttopaythatmakesyouindifferentwhetheryoupurchasethegambleornot.
Forapersonwithinitialzerowealthandalogarithmicutilityfunction,DanielBernoulli(1954)computedtheexpectedutility,oflog2,andthecertaintyequivalent,of2ducats,astheinverseutilityfunction.
9positionandthusBernoulli'ssolutionmustbeconsideredassuperiorinbothsophisticationandreason.
18Laplace(1820)acceptedtheideaofdiminishingmarginalutilityandcalleditthetenthprincipleofprobability.
Heshowedthatmathematicalexpectationwasthelimitofmoralexpectationwhenthedivisionofrisksbecomesinfiniteandthususeditasthefoundationforhistheoryofinsurance(Jorland1987,p.
171).
Duringthefollowingtwohundredyears,DanielBernoulli'sutilitytheorywasdiscussed,appreciatedforthepossibilityitgaveofmakinginterpersonalcomparisons(KnutWicksell1900),andgeneralized.
FrancisEdgeworth(1881)rejectedthelogarithmicutilityfunctionforbeingasarbitraryasanyotherconcavefunction,AlfredMarshall(1890)replacedthewealthargumentinthefunctionbyincome,VilfredoPareto(1893)replaceditbyconsumption,andMaxWeber(1908)suggestedthattheutilityfunctioncanvaryforonegoodoranother.
KarlMenger(1934),finally,showedthatutilitymustbeboundedfromabove.
HebasedhisargumentonthePetersburggamble.
GivenBernoulli'slogarithmicutilityfunction,theparadoxisreinstatedbyreplacingthepower-series2iinequation(1)bytheexponentiallyincreasingpowerseriesie2sincethispayoffsseriesyieldsanon-finiteexpectedutilityandthusanon-finitecertaintyequivalent.
Sinceacorrespondingsuper-powerseriescanbefoundforeveryunboundedutilityfunction(Menger1934,p.
468f),theonlywaytocircumventtheparadoxintheexpectedutilityframeworkrequiresacut-offlevelforutilitywhereanyfurtherincreaseinpayoffleavesthedecision-makeratthesameutilitylevel.
Suchacut-offleveltoutilitywasalsosuggestedbyGabrielCramerin1728.
Hearguedthatthesumof2100or21,000ducatswouldgivehimnomorepleasureandattracthimmoretoacceptthegamblethanapayoffof224(≈16million)ducats;amaximumpayoffofsixteenmilliongivesanexpectedpayoffofthirteenducats.
MotivatedbyMenger'sdiscussion,vonNeumannandMorgenstern(1947)introducedtheaxiomaticapproachtoexpectedutilityinthesecondeditionoftheir"TheoryofGamesandEconomicBehavior"(seeMenger1967,p.
211).
KennethArrow(1971)showedthattoavoidthesuper-Petersburgparadoxandforacompleteorderingofallprobabilisticoutcomes,theutilityfunctionmustbeboundedfrombothaboveandbelow(seealsoStigler1950;Savage1954;D.
L.
Brito1976;RobertAumann1977).
Thedouble-sidedboundednessandotherimportantpropertiesoftheutilityfunctiontoavoidthesuper-PetersburggamblearealsodiscussedinSamuelson(1977).
Whilemathematicallyboundednessisanecessaryconditionfortheutilityfunctiontobewell-defined,theflatutilityfunctionbeyondacertainwealthasproposedbyGabrielCramerseemstomisrepresenthumanbehavior.
Althoughpeoplemightfeelindifferentbetweenapayoffof2nand2n+1forn≥24oranarbitraryinteger,asCramersuggested,itisdoubtfulthatpeoplewouldchoose2nover2n+1whenfacingthechoice.
Evenifthedecision-makerdoesnotchoosethe18George-LouisLeclercBuffon(1707–1788),wholearntthePetersburggamblefromCrameronatriptoGenevain1731(YvesDucelandThierryMartin2001),contributedseveralapproachestoaresolutionoftheparadoxwhichhepublishedinhisfamousessay(Buffon1777).
Hisfirstsolutioninvolveddiminishingmarginalutility,whichhecommunicatedtoCrameronOctober31730,thatis,priortoDanielBernoulli'spublication(Buffon1777,p.
75ff).
Buffon'sutilitytooktheinitialwealthpositionofPaulasapointofreferenceandweightedlossesmorethangains(seealsobelow).
10doubleamountfortheirownwellbeing,thedoubleamountwouldsimplybechosenforthesakeofpassingontheiradvantagetothechildrenandallchildren'schildren.
Moregenerallyspeaking,aboundonutilityseemstostandincontradictiontotheobservedcompetitivenatureofthehumanrace,theconqueroroftheearthandofoursunsystem.
Thereshouldbenodoubtthathumansprefergoverningtheentireuniversetogoverningtheuniverseexceptfortheearth.
ThePetersburggambleisultimatelyagambleontheearthandtheuniverse.
2.
2MoralimpossibilityandmoralcertaintyInreactiontotheproposalforusingtheexpectedutilityapproachtotheresolutionofthePetersburgparadox,NicholasBernoulli(1732)repliedtohiscousinonApril5,1732:Ihaveread[yourmanuscript]withpleasure,andIhavefoundyourtheorymostingenious,butpermitmetosaytoyouthatitdoesnotsolvetheknotoftheprobleminquestion.
Thereisnotagreedtomeasuretheuseorthepleasurethatonederivesfromasumthatonewins,northelackofuseorthesorrowthatonehasbythelossofasum;thereisagreednolongertoseekanequivalentbetweenthethingsthere;butthereisagreedtofindhowaplayerisobligedinjusticeorinequitytogivetoanotherfortheadvantagethatthereinaccordshiminthegameofchanceinquestion,orinothergamesingeneral,sothatthegameisabletobedeemedfair,asforexampleagameisconsideredfair,whenthetwoplayersbetanequalsumonagameunderequalconditions,althoughinyourtheory,andinpayingattentiontotheirwealth,thepleasureortheadvantageofgaininthefavorablecaseisnotequaltothesorroworthedisadvantagethatonesuffersinthecontrarycase.
19Mr.
Cramerhasalsotriedtoresolvetheproblembyreflectingonuseoronpleasurethatmenareabletoderivefrommoney,butwithoutpayingattentiontothesumofgoodsthatonealreadypossesses.
Hereisthatwhichhehaswrittentomein1728onthismatter:(ItfollowsaquoteoftheletterofGabrielCramer1728.
)Ihaveindicatedtohimnextthatitwouldseemtomethatinadmittingthisassumption,thatamanofgoodsenseisnotwillingtogive20ducats,becauseheestimatesallthecaseswhichgivehimalessersumthan20ducatspossible,andeachoftheothers,whichareabletogiveagreatersum,impossible;thatinadmitting,Isay,thisassumption,oneisabletoevaluatehisexpectation212.
.
.
0320163218161481241121=+++++++(4)Iclaimthatthisreasoningisnottooexact,butIbelievethatinmatchingtogetheryourideaandthatofMr.
Cramerandmyownonthatitisnecessarytoestimateasmall19NotethatNicholas'notionofafairgamblerequiresPeterandPaultobeindifferent,whileDaniel'ssolutionassignsafairvalueofthegambleonlytoPaul.
11probabilityasnull,oneisabletodetermineexactlythesoughtequivalent[forthePetersburggamble].
20(Spiess1975,p.
566f,emphasisadded)ThisquoteisanexcerptfromNicholasBernoulli'slastpreservedletteronthePetersburggamble.
Theknotinquestionisthemoralimpossibilityofobtainingmorethan20ducatsasapayoffinthePetersburggamblesincethelikelihoodofsuchaneventistoosmall;inhislettertoGabrielCramerheismoreexhaustiveonthisissue.
21Asstatedabove,thetermmoralimpossibilitywasintroducedbeforebyhisuncleJamesintheArsConjectandi.
Itwasdefinedasthereciprocalofmoralcertainty.
22MoralcertaintyisoneofthekeyconceptsinJamesBernoulli'sartof20DanielBernoulli(1954,p.
33)referredtotheletterofhiscousininhisfamousarticle.
"Inalettertome…,[NicholasBernoulli]declaredthathewasinnowaydissatisfiedwithmypropositionontheevaluationofriskypropositionswhenappliedtothecaseofamanwhoistoevaluatehisownprospects.
However,hethinksthatthecaseisdifferentifathirdperson,somewhatinthepositionofajudge,istoevaluatetheprospectsofanyparticipantinagameinaccordwithequityandjustice.
"21NicholasBernoullirepliedtoGabrielCrameronJuly3,1728(Spiess1975,p.
562f):TheresponsethatyougiveforthesolutionofthesingularcaseproposedtoMrdeMontmortpage402,Prob.
5satisfiesonlypartofit;itsuffices,asyousay,tomakeseethat[Paul]mustnotgiveto[Peter]aninfiniteequivalent;butitdoesnotdemonstratethetruereasonforthedifferencethatthereisbetweenthemathematicalexpectationandvulgarestimate;forexampleinthecaseofHeadsandTailsthereisnopersonofgoodsensewhowishedtogive20ECU,notforthisreasonthattheuseorthepleasurethatoneisabletodrawfromaninfinitesumisbarelygreaterthantheonewhichcanbetakenofasumof10,or20,or100millions,butbecauseingivingforexample20ECUonehasaverysmallprobabilitytowinsomething,andthatonebelievesthelossmorallycertain.
Thevulgarneitherstakeshereinthestorylinenorofmillions,norofhundredsofECUpayingnoattentionatalltothisthatthetermsofthegeometricprogression1,2,4,8,16,etc.
becomingfairlygreattheyareabletobeconsideredequal,heisenlistedthroughthisneithertoacceptnortorefusethegame,itisdeterminedsolelybythedegreeofprobabilitythathehastowinorlose;tohimaverysmallprobabilitytowinagreatsumdoesnotcounterbalanceaverygreatprobabilitytoloseasmallsum,heregardstheeventofthefirstcaseasimpossible,andtheeventofthesecondascertain.
Itisnecessarytherefore,inordertosettletheequivalentjustly,todetermineasfaraswherethequantityofoneprobabilitymustdiminish,sothatitbeabletobedeemednull;buthereisthatwhichisimpossibletodetermine,anyassumptionthatonemakes,oneencountersalwaysdifficulties;thelimitsofthesesmallprobabilitiesarenotprecise,buttheyhaveacertainlatitudewhatoneisnotabletofixeasily;aprobabilitywhichforexamplehas1/100certitudemustnotbereputednullinsteadthatwhichhas1/99certitude.
Itseemstomethereforeinadmittingthisassumptionthatamanofgoodsenseisnotwillingtogive20ECU,becauseheholdsforcertainthatthesumwhichwillfalltohimwillbelessthan20ECU,oneisabletofindtheequivalentsoughtbythefollowingreasoning:byhypothesisitismorallyimpossiblethatheobtains20ECU;itwillbethereforealsomorallyimpossiblethatheobtains32ECUorsomeothernumberofECUinthisprogression32,64,128,etc.
;ortheprobabilitytoobtainanumberofthisprogressionis1/64+1/128+1/256+…=1/32,thereforethismanofgoodsensereputesaprobabilitywhichdoesnotsurpassasnull,andaprobabilitywhichhasasatotalcertitude,consequentlyhisexpectationwillbeworthbytherule1/21+1/42+…+1/3216+032+0+…=2.
5.
[Theoriginalreads…1/168+016+…=2,butiscorrectedinthelaterlettersenttoDanielBernoulli].
ButIdonotknowifthisotherreasoningwillbemorejust:Amanwhodoesnotwanttogivemorethan20ECUestimatesallthecaseswhichgivetohimalessersumthan20ECUpossible,andeachoftheothers,whichareabletogiveagreatersum,impossible;heregardsthereforeonlytheprobabilitieslessthan1/32asnull,consequentlyhisexpectationwillbeworth1/21+1/42+…+1/3216+032+0+…=2.
5[Theoriginalreads=2].
Therewillbewellagainsomethingstosayonthismatter,butnothavingtheleisuretoarrangeinorderortodeveloptheideaswhicharepresentedtomyspirit,Ipassovertheminsilence.
22AccordingtoJamesBernoulli'sdefinition,"themorallycertainisthatwhoseprobabilityisalmostequaltocompletecertaintysothatthedifferenceisinsensible"(Bernoulli2006,p.
316).
Moral12conjecturing.
Accordingtothelawoflargenumberthelikelihoodincreasesthattheobservedrelativefrequencyfallsinsideagivenneighborhoodofthetrueprobabilitywithanincreasingnumberofindependentobservations.
However,completeconvergenceisonlyattainedinthelimitwherethenumberofrepetitionsincreasesbeyondanybound.
Tobaseaconclusiononafinitenumberofobservationswemustdiscardoutliersthatoccurwithsmallprobabilitiesbydefiningaminimumprobabilitylevel,i.
e.
thelevelofmoralimpossibilitybeyondwhichsmallprobabilityeventscanbetreatedaszero.
Indeedacertaindegreeofsubjectivearbitrarinessmaybeunavoidablewhenwefixtheaspirationlevelofmoralimpossibility.
Therefore,Jamesproposedthatthelevelofmoralcertaintyoritscounterpartmoralimpossibilitymustbeestablishedbythejudgeaccordingtothecircumstances,whether99/100ofmoralcertaintyissufficientorwhether999/1,000isneeded(Bernoulli2006,p.
321).
Giventhelevelofmoralcertainty,hecontinued,onecandetermineaposteriori(i.
e.
empirically)whatwecannotderiveapriori(i.
e.
therealodds)byextractingitfromarepeatedobservationoftheresultsofsimilarexamples.
Onlybyfixingalevelofmoralcertaintycanwemakeajudgmentontheoddsoftheeventsofcases.
Alevelofmoralimpossibilityisnecessaryfortheadvancementofknowledgeinthenaturalsciencesunderuncertainty.
Todetermineempiricalprobabilities,JamesBernoulliwhoalsowasaprofessorofexperimentalphysicsproposedexperimentssuchastheonesthathadbeenreportedearlierbyAntoineArnauldandPierreNicole(1662)inthe"ArtofThinking";hesaidthat"…thisempiricalmethodofdeterminingthenumberofcasesbyexperimentisnotneworuncommon,"(Bernoulli2006,p.
328).
TheArsConjectandiabruptlyfinishesafterJamescomputes,forhisfirstandonlyurnexample,therequirednumberofn>25,500experimentsatacertaintylevelof1/1,000.
23IthasbeenarguedthatthisnumbermighthaveappeareddisappointinglylargetoJamesBernoulli,ashishometownofBaselnumberedfewerinhabitantsinthosedays.
GiventhatBernoulliwasinterestedinapplyingprobabilitytheorytocivilproblemssuchalargenumberposedapracticaldatacollectionproblem.
StephenStigler(1986,p.
77)certaintyhasbeenintroducedbyJeanCharlierdeGerson(1363–1429),chancelloroftheUniversityofParisaround1400.
ItissaidthattheconceptgoesbacktoastatementinAristotle'sNicomacheanEthics"thatonemustbecontentwiththekindofcertaintyappropriatetodifferentsubjectmatters,sothatinpracticaldecisionsonecannotexpectthecertaintyofmathematics.
"Descartesputitincirculation;hedescribes"morallycertain"ashavingsufficientcertaintyforapplicationtoordinarylife"(thosewhohaveneverbeeninRomehavenodoubtthatitisatowninItaly,eventhoughitcouldbethecasethateveryonewhohastoldthemthishasbeendeceivingthem)"(ReneDescartes1985,p.
290).
Moralcertaintyhashaditsrelevanceinjurisprudence,whereitmeansbeyondanyreasonabledoubt(thisisthehighestlevelofproofwhichisusedmainlyincriminaltrials).
Leibnizdiscussedmoralcertaintyanddegreesofprobabilityinjurisprudenceandintroducedimpossibilityandpossibilityaseventswithzeroandunityprobabilityin1665(Keynes1921,p.
155).
In1699,JohnCraigdiscussedlevelsofcertaintyinhistheologiaechristianaeprincipiamathematica,abookNicholasBernoullicitedinhisthesiswhendiscussingwitnessesanddegreesofcertainty.
WhenGabrielCramerlecturedonlogicsinabout1745,hediscussedmoralcertaintyandmoralimpossibilityinlinewiththeArsConjectandiandtheUsuArtisConjectandiinIure(ThierryMartin2006).
23Actually,thisnumberislargerthantherequirednumberowingtotwocrudeapproximationsinJamesBernoulli'sproof;Hald(2007,p.
14)reportsn>12,243.
13suggestedthatBernoulliquittedhisworkinfrustrationwhenhesawthehugenumber.
24Onewayofrevisingtherequirednumberofobservationstoasmaller,moreavailablesamplesizewouldbe,infact,tolowertheaspirationlevelonmoralimpossibility.
NicholasBernoullibelievedthatthePetersburggamblerequirestheapplicationofthemoralimpossibilityconcepttomakeitfair.
25Itisconceivablethathehopedtoobtainaconsentlevelofmoralimpossibilityfortheapplicationinthegamesofchance.
InletterstoCramerandDanielBernoulli,Nicholassuggestedthat1/64andsmallerprobabilitylevelsshouldbetreatedaszero.
OtherauthorsproposeddifferentlevelsofmoralimpossibilityinthePetersburggamble.
D'Alembert(1764,p.
7)suggestedthatonewouldnotwanttoriskafairamountofmoneyonoutcomesthatoccurwithsuchasmallprobabilityof1/128orless,evenifthepotentialearningswereimmense.
Morerecentlyandwithoutfurtherjustificationorreference,SamuelGorovitz(1979)proposedthattheprobabilityof1/128wasnegligibleinthePetersburggamble.
Buffon(1777),whoprovidedseveralproposalsfortheresolutionofthePetersburggamble,arguedthataprobabilitysmallerorequalto1/10,000generallycannotbedistinguishedfromazeroprobability.
Inhisdays,theoddsthata56-year-oldmanwoulddieinthecourseofadaywere1:10,180.
Heclaimedthatsuchasmallprobabilityisnothingtobeworriedabout.
DanielBernoulliapprovedtheideaofnegligibleprobabilitiesinalettertoBuffondatedMarch19,1762butdemandedtheapplicationofthemoreconservativelevelofonein100,000(1777,p.
75);thatwasalsotheprobabilitylevelinphysicsthatHuygensregardedasbeingequivalenttoamathematicalproof(Dutka1988,p.
33).
Astheexpectedintensityofthefearofdeathinthecourseofthedaydisappearsifitslikelihoodissmallerthan1/10,000,andasthisfearismuchgreaterthantheintensityofallothersentimentssuchasfearorhope,Buffon(p.
90)believedthatamoralimpossibilitylevelof1/1,000shouldbeappliedtotheestimateofthemoralvalueofmoney.
HesuggestedthatallpayoffsofthePetersburggamblethatoccurwithaprobabilityoflessthan1/1,024canberegardedasalmostzero,sothattheyareirrelevantfordecision-making.
Buffon(1777)underlinedthisclaimbyexperimentaldata.
HeconductedthefirstrecordedexperimentinstatisticstodetermineempiricallythelikelyoutcomesinthePetersburggamble.
Achildplayedoutn=211=2,048trialsofthePetersburggamble(Buffon1777,p.
48f).
ThereportedgambleoutcomesarereproducedinthetableA1oftheappendix.
Alltrialsendedafteratleast24JamesBernoullisearchedover20yearsforquestionstowhichhecouldaddresstheartofconjecture.
HeeventuallylearnedabouttheexistenceofdeWitt'sworkonliferentsincludingmortalitytables(theworkisprintedinKohli1975b)andrepeatedlycalledforitssubmissiontohimbyLeibniz.
FromthecorrespondencewithLeibnizitisevidentthatJamesBernoulliwasdesperatelysearchingfordatatoapplyhistheory.
Itisalsopossiblethathelefttheapplicationofhistheoryunwritten,sinceheneverreceivedthecopyofdeWitt'sbookfromLeibniz.
25NicholasreferredtomoralcertaintyinhisreplytoMontmortin1713(Spiess1975,p.
558),whenhemotivatedhisfifthproblemwhosereformulationbecamelaterknownastheStPetersburgparadox.
NicholasBernoulli(1709)alsoacknowledgedtherelevanceofmoralcertaintyintheforewordtohisthesis;"theartofconjecturingconcernsuncertainanddoubtfulmatters,aboutwhich,althoughcompletecertaintyisimpossible,wecanneverthelessbyconjecturesdefinehowgreattheprobabilityisthatthisorthatwillbe,whatprobablywillhappen,whichoutcomeismoreprobablethananother,orhowmuchthisorthatconclusiondivergesfromcompletecertainty"(Bernoulli2006,p.
55).
14ninetossesandtheaveragepayoffwas4.
9ducats.
Buffonconcludedthataboutfiveducatsshouldbeafairentryfeetothegamble.
AugustdeMorgan(1912)reportedreplicationsofBuffon'sexperimentbythreeanonymouscorrespondentsandDutka(1988)ranelevenBuffonexperimentsonthecomputer.
ThesefourteenBuffonexperimentsgeneratedanaveragepayoffof7.
3ducatsperPetersburggamble(Dutka1988,p.
35ff).
DavidTolmanandJamesFoster(1981)ran1,000Buffonexperimentswiththecomputergeneratinganaveragepayoffof9.
8andamedianaverageof6.
8ducats.
AllanCesar(1984),whovariedthenumberoftrials,n,from100to20,000repetitions,confirmedthetheoreticalresultimpliedbythelawoflargenumbers(seethesectionbelow),inthatanincreaseinrepetitionsleadstoanincreaseoftheaveragepayoff,sincelongerseriesmakehigherpayoffsmorelikely.
ManuelRussonandSJChang(1992)reportedinconsistenciesoftheirdatawiththistheoryastheyfoundthatlongruns(involvingmorethan20tails)didnotoccurincomputertrials.
Contrarytothisobservation,RobertVivian(2004)reportedevidencethatwasconsistentwiththetheory.
Insummary,theresultsintheliteraturearemixed.
Thelongestruneverreportedinvolved28tails(LudgerHinners-Tobrgel2003).
26FollowinguponthediscussionofBuffon,d'Alembert(1761)raisedthequestionwhethersomeunlikelyevents,e.
g.
100successivetossesoftails,canoccuratall.
Heconcludedthatsomeprobabilitylevelsaresimplytoosmalltobephysicallyrelevant;somecasesheclaimedarepurelymetaphysicallypossibleandphysicallyimpossible.
27TheideaofphysicalimpossibilitywasmostprominentlyrepresentedlaterbyAugusteCournot(1843).
28Cournot(p.
78)statedthatitismathematicallypossiblethataheavyconestandsinbalanceonitsvertex,butitisphysicallyimpossibleastheprobabilityofthateventisvanishinglysmall.
Similarly,hesuggestedthatinalongsequenceoftrialsitisphysicallyimpossibleforthefrequencyofaneventtodiffersubstantiallyfromtheevent'sprobability(1843,p.
121f).
Fromthesestatements,theso-called"Cournot'slemma"hasbeenintroducedintotheliterature(Fréchet1948;GlennShafer2006).
26LolaLopes(1981)ran100simulations(representingbusinesses)withonemillionPetersburggambles(representingbuyers)forfourdifferententryfees.
Abusinesswouldstayafloataslongasitsbalancesheetafterfeesandprizeallocationsremainedabove-$10.
000,butitwouldclosedownotherwise.
ThestudydoesnotrevealthelongestrunoftailsasLopesfocusedonthesurvivalofbusinesses.
Witha$25feeonlynineteenbusinessesstayedopenafteronemillionbuyers;witha$100fee,90businessesstayedopenandtheaveragegainwas$55.
9million.
27SimilarlytoBuffon(1707-1788),d'Alembert(1717-1783)contributedseveralessaystothestudyofthePetersburggamble.
Inoneessay,hearguedthatarunof100tailsinarowmaybemetaphysicallypossiblebutitisphysicallyimpossible;suggestingthattherearelimitstotheapplicationofmathematicstotherealworld.
Inmemoir27,d'Alembert(1768,p.
299)statesthefollowing;given"2100playerswhocasteachonehundredtimesinsequenceasimilarpieceintotheair;Isaythatonecanwagerwithoutanyriskthatanyoftheseplayerswillbringforthneitherheadsnortailsonehundredtimesinsequence"(quotedfromthetranslationbyPulskamp2004).
28ForthePetersburggamble,Cournot(1843,p.
109)suggestedamarketsolution.
Heproposedtoselllotteryticketswhichyieldedanon-zeropayoutforoneparticularsequenceoftossesonly.
Heclaimedthattherewouldbeonecriticallengthbeyondwhicheveryticketwouldremainunsoldandcitedempiricalevidence.
IntheFrenchlottery,theadministrationhadtakenoutaprizewhichoccurredwithaprobabilityofonein44million,becauseitwastooseldomgambledon.
Cournot(1843,p.
106)saidthat"oneimagineswellthattheremustbealimittothesmallnessofchance"(seealsoJorland1987,p.
182).
15Theprinciplestatesinitsweakandstrongformsthatasmallprobabilityeventwillhappenrarelyonrepeatedtrialsanditwillnothappenatallinaparticulartrial,respectively.
Cournot'slemmahasbeenviewedasthefundamentallawwhichlinksprobabilitytheorytotherealworldbymanyfamoustheoreticians,includingPaulLevy(1925),AndreiMarkov(1900),AndreiKolmogorov(1933)and,mostdrastically,Borel(forasurveyseeGlennShafer2006).
Borel(1939,p.
6f)calledtheprinciplethataneventwithverysmallprobabilitywillnotoccuratanytime"thesinglelawofchance".
Hedistinguishedimpossibleeventsbymeasure;impossibilityonthehumanscale:p+∑=∞→εNnXPnmmn(6)whereXmdenotesthepayoffinthemthtrial,andε>0denotesanarbitrarilysmallnumber.
Inequation(6),boththeexpectationandthevariancearefiniteconstants.
Intheclassicalsense,theexpectedpayofffortherepeatedgamblewouldbeconsideredasthefairvalueofthegamble.
Lacroix(1802)alreadynoticedthattheexpectationshouldonlybeusedasafairvalueiftheexpectationexists.
IntheoriginalPetersburggamble,theexpectationdoesnotexistyetandnordoesitsvariance.
Forthiscaseandbymakinguseofatruncationargument,Feller(1945)provedthattheentryfeeenwhichmakesthePetersburggamblefairintheclassicalsensegrowswiththenumberofrepetitions.
Fellershowedthattheexpectationofthegambleisen=0.
5log2n.
400lim1→>∑=∞→εnnmmnenXP(7)Inthelimit,i.
e.
wherethegambleisrepeatedwithoutend,thefairentryfeeforthePetersburggambleconvergestoinfinity.
TheoriginalPetersburggambleissuchanextremecasesincethespreadaroundtheexpectationissoextremethatonlyanindefinitenumberofrepetitionsofthegambleleadstoalikewiseindefiniteaveragepayoff.
Notethatthedescribedentryfeecanonlybefairfortherepeatedgamble,butitisnotapplicabletotheone-shotgamble,sinceforn=1,en=0.
Allais(1979,p.
500ff)likeLaplace(1820)andothers(e.
g.
Lacroix1802;Czuber1882)beforehimconsideredthesinglegambleasthelimitingcaseformathematicalexpectations.
41Allaisagreesthatpsychologicalvaluessuchasthediminishingmarginalutilityargumentorthezeroweightingofsmallprobabilitiesofwinningmayplayarolefordecision-makinginthesingle39JakobFriedrichFries(1842)andCzuber(1882,p.
20)pointedoutthattheconceptofmathematicalexpectationisvalidonlyinthecaseofmanyrepetitions,i.
e.
ifthelawoflargenumberscanbeapplied.
Forinstance,ifyouplayn=180,000230gambleswithN=30,themathematicalprobabilitythattheaveragepayoffdeviatesbymorethan1%fromtheexpectationis"freefromtheinfluenceofchance.
"40AccordingtoDutka(1989,p.
36),en=0.
5log2(nlog2n)isalsoapossiblefairentryfeeasitisasymptoticallyequivalenttoFeller'sfunction.
FollowingFeller'sapproach,mathematicianshavediscussedlimittheoremsforthePetersburggamble(Steinhaus1949;Martin-Lf1985,2005;CsrgandDodunekova1990;CsrgandSimons1993-94,1996,2002,2005;Berkeretal.
1999;Csrg2003).
Inhispaper,Feller(1945)didnotmakeanyreferencetoBuffon(1777),whoderivedthesamelimitdistributionthroughhisexpectationheuristic,orCondorcet(1781),whofirstappliedthelawoflargenumberstothetruncatedgamble(bothhavebeenacknowledgedabove).
41FrankKnight(1921,p.
234)statedthatiftheexperimentcannotoftenberepeatedindefinitely,theprobabilitiesareirrelevanttotheindividual'sconduct.
Similarviewswereheldbytherepresentativesoffrequencytheory(Edgeworth1922,p.
277f);theprobabilityconceptcannotbeappliedtosingleeventsbutonlytoseriesinthesenseofVenn(1866).
21gamble.
NicholasBernoulli(1732)andBuffon(1777)concededthatbothcomponentsplayarole,andsodidMenger(1934)andKahnemanandTversky(1979).
Yettheoccurrenceofeventsthatareasunlikelyas1/10,000becomepracticallycertainifthenumberofrepetitionnbecomeslarge.
Allaisarguedthatthemathematicalexpectationcanbeconsideredtobetherationalmodelintherepeatedgamble,inparticularforacorporationthatmaximizesexpectedpayoffsratherthanpsychologicalvalue.
Hedistinguisheddifferentcasesregardingthenumberofgamblesandthecapitalrequirements,i.
e.
whethersettlementistobemadeaftereachgambleorwhetherthenetsumisdueonlyafterthelastgambleisover.
Neglectingfinitetimelimitationsandconsideringfinite,constantentryfees,AllaisstatesthatthegamblewillalmostcertainlyleadtoPeter'sruinifthesettlementisbeingmadeonlyafterthelastgamblewhennmovestoinfinity,whileifsettlementistobemadeaftereachgambletheruinofPaulismorelikely.
42Infact,iftheprobabilityofruinisleftoutoftheaccountthemathematicalexpectationoftheplayerremainsatPeter'sfortune(giventhatverylongrunsoftailsmaterializeinthelongrun).
Indeed,aclosely-relatedcasewasmadebySamuelson(1963)inhis"fallacyoflargenumbers.
"Heproposedthatahundred-foldrepetitionofafavorablegamblewithsettlementafterthelastrepetitionispreferabletotheone-shotgamble,asitdecreasestheriskofruin,i.
e.
theprobabilityofabiglossbecomesverysmall,althoughitisnoteliminatedcompletely.
43Toavoidtheriskofthegambler'sruinintherepeatedPetersburggambleforthecaseofimmediatesettlementofpayoffs,Paulshouldstakeaconstantproportionofhisportfolioratherthanafixedamount(WilliamWhitford1886;SydneyLupton1890).
44Thus,Whitford'swayofdiversifyingriskacrossrepetitionsofthegambleleadstothelogarithmicfunctionproposedbyDanielBernoulli(1738).
Indeed,DanielBernoulli(1954)alludedtoapossibleimplicationofhistheoryindiversification,buthiscousinNicholasBernoulli(1732)deniedsucharelationshipfortheone-shotgambleifnodiversificationopportunityexists.
4542Thisissuemayalsoexplainwhycasinosrequiresettlementineachgambleandlimitthestakesforbets(seealsoMartin-Lf1985;andLopes1981).
43Samuelsonofferedtohiscolleaguethelotteryinwhichonewins200orloses100withthesameprobability.
Hiscolleaguerejectedthegamble,butwaswillingtoplay100repetitionsofthegamble.
44SimilarlytoWhitworth,othercontributorsalsoproposedabettingruleinproportiontotheplayer'savailablefunds(JohnWilliams1936;JohnKelly1956;Durand1957;LeoBreiman1961;RobertBellandThomasCover1980).
Thefocusofthesebettingsystemsisonthegrowthoftheportfoliovaluebymaximizationofthegeometricmeanofthereturn(seealsoGaborSzékelyandDanielRichards2004,2005;andChristopherRump2007).
Samuelson(1969,p.
245)believesitisincorrect"thatifoneisinvestingformanyperiods,theproperbehavioristomaximizethegeometricmeanofreturnratherthanthearithmeticmean.
"45NicholasBernoulli(1732,p.
567)repliedtohiscousinthatexpectedutilitytheorydoesnotimplysuchadiversificationasit"…onlyshowsthatoneriskstopermitagreatersorrowinplacingagreatsumwithasingledebtorthaninplacingthesamesuminpartsamongmanydebtors;butitdoesnotshowthatonerisksalsotomakeagreaterloss….
Weknowwithoutpayingattentiontoyourprinciple…thatonedoes.
.
.
bettertoplace500coinsin2places,than1,000coinsinasingleplace,becauseoneisnotexposedtolosingaseasilyall1,000coins….
Onemustnotputtoomanyeggsinonebasket,saysourBlois.
Butwhatcanyoudo,ifyouneededtomakeworthofyourmoneyincreditingittoamerchant,andifyoudonothavetheoptiontoplaceitbysmallparts"222.
6RiskKeynes(1921,p.
315)believedthataresolutiontothePetersburgproblemmustaccountfortheincreasingriskrelativetoexpectedpayoffwhenthegamblelengthisincreased,N→∞.
Asapossibledefinitionofriskheproposedafunctionofprobabilityandthedeviationfromtheexpectation.
Hearguedthat,otherthingsbeingkeptequal,thevalueofagambledecreaseswithanincreaseinrisk.
Keynes'sapproachrepresentsaprecursorofthemean-risktheorybyHarryMarkowitz(1952),46wherethestandarddeviationisusedasariskmeasure(seealsoArrow1951).
JohnSennetti(1976)appliedthistheorytothePetersburgparadoxtoconcludethatthegamblewillnotbeplayedforalargeentrancefee.
ThomasEpps(1978,p.
1455)cameupwiththeparadoxicalimplicationthat,owingtotheunboundedrisk,themean-riskcriterionwouldrejectthePetersburggambleevenatazeroentryfee.
PaulWeirich(1985)studiedthesuper-Petersburggambleandshowedthatthemean-riskcriteriondoessolvetheparadoxunderspecialassumptionssimilartoboundedutilityornegligenceofsmallprobabilities.
WhilethisapproachmayhaveitsmeritsitisnotclearwhatconclusionscanbedrawnfromitsapplicationtothePetersburggamble.
IfwelookmorecarefullyintoKeynes'scontribution,Keynesexplicitlyacknowledgedtheriskofoverpayingthewager,butthisaspectmaybedescribedasakindoflossaversionbytoday'sstandardsratherthanriskaversion(Buffon1777;Camerer2005).
Withrespecttothestandardmeasurementofriskaversion,oneparadoxicalissuearisesintheoriginalPetersburgparadox.
Givenanyfinitecertaintyequivalentsofthegamble,Paulisperdefinitionrisk-averseevenifheiswillingtopayastaggeringlyhighnumberforthewager,e.
g.
everyamountupto$21,000,whilePeterisdefinedasriskseekingforanyfinitewillingnesstoaccept,e.
g.
evenifheisnotwillingtosellthewagerforanysmalleramountthan$21,000(guaranteeingthepayofffromthegamblewithhislife).
Inthiscase,theclassificationbytheArrow-PrattmeasureiscounterintuitiveasbothplayersmaybeadjudgedinsanealthoughinoppositiontotheArrow-Prattjudgment;Paulisimprudentlyrisk-lovingandPeterisridiculouslyrisk-averse.
2.
7ExpectancyheuristicAnalternativeresolutiontothePetersburgparadox,theso-calledexpectancyheuristic,hasbeenproposedbyMichelTreisman(1983).
Insteadofcomputingtheproductofprobabilitiesandpayoffs,theexpectancyheuristicsuggestscomputingtheoutcomeattheexpectedgamblelength.
Aspointedoutintheliterature(e.
g.
inSamuelson1977),theexpectedgamblelengthistwo.
Itiscomputedequivalenttoequation(2)whereeachtossisrewardedbyonemoreducat(insteadoftheamountsbeingdoubled).
AtagamblelengthoftwothepayoffistwoducatswhichisthereforethevalueofthePetersburggambleaccordingtotheexpectancyheuristic.
Notethatthemedianpayoffwillbeclosetothevalueoftheexpectancyheuristic,too.
46SeealsoArrow(1951,pp.
423-426)fordiscussionsofearliernotionsofthemean-standarddeviationcriterionandthequadraticutilityfunction.
233.
ExperimentalresearchBottomandcolleagues(1989)designedanexperimenttotestseveralhypothesesincludingtheexpectancyheuristicofTreismaninthePetersburggamble(thesamedataarealsopresentedinJCRiveroetal.
1990).
Theauthorsstatedtheywerealsoconsideringthepossibilitythatsmallprobabilitiesareneglected.
Theycitedthedeminimisliteratureaccordingtowhichprobabilitiesbelow1/10,000and1/1,000,000arecommonlyignored.
Fromtheselevelstheyconstructedhypotheseswhichvaluedthepayoffatthemathematicalexpectation,cuttingoffthegambleafter14and20tosses,respectively.
TheyalsocomputedGabrielCramer'sandDanielBernoulli'sutilityfunctionassumingzerowealthasanadditionalhypothesis.
Finally,afinitewealthhypothesisassumedthatPeterhadnomorefundsthan220ducats.
Thus,onlypayoffsbelowthatamountwereconsideredreasonable.
Fortheexperiment,Bottomandcolleagues(1989)recruitedfromtwosubjectpoolsofstudentsandprofessionals.
Thelatterwerespecialistsinstatistics,economicsandmanagementscience.
Bidswerecollectedinasealedbidauctionunderfourhypotheticalconditions,withnopayoffsorentryfeesinvolved.
Subjectswereaskedtowritedownasealedbidforeachofthefourconditionsandtoimaginethatthesebidswereactuallycompetinginanauction(Bottometal.
1989,p.
142).
ThefirstconditioninvolvedthestandardPetersburggambleasproposedinequation(1),butwithdoubledpayoffs;inthesecondconditionthepayoffsforeachpossibleoutcomewereincreasedbyfivedollars;inthethirdconditiontendollarsmorepayoffwereofferedoneachpossibleoutcome;andinthefourthcondition,payoffsweredoubledfromthefirstconditionforeachpossibleoutcome.
Theresearchersconcludedthattheirresultssupportedtheexpectancyheuristic,meaningthatthemedianbidswereapproximatelyequaltotheexpectedmedianpayoff.
DespitetheageandtheimportanceoftheproblemonlyafewexperimentsonthePetersburggamblehavebeendocumented.
47ItisprobablethatthesolvencyproblemwhichrenderstheexperimentalapproachtotheoriginalPetersburggamblemeaninglesshasbeenamajorcaseagainstit.
Tocircumventthisproblemtheexperimentaldesignmustinvolvethetruncatedgamblewhichlimitsthegambletoafinitenumberofpossibletosses(Fontaine1764).
SuchasettinghasbeenusedinthepresentstudyandinindependentresearchbyJamesCoxandcolleagues(2007),whoconductedthefirstexperimentswiththetruncatedPetersburggambleinFebruary2007.
TheresultsoftheexperimentshavealsobeenreportedinCoxandVjollcaSadiraj(2008)andCoxandcolleagues(2009).
Theauthorsalludetothecalibrationproblemsinthestandardtheoriesofdecision-makinginaccommodatingthePetersburgparadox.
Theirdesign47HaimLevyandMarshallSarnat(1984,p.
110)reportedintheirtextbook,withoutgivingfurtherdetailsontheirprocedure,thattheymadeinquiriesofagroupofstudents,ofwhom"mostwerepreparedtopayonlytwoorthreedollarsforachancetoplay.
Afewwerewillingtopayasmuchaseightdollarsbutnooneofferedmorethanthat.
"ThisstudyhasbeencitedinJürgenJerger(1992).
Vivian(2003,p.
342)statedinafootnotethathehasoftenaskedstudentstoindicatetheamounttheywouldbepreparedtorisktoplaythegame.
"Nostudentiseverpreparedtoriskmorethanafewdollarstoplaythegame…someevenindicatethatzeroisareasonableamounttoplaythegame.
"24involvedninepossibletruncationsofthegambleincluding{1,2,3,.
.
,9}tossesofthecoin.
48Thirtysubjectswereinvitedtoplaythegamblefor0.
25dollarsbelowtheexpectedvalueofthegamblewiththeirownmoney;onegamblewaschosenatrandomandplayedoutforreal.
Mostoftheirsubjectswereunwillingtoplaythegamble.
Thereforetheyconcluded"thatamajorityofsubjectsintheexperimentareriskaverse,notriskneutral"(Coxetal.
2009,p.
224).
Thisresultalsoseemstobesupportedbythedatareportedinthecurrentstudy.
AnotherrecentandindependentexperimentalstudyonthePetersburggamblewhichincludesbothhypotheticalandrealincentivesisreportedbythetwobiologistsBenjaminHaydenandMichaelPlatt(2009).
Theprimaryinterestoftheirstudyisontherepeatedgamble.
49Theirdatashow,inlinewiththelawoflargenumbers,thatthevaluationpergambleincreaseswiththenumberofrepeatedgambles.
Inparticular,subjects'valuationsseemtoconvergetothemedianoutcome.
Inlightoftheseobserveddecisions,wemustgiveaddedacknowledgementtotheproposalofTolmanandFoster(1981)thatthemedianvaluationisareasonablechoicefortherepeatedPetersburggamble.
504ThetruncatedPetersburg-gambleexperimentInthefollowingsubsections,severalexperimentaldatasetsarepresented.
IamextremelygratefulforthesupportofmycolleaguefriendsandstudentswhocollecteddataonmybehalfatdifferentlocationsinEurope.
ThepresentationwillincludedatagatheredinclassroomexperimentsattheLeibnizUniversityofHannover,GermanyandtheUniversityofGranada,SpainandafieldexperimentthatwasconductedinHannover.
Theexperimentalstudyisdedicatedtothestudyoftheone-shotPetersburggamble.
Theunderlyingassumptioninthestudyisthatthefollowinggeneralexpectedutilityfunctionalformrepresentspreferences.
∑∞==1)()()(iiixupfXU(8)MostofthevarioushypothesesthathavebeenputforthinthehistoryoftheparadoxtruncatethePetersburggambleincludingtheboundedutilityorthefinitewealthhypotheses,whichfordifferentreasonsputanupperboundontheutilityofthegamble,andthephysicalimpossibilityorthemoralimpossibilityhypotheses,whichassumethatasmallprobabilityissetequaltozero,f(p)=0,p2500},allamountsinEuro.
Intotal,352subjects,or98.
5percent,repliedtotheincomequestion.
Fromthesedata,thefollowingobservationcanbemade;subject'soffersincreasesignificantlywithincome(inthetreatmentsthatinvolveamaximumpayoffofatleast32Euro).
Forthesampleinvolvingthetreatmentswithamaximumpayoffofatleast32Euro,thepooledregressionresultofthestatedwillingness-to-payontheincomecategoriesisasfollows(theasteriskindicatessignificanceatthe5percentlevel,theparenthesesquotestandarddeviations).
statedwillingness-to-pay=2.
63*+0.
74*IncCat(1.
013)(0.
335)TheregressionresultisapparentlyinlinewiththeassumptionofDanielBernoulli(1954),accordingtowhichthewillingness-to-payforthePetersburggambleshouldbeanincreasingfunctionofwealth(orincome,inlinewithMarshall1890).
Theevidenceonthesmallprobabilityneglect,however,wasnotanticipatedinDanielBernoulli'stheory,aswaspointedoutbyNicholasBernoulli(1732).
Theothertwotreatmentsindicatenosignificantwageeffect,andgenderandage57Asubject-pooleffectisverylikely.
InFebruaryandMarch2007,IalsorantwoclassroomexperimentsinRomeatLUISS.
Theresultsindicatedsubject-pooldifferences;elevenfirst-yearstudentsofaMasterofArtscoursesubmittedamedianbidof1.
00Eurofortheoriginal(non-truncated)Petersburggamble,whilenineMBAstudentssubmittedamedianbidof6.
00EuroforthetruncatedPetersburggamble,wherethepayoffmaximumwas100Euro.
Thedifferenceissignificant;thep-valueofthetwo-tailedMann-Whitneytestis0.
002(thetwo-tailedtestisusedherebecauseofthedifferentsubjectpools).
Actually,theMBAsampleelicitedsignificantlyhigherbidsthananyotherreportedclassroomexperiment.
30arenosignificantdeterminantsofthestatedwillingness-to-pay,either.
Oneshouldalsopointoutthatthecorrelationbetweenthestatedageandthestatedincomecategoryissignificantinoursample.
TheSpearmanrankcorrelationcoefficientis0.
260,andthep-valueofsuchanextremeresultis0.
000.
Asindicatedinthetable3,thestatedwillingness-to-paywasextraordinarilyhighinthefieldexperiment.
58Ofthe99personswhostatedanamountatorabovefiveEuroastheirwillingness-to-pay,however,onlynineteen,or19percent,werewillingtopurchasethegambleatapriceoffiveEuro.
Conversely,fourpersons,or1.
5percent,statedanamountbelowfiveEuroandpurchasedthegambleforfiveEuro.
Eliminatingthedatapointsofthesesubjectsdoesnotleadtodifferentconclusions,buttoalowermedianwillingness-to-pay.
4.
3Isthesmallprobabilityeffectrobusttosubject-poolchanges-Yes,itseemstoberobust.
Anadditionalclassroomexperimentwithanincentivecompatibledesignwasconductedtochecktherobustnessoftheresultsfromthefield.
Atotalof232studentsofathird-yeareconomicscourse59attheUniversityofGranada,Spainparticipatedintheexperiment.
Inspring2008,thecoursewastaughttothreedifferentgroupsbyFrancisLagos.
AttheendofthefinallectureinMay2008,DrLagosinvitedthestudentstoparticipateintheexperimentandranonmybehalfasecond-priceauctionasdescribedinsection4.
1onthetruncatedPetersburgwithmaximumpayoffs16,32,and64Euro,respectively.
InApril2009,thesamecoursewastaughttotwodifferentgroupsbyDrJuanAntonioLacomba,whoinvitedthestudentstoparticipateandconductedtwoexperimentswithmaximumpayoffsof128and1024Euro.
IndifferencetotheGermanclassroomexperimentbutinlinewiththefieldstudy,allpossiblepayoffswerepresentedonthedecisionsheetandthetombola-sheetwasnotpresented.
Thebasicstatisticsoftheexperimentarereportedinthetable3andthepair-wisetestresultsarerecordedinthetableA5oftheappendix.
Theresultsreplicatetheobservationofthefieldexperiment.
60TheobservedbiddingbehaviorisinlinewiththehypothesisofNicholasBernoulli(1732),thatsubjectssetsmallprobabilitiesbelow1/32equaltozero.
Thebetween-countrycomparisonofthebiddataforallPetersburggambleswhichinvolveamaximumpayoffabove16indicatesnodifferencesfortheSpanishandGermanclassroomexperiments.
61Table3.
BidsinthetruncatedPetersburggamble(Granada)58Thesubjectswhostatedawillingness-to-payof50or100EuroasrecordedinTable3rejectedtheoffertopurchasethegambleatapriceoffiveEuro.
59Notethatthird-yeareconomicscourseswerealsoimplicatedinGermany.
Thus,cross-countrycomparisonofthebiddatamaybepossible.
60Theone-tailedMann-WhitneytestsuggeststhatthePetersburggambletruncatedat16leadstosignificantlylowerbidsthanthegambletruncatedat32,64,1024;thep-valuesare0.
041,0.
016,and0.
032,respectively.
Thesamplesizeofthe128cohortisapparentlytoosmalltoreflectthedifferencetothe16cohortata5percentlevel;thep-levelis0.
095.
Thepair-wisetestresultsforallthetreatmentsarenotsignificant,theyarerecordedinTableA5oftheappendix.
61Thetwo-sampletwo-tailedMann-Whitneytestdoesnotrejectthenullhypothesiswhichassumesnodifferentindividualbidsinbothlocations(thep-valueis.
548),andtheeight-sampletwo-tailedKruskal-Wallistestdoesnotrejectthenullofequalbids,either(thep-valueis1.
000).
31maximumpayoff:1632641281024Meanbid1.
442.
062.
092.
162.
12Medianbid1.
101.
581.
501.
942.
00Maximumbid5.
008.
0010.
007.
006.
05Minimumbid0.
010.
100.
500.
020.
00Standarddeviation1.
091.
701.
711.
851.
63Numberofparticipants40445928625ConcludingremarksThisarticlereportsexperimentalevidencethatpeople'selicitedwillingness-to-payforthePetersburggambleiscompatiblewiththeviewthatsubjectsneglectsmallprobabilitiesofwinning.
Morespecifically,therevealedwillingness-to-payforthetruncatedversionofthePetersburggambledidnotdifferfromtheonefortheoriginalversionofthegamble.
Thesmallest,stillnotable,probabilitylevelinthedatais1/32,maybeasurprisinglylowlevel.
ButthislevelofmoralimpossibilityhasbeenproposedbyBernoulli(1732)who,throughhiscontinuedinterestinthePetersburggamble,evidencedbypersistenceindiscussingthisproblemwithvariousresearchersovertheyears1713to1732,introduceditintotheliterature.
Thestatisticalequivalenceofthewillingness-to-payforthevariouslengthsofthegambleimpliesthatsubjectsconsiderthepayoffsupto32ducatsonly.
ItthusseemsreasonabletoacceptthattheneglectofsmallprobabilityeventsisamorerelevantdecisioncriterioninthePetersburggamblethanitsbestknownalternatives,boundedutility(whichequalizesthepleasuresofgaining32ducatswithunlimitedwealth)andthelimitationoftheexperimenter'swealthat32ducats.
Menger(1934)pointedoutthateitheranupperboundonutilityoralowerboundonprobabilitymustbeinstigatedtoresolvethePetersburgparadoxes.
Wakker(1993)showedthatwithdenumerableprobability,itispossibletoinstateawell-definedunboundedutilityfunction.
Intermsofprobabilitylevels,anequivalentsize,namelythe5percentlevel,hasbeenproposedbyappliedstatisticians(followingFisher1925)asaconservativelevelofmoralimpossibilityforthesocialsciences,sincetwostandarddeviationsofthedistributionareincludedandonlyveryextremeoutliersareexcluded.
Indeed,dependingonthesignificanceofthesubjectmatter,higherlevelsofmoralimpossibilitywillbeapplied.
Someconsentlevelshavebeenestablishedforscientificresearch,healthcare,orforensicproofofevidence.
Thisapproachisboundedlyrationalastheparticularcriticalprobabilitylevelseemssomewhatarbitrary.
Therefore,JamesBernoulli(1713)calledfortheauthoritiestofixthelevelsofmoralimpossibility,justasruleshavebeenestablishedforcollectiveorindividualsafetymeasures,personallibertyandmoralvalues.
AsNicholasBernoulliwasinterestedinapplyingstatisticstomorals,itisconceivablethatthePetersburggambleoccupiedhismindfortheexactpurposeoffixingthelevel.
AsthediscussiononthePetersburggambleremindsus,itisnotprudenttobetlargeamountsonextremeoutliersinaone-shotgame,butintherepeatedgambletheseextremeoutliersmayverywellmaterialize.
Inthisrespectthediscussioninthepaperreiteratedthattheone-shotgambleisdifferentfromtherepeatedgamble.
FollowingLaplace(1820),itisperfectlyreasonablefortheindividualtoinsureagainstapersonal(unlikely)misfortune,andforthe32insurancecompanytoinsureindividualsagainstsuchamisfortune.
Sincetheinsurancecompanyfrequentlytakesagambleonindividuals'misfortunes,theexpectedvalueismorerelevanttotheinsurancecompanythantotheindividualwhogamblesonlyonce.
Thesmallertheprobabilityofsuchmisfortunes,however,thelessfrequentlydoindividualsinsureagainstthem,astheseeventsseemtoounlikelytooccur.
62Wehavereachedthepointwhereweapplybothourriskorlossaversionandthecancelingofsmallprobabilities,andeventuallywefaceatrade-offbetweenthesedecisionrules(Bernoulli1732;Buffon1777;Menger1932;andKahnemanandTversky1979).
Comingbacktotheexperimentalresults,itisobservedthatmostsubjects'elicitedwillingness-to-payfallsshortoftheexpectedpayoffofthegambles.
63Thisobservationisinlinewithariskaversionoralossaversionargument(Camerer2007;seealsoSchmidtandTraub2002)towhicheconomistsgenerallywouldsubscribeandhasbeenexperimentallysupportedforthefinitePetersburggamblebyCoxandcolleagues(2007,2008,2009).
Indeed,asBuffonpointedout,theremustbeadifferencebetweenthepleasureofwinningandthepainoflosing,sothatthelevelsofmoralimpossibilityforlossesandgainswillvary.
Peopleweighsmallprobabilitiesofmostoptimisticoutcomesdifferentlyfromsmallprobabilitiesofmostpessimisticoutcomes.
AsSamuelson(1977,42f)putsit:"ItisreasonableformetoignorethesmallprobabilitythatIshallfindadollaronmywaytowork.
64Butarationalmanwouldnotwanttoignorethesmallprobabilityofagreatdisaster.
"Whilelowprobabilityhighimpacteventshaveoccurredinthepastandarelikelytooccurinthefuture,itmayberationaltoinsureagainstthemandprudenttowagernosignificantamountonthem.
62Thepsychologicalliteraturehassuggestedthattheperceptionofsmallprobabilityeventsmaydependontheexperienceoftheiroccurrence.
Recentlyexperiencedeventsinfluencedecisionmaking,astylizedfactwhichhasbeencalledtherecencyeffect(RobinHogartandHillelEinhorn1992).
Inrecentexperimentalworkithasbeenshownthattherecencyeffectplaysaroleinsubjects'decisionstobetonsmallprobabilityeventswithrepeatedgambles(RalphHertwigandcollaborators2004).
Experimentalsubjectswhodonotwitnessrareeventsdonotbetonthemandviceversa.
63Theexperimentalliteratureshowsthatthewillingness-to-payforalotteryisgenerallysmallerthanthewillingness-to-accept(forasurveyseeUlrichSchmidtandStefanTraub2009).
Giventhisdisparityitislikelythatasksarehigherundertheconditionsofawillingness-to-acceptprocedure.
AnticipatingthatasaleofthePetersburggamblemayleadtoconsiderablelossesfortheseller,itisalsoperceivablethatthenegligenceofsmallprobabilitiesisnotableonlyformuchsmallerprobabilitiesthan1/32.
ThisissuecouldberelevantintheexplanationoftheexperimentalresultsbyKrollandVogt(2009).
64Presumably,thesamestorycanbetoldaboutlargermoneyamounts,too.
33AppendixTableA1.
Buffon'sresultsNumberof"tails"Buffon'sobservationsPayoffBuffon'sexpectationheuristica)010611210=1024+11494229=5122232428=2563137827=1284561626=645293225=326256424=167812823=88625622=49-51221=210-102420=1a)Buffon'sexpectedoutcomesmatchwiththegeometricaldistribution.
34TableA2.
OverviewofexperimentalstudiesSessionLocationAnnouncedmaximumpayoffSubjectsNumberofparticipantsMedianbidSession1LU.
Hannover10Firstyear460.
10LU.
Hannover100Firstyear190.
99LU.
Hannover1000Firstyear220.
99LU.
Hannover∞Firstyear280.
50Session2LU.
Hannover1,000Fourthyear302.
01Session3LU.
Hannover10,000Fourthyear472.
00Session4LUISS∞FirstyearMA111.
00Session5LUISS100MBA96.
00Session6LU.
Hannover250Thirdyear221.
85LU.
Hannover∞Thirdyear281.
50FieldstudyLUHannover10501.
00LUHannover16502.
00LUHannover32513.
00LUHannover50503.
00LUHannover100853.
00LUHannover1000753.
00Session7UGranada16Thirdyear401.
10Session8UGranada32Thirdyear441.
58Session9UGranada64Thirdyear591.
50Session10UGranada128Thirdyear281.
94Session11UGranada1024Thirdyear622.
0035TableA3.
ClassroomexperimentHannover:One-tailedMann-Whitneytestresultsforsubjects'bidsmaximumpayoff1,00010,000unlimited250.
130.
433.
3291,000.
859.
90410,000.
375TableA4.
Fieldstudy:One-tailedMann-Whitneytestresultsforsubjects'revisedwillingness-to-paymaximumpayoff1632501001,00010.
000.
000.
000.
000.
00016.
018.
049.
041.
02732.
756.
570.
37050.
388.
165100.
244TableA5.
ClassroomexperimentGranada:Mann-Whitneytestresultsforsubjects'bidsmaximumpayoff32641281,02416.
041.
016.
095.
03232.
438.
503.
43264.
565.
467128.
50036ReferencesAase,Knut.
"OntheStPetersburgparadox.
"ScandinavianActuarialJournal,pp.
69-78,2001.
d'Alembert,JeanLeRond.
"RéflexionssurleCalculdesProbabilités.
"OpusculesMathématiques,TomeII,Memoire10.
Paris1761-1780,pp.
1-25,1764.
d'Alembert,JeanLeRond.
"SurleCalculdesProbabilités.
"OpusculesMathématiques,TomeIV,Paris1761-1780,283-310.
1768.
TranslatedbyRichardJPulskamphttp://www.
cs.
xu.
edu/math/Sources/Dalembert/memoir27.
pdfd'Alembert,JeanLeRond.
"SurleCalculdesProbabilités.
"OpusculesMathématiques,TomeVII§2,Paris1761-1780,39-60,1780.
Allais,Maurice.
"ThearbitragebetweenmathematicalexpectationandtheprobabilityofruinandtheSt.
Petersburgparadox,"inMauriceAllaisandOleHagen,eds.
,ExpectedUtilityandtheAllaisParadox.
Dodrecht:D.
Reidel,pp.
498-506,1979.
Arnauld,AntoineandNicole,Pierre.
L'artdepenser.
(Appearedanonymously.
)Paris,1662.
Arrow,KennethJ.
"Alternativeapproachestothetheoryofchoiceinrisk-takingsituations.
"Econometrica19,pp.
404-437,1951.
Arrow,KennethJ.
Essaysinthetheoryofrisk-bearing.
AmsterdamandLondon,pp44-89,1971.
Aumann,RobertJ.
"TheSt.
Petersburgparadox:Adiscussionofsomerecentcomments.
"JournalofEconomicTheory14,pp.
443-445,1977.
BassettGilbertW.
"TheSt.
Petersburgparadoxandboundedutility.
"HistoryofPoliticalEconomy19(4),pp.
517-523,1987.
Bentham,Jeremy.
"RationaleofEvidence.
"TheWorksofJeremyBenthamvol.
6,publishedundertheSuperintendenceofhisExecutor,JohnBowring(Edinburgh:WilliamTait,1843)1943.
BerkerIstvan,CsákiEndreandCsrgSandor.
"AlmostsurelimittheoremsfortheSt.
Petersburggames.
"StatisticsandProbabililtyLetters.
pp.
45,23-30,1999.
BernoulliDaniel.
"Specimentheoriaenovaedemensurasortis.
"ComentariiAcademiaeScientariumImperialisPetropolitanaeV,175-192,1738;Germantranslation1896byPringsheim,A,DieGrundlagedermodernenWertlehre.
VersucheinerneuenTheoriederWertbestimmungvonGlücksfllen,Leipzig;Englishtranslation1954byL.
SommerwithfootnotesbyKarlMenger,Expositionofanewtheoryonthemeasurementofrisk,Econometrica22(1),23-36;Frenchtranslation1985Esquissed'unethéorienouvelledemesuredusort.
Cahiersduséminaired'histoiredesmathématiques,6,p.
61-77Bernoulli,James.
TheartofconjecturingtogetherwithLettertoafriendonsetsincourttennis.
TranslatedwithanintroductionandnotesbyEdithDudleySylla.
TheJohnHopkinsUniversityPress,2006.
Bernoulli,Nicholas.
Letter#18toDanielBernoulli,inB.
L.
vanderWaerden,ed.
,DieWerkevonJakobBernoulli3,K9.
Basel:BirkhuserVerlag,pp.
566-568,1732.
Bernstein,Peter.
AgainstTheGods:theRemarkableStoryofRisk,JohnWiley&Sons,pp.
106-108,1996.
BertrandJoseph.
Calculdesprobabilities.
Paris,pp.
59-64,1889.
BirnbaumMichaelH.
"Testsofrank-dependentutilityandcumulativeprospecttheoryingamblesrepresentedbynaturalfrequencies:Effectsofformat,eventframing,andbranchsplitting.
"OrganizationalBehaviorandHumanDecisionProcesses95,pp.
40-65,2004.
Birnbaum,M.
H.
"Threenewtestsofindependencethatdifferentiatemodelsofriskydecisionmaking.
"ManagementScience51,pp.
1346-1358,2005a.
BirnbaumMichaelH.
"Acomparisonoffivemodelsthatpredictviolationsoffirst-orderstochasticdominanceinriskydecisionmaking".
JournalofRiskandUncertainty31,pp.
263-287,2005b.
Brito,D.
L.
"Becker'stheoryoftheallocationoftimeandtheSt.
Peterburgparadox.
"JournalofEconomicTheory10(1),pp.
123-26,1975.
Borelmile.
"Lesprobabilitésdénombrablesetleurapplicationsarithmétiques.
"RendicontidelCircoloMatematicodiPalermo27,pp.
247-271,1909.
Borelmile.
"MécaniqueStatistiqueetIrréversibilité.
"JournaldePhysiqueThéoriqueetAppliquée5(1),pp.
189–196,1913.
Borelmile.
Lehasard.
Paris:PressesUniversitairesdeFrance,1914.
Borelmile.
Valeurpratiqueetphilosophiquedesprobabilités.
Paris:Gauthier-Villars,1939.
BlavatskiPavlo.
"BacktotheSt.
Petersburgparadox.
"ManagementScience51(4),pp.
677-678,2005.
BottomWilliamP.
,BontempoRobertN.
,HoltgraveandDavidRobert.
Experts,novices,andtheSt.
PetersburgParadox:Isonesolutionenough.
"JournalofBehavioralDecisionMaking2,pp.
113-121,1989.
37BreimanLeo.
"Optimalgamblingsystemsforfavorablegames.
"FourthBerkeleySymposiumonMathematicalStatisticsandProbability1,pp.
65-78.
BroomeJohn.
"Thetwo-envelopeparadox.
"Analysis55(1),6-11.
Bru,B.
,Bru,M.
-F;andChung,K.
-L.
"BoreletlaMartingaledeSaint-Petersbourg.
"Revued'HistoiredesMathématiques,5,pp.
181–247,1999.
BudescuDavidV.
andAmnonRapoport.
"Generationofrandomseriesintwo-personstrictlycompetitivegames.
"JournalofExperimentalPsychology121(3),pp.
352-363,1992.
BuffonGeorges-LouisLeclerc.
"Essaid'arithmétiquemorale.
"inSupplémentàl'historienaturelleIV,reproducedinUnautreBuffon,Hermann,1977,pp.
47-59,1777.
CamererColin.
"ThreeCheers—Psychological.
Theoretical,Empirical—forLossAversion.
"JournalofMarketingResearch42(2),pp.
129-134,2005.
CeasarAllanJ.
"AMonteCarloSimulationRelatedtotheSt.
PetersburgParadox.
"CollegeMathematicalJournal,15(4)pp.
399-342,1984.
CardanoGirolamo.
Practicaarithmeticae.
Milano:1539.
ChipmanJ.
S.
Foundationsofutility.
"Econometrica28,pp.
193-224,1960.
CondorcetM.
Essaisurl'applicationdel'analyseálaprobabilitédesdecisionsrenduesàlapluralitédesvoix.
Paris:Del'imprimerieroyale,1785.
CoolidgeJ.
W.
Themathematicsofgreatamateurs.
NewYork:DoverPublications[1949],1963.
CournotAntoineAugustin.
Expositiondelathéoriedeschancesetdesprobabilities.
Paris,L.
Hachette,1843.
Cox,JamesC.
;Sadiraj,Vjollca;Vogt,Bodo,andDasgupta,Utteeyo.
"Isthereaplausibletheoryforriskydecisions.
"GeorgiaStateUniversity,ExperimentalEconomicsCenterWorkingPaper2007–05,2007.
Cox,JamesC.
,andSadiraj,Vjollca.
"Riskydecisionsinthelargeandinthesmall:theoryandexperiment,"in:Cox,JamesC.
andHarrison,GlennW.
(eds.
)RiskAversioninExperiments,ResearchinExpermentalEconomics12,pp.
9-40,2008.
Cox,JamesC.
,Sadiraj,Vjollca,andVogt,Bodo.
"OntheEmpiricalRelevanceofSt.
PetersburgLotteries,"EconomicsBulletin,Vol.
29(1),pp.
221-227,2009.
CramerGabriel.
"LettertoN.
Bernoulli.
"1928.
PublishedfullyinDanielBernoulli,1954,pp.
33-35.
CsrgSándor.
NicholasBernoulli,in:Heyde,C.
C.
,Seneta,Eugene(eds.
)StatisticiansoftheCenturies,Springer,pp.
55-63,2001.
CsrgSándor.
2003"MergeRatesforSumsofLargeWinningsinGeneralizedSt.
PetersburgGames,"ActaScientiarumMathematicarum(Szeged),69,pp.
441–454,2003.
CsrgSándorandSimonsGordon.
"OnSteinhaus'ResolutionoftheSt.
PetersburgParadox,"ProbabilityandMathematicalStatistics.
14,pp.
157–172,1993–1994.
CsrgSándorandSimonsGordon.
"AStrongLawofLargeNumbersforTrimmedSums,withApplicationstoGeneralizedSt.
PetersburgGames,"Statistics&ProbabilityLetters.
26,pp.
65–73,1996.
CsrgSándorandSimonsGordon.
"TheTwo-PaulParadoxandtheComparisonofInfiniteExpectations,"inLimitTheoremsinProbabilityandStatistics,eds.
I.
Berkesetal.
,Budapest:JánosBolyaiMathematicalSociety,pp.
427–455,2002.
CsrgSándorandSimonsGordon.
LawsoflargenumbersforcooperativeSt.
Petersburggamblers,Volume50,Numbers1-2/August2005.
CzuberEmanuel.
"DasPetersburgerProblem.
"ArchivderMathematikundPhysik67,pp.
1-28,1882.
DastonL.
"ProbabilisticExpectationandRationalityinClassicalProbabilityTheory.
"HistoriaMathematica,7,pp.
234-60,1980.
Descartes,René;Cottingham,John;Stoothoff,Robert;Murdoch,DugaldKennyandAnthonyJohnPatrick.
"ThePhilosophicalWritingsofDescartes.
"CambridgeUniversityPress,1985.
DevlinKeith.
Theunfinishedgame.
NY:BasicBooks,2008.
DucelYvesandMartinThierry.
"Georges-LouisLeclerc.
"ComtedeBuffon,in:Heyde,C.
C.
,Seneta,Eugene(eds.
)StatisticiansoftheCenturies,Springer,pp.
77-81,2001.
Dudley-SillaDavid.
"GrowthStocksandthePetersburgParadox.
"JournalofFinance12:pp.
348-63,1957.
DurandDavid.
"GrowthStocksandthePetersburgParadox.
"JournalofFinance12:pp.
348-63,1957.
DutkaJacques.
"OntheSt.
Petersburgparadox.
"ArchiveHistoryofExactSciences39,pp.
13-39,1988.
Edgeworth,FrancisY.
MathematicalPsychics:AnEssayontheApplicationofMathematicstotheMoralSciences.
London1881.
38EdwardsWard.
"Thetheoryofdecisionmaking.
"PsychologicalBulletin.
51,380–417,1954.
EulerLeonhard.
"Veraaestimatiosortisinludis.
"Operaposthuma1,pp.
315-318,1862.
TranslationbyRichardPulskamptitled"Thetruevaluationoftheriskingames"availableathttp://www.
cs.
xu.
edu/math/Sources/Euler/E811.
pdfFellerWilliam.
"NoteontheLawofLargeNumbersand'Fair'Games.
"AnnalsofMathematicalStatistics.
16,301–304,1945.
FontaineAlexis.
"Solutiond'unproblemesurlesjeuxdehazard.
"Mémoiresdonnésàl'Acad.
Roy.
DesSciences,429-431,1764.
FréchetMaurice.
"L'estimationstatistiquedesparamètresabstract.
"Econometrica16,60-62,1948.
FriesJakobFriedrich.
"VersucheinerKritikderPrincipienderWahrscheinlichkeitsrechnung.
"Braunschweig,pp.
114-120,1842.
FryThorntonC.
ProbabilityanditsEngineeringuses.
NewYork:VanNostrand,194-199,1928.
FishburnPeterC.
"Expectedutility:Ananniversaryandanewera.
"JournalofRiskandUncertainty1(3)1988.
FurlanL.
V.
"BemerkungenzumPetersburgerProblem.
"SchweizerischeZeitschriftfürVolkswirtschaftundStatistik82,pp.
444-448,1946.
GorovitzSamuel.
"TheSt.
Petersburgparadox,"inMauriceAllais,OleHagen(eds.
)ExpectedUtilityandtheAllaisParadox,pp.
259-270,1979.
GordonM.
J.
"TheInvestment.
"FinancingandValuationoftheCorporation,Homewood.
Illinois:RichardD.
Irwin,Inc.
1962.
GottingerH.
W.
"Bernoulli'sutilitytheoryandhistoricalramifications.
"JahrbücherfürNationalkonomieundStatistik186,481-497,1971/72.
HackingIan.
"Theemergenceofprobabilityandinductivelogic.
"CambridgeUniversityPress,pp.
91-100,2001.
HallerHelmutH.
"MixedextensionofgamesandtheSaintPetersburgparadox.
"InR.
Nauetal.
(ed.
)EconomicandEnvironmentalRiskandUncertainty.
PP.
163-171.
HardinRussell.
"CollectiveAction.
"TheJohnsHopkinsUniversityPress.
1982.
HastieReid.
"Algebraicmodelsofjurordecisionprocesses,"inReidHastie,LolaL.
Lopes,HalR.
Arkes(eds.
)InsidetheJuror,NY:CambridgeUniversityPress.
pp.
84-115,1993.
Hayden,B.
Y.
andPlatt,M.
L.
"TheMean,theMedian,andtheSt.
PetersburgParadox,"JudgmentandDecisionMaking,Vol.
4(4),256-272,2009.
Hertwig,Ralph;Barron,Greg;Weber,ElkeU.
,andErev,Ido.
"DecisionsFromExperienceandtheEffectofRareEventsinRiskyChoice.
"PsychologicalScience15(8),pp.
534-39,2004.
Hinners-TobrgelLudger.
"TheSt.
Petersburgparadox.
"PaperpresentedattheEFITA2003Conference.
HogarthRobinandEinhornHillel.
"Ordereffectsinbeliefupdating:Thebelief-adjustmentmodel.
"CognitivePsychology,24,pp.
1-55,1992.
JallaisS.
andPradierP.
-C.
"L'erreurdeDanielBernoulliouPascalincompris.
"EconomiesetSociétés,OEconomia.
25,pp.
17-48,1997.
JeffreyRichardC.
"Thelogicofdecision.
"McGrawHill,NewYork,1965.
JergerJürgen.
"DasSt.
PetersburgerParadoxon.
"-WiSt21,number8,pp.
407-410,1992.
JoyceJ.
FoundationsofCausalDecisionTheory.
Cambridge:CambridgeUniversityPress.
1999.
JorlandGerard.
"TheSaintPetersburgParadox,1713-1937.
"InMichaelHeidelberger,LorenzKrüger,andRosemarieRheinwald(Eds.
),Probabilitysince1800.
Bielefeld:WissenschaftsforschungB.
K.
VerlagGmbH.
1983.
JorlandGerard.
"Probability,thetheoryofgamesandeconomics.
"TheSaintPetersburgParadox.
InL.
Krüger,L.
Daston&L.
Heidelberger(Eds.
),TheProbabilisticRevolution.
Vol.
1,pp.
157-90,1987.
Cambridge(Mass.
):TheMITPress.
KeynesJohnM.
Atreatiseonprobability.
London:MacMillanandCo.
1921.
KinschPatrick.
"Probabilitéetcertitudedanslapreuveenjustice.
"InstitutGrand-DucalActesdelaSectiondesSciencesMoralesetPolitiques,pp.
65-103,2008.
KohliKarl.
"Spieldauer,"inB.
L.
vanderWaerden(ed.
):DieWerkevonJakobBernoulli3,K4.
Basel:BirkhuserVerlag.
Pp.
403-456,1975.
KnoblochEberhard"EmileBorelasaProbabilist,"InL.
Krüger,L.
Daston&L.
Heidelberger(Eds.
),TheProbabilisticRevolution.
Vol.
1,pp.
215-33.
Cambridge(Mass.
):TheMITPress,1987.
KraitchikM.
"TheSaintPetersburgParadox",§6.
18inMathematicalRecreations.
W.
W.
Norton.
1942.
Kroll,EikeBenjaminandVogt,Bodo.
"ThePetersburgParadoxDespiteRisk-SeekingPreferences:AnExperimentalStudy"FEMMworkingpaperNo.
4,January2009.
LacroixSylvestreFranois.
Traitéducalculdifférentieletducalculintégral.
Paris:ChezCourcier.
1802.
39LaplacePierre-Simon.
"Théorieanaltytiquedesprobabilités.
"LivreII,ChapitreX.
Del'espérancemorale,OeuvresdeLaplace,omeVII,ImprimerieRoyale,1847,pp.
474-488,1812.
LaplacePierre-Simon.
"Essaiphiliosophiquesurlesprobabilités.
"2Vols.
,Paris,Gauthier-Villars,Vol1,pp.
22-23,1921.
LevyPaul.
"Calculdesprobabilities.
"ChapitreVI,Critiquedelathéoriedugainprobable,Gauthier-Villars,Paris,1925,113-133.
LopesLolaL.
"Decisionmakingintheshortrun.
"JournalofExperimentalPsychology:HumanLearningandMemory,7,pp.
377-385,1981.
LuceR.
DuncanandSuppesPatrick.
"Representationalmeasurementtheory,"inStevens'HandbookofExperimentalPsychology,Vol.
4,3rdEdition,H.
Pashler,ed.
,Wiley,NewYork,pp.
1–41,2002.
LuptonSydney.
"TheSt.
PetersburgProblem.
"NatureVol.
41,pp.
168-169,1890.
MarkowitzHarryM.
"Portfolioselection.
"JournalofFinance7(1),77-91,1952.
MartinThierry.
"LalogiqueprobabilistedeGabrielCramer.
"Mathématiquesetscienceshumaines~MathematicsandSocialSciences176(4),pp.
43-60,2006.
Martin-LfAnders.
"ALimitTheoremWhichClarifiesthe'PetersburgParadox.
"JournalofAppliedProbability,22,pp.
634–643,1985.
Martin-LfAnders.
"AnanalysisoftwomodificationsofthePetersburggameandofanothergameallowingarbitrage.
"MathematicalStatisticsStockholmUniversityResearchReport2001:11,November2001.
Marshall,Alfred.
PrinciplesofEconomicsLondon:MacmillanandCo.
,Ltd.
,1890.
MengerKarl.
"DasUnsicherheitsmomentinderWertlehre.
"ZeitschriftderNationalkonomie51,pp.
459-485,1934.
EnglishtranslationbyWolfgangSchoellkopfwithassistanceofW.
GilesMellon.
Theroleofuncertaintyineconomics,Chapter16inEssaysinmathematicaleconomicsinhonorofOskarMorgenstern,Princeton:PrincetonUniversityPress,pp.
211-232,1967.
MontmortRaimond.
1713,(anonymouslypublished):Essayd'AnalysesurlesJeuxdeHazard,Quillaud,Paris,firsteditionappearedin1708;secondeditionincludesimportantlettersbyJohnandNicholasBernoulli.
ReprintedbytheAmericanMathematicalSocietyChelseaPublishing,RhodeIsland,2006.
Pareto,VilfredoF.
"Considerazionisuiprincipiifondamentalidell'economiapoliticapuraV.
"GiornaledegliEconomisti2(7),279-321,October1893.
Plous,Scott.
Thepsychologyofjudgmentanddecisionmaking,McGraw-Hill,pp.
79ff,1993.
PoissonSimeon-Denis.
"Recherchessurlaprobabilitédesjugementsenmatièrescriminellesetmatièrecivile(4to,1837).
"AllpublishedatParis.
AtranslationofPoisson'sTreatiseonMechanicswaspublishedinLondonin1842.
QuigginJohn.
"Atheoryofanticipatedutility.
"JournalofEconomicBehaviorandOrganization.
3,pp.
324–345.
Ramsey,FrankP.
"TruthandProbability,"inFrankRamseyandRichardBevan,eds.
,TheFoundationsof.
MathematicsandotherLogicalEssaysCh.
VII,pp.
156-198,1931.
RestleFrank.
Psychologyandjudgmentofchoice.
NewYork:JohnWiley&Sons,pp.
107-135,1961.
RiegerMarcOliverandWangMei.
"CumulativeprospecttheoryandtheSt.
Petersburgparadox.
"EconomicTheory.
28(3),pp.
665-679,2006.
RiveroJ.
C.
,HoltgraveDavidR.
,BontempoRobertN.
andBottomWilliamP.
"TheSt.
PetersburgParadox:Data,atlast.
"Commentary,8:pp.
46-51,1990.
ReprintedinW.
H.
Loke(ed.
)PerspectivesonJudgmentandDecisionMaking,LanhamPress:Kent,England.
RumpChristopherM.
"CapitalGrowthandtheSt.
PetersburgGame.
"TheAmericanStatistician.
61(3),pp.
213-217,2007.
RussonManuelG.
andChangSJ.
"Riskaversionandpracticalexpectedvalue:AsimulationoftheStPetersburgGame.
"Simulation&Gaming,23,pp.
6-19,1992.
SamuelsonPaulA.
"TheSt.
PetersburgParadoxasaDivergentDoubleLimit.
"InternationalEconomicReview.
1,pp.
30-37,1960.
SamuelsonPaulA.
"AFallacyofLargeNumbers.
"Scientia98,pp.
108-113,1963.
SamuelsonPaulA.
"St.
PetersburgParadoxes:Defanged,DissectedandHistoricallyDescribed.
"JournalofEconomicLiterature.
15(1),pp.
24-55,1977.
SandiferEd.
"HowEulerdidit–St.
PetersburgParadox.
"Internetresource,http://www.
maa.
org/editorial/euler/how%20euler%20did%20it%2045%20st%20petersburg%20paradox.
pdf,2004.
Schmidt,UlrichandTraub,Stefan.
"AnExperimentalInvestigationoftheDisparityBetweenWTAandWTPforLotteries,"TheoryandDecision66(3),pp.
229-262,March2009.
40Schmidt,UlrichandTraub,Stefan.
"AnExperimentalTestofLossAversion,"JournalofRiskandUncertainty25,pp.
233-249,2002.
Schredelseker,Klaus.
GrundlagenderFinanzwirtschaftEininformationsko-nomischerZugang.
Oldenbourg:Wissenschaftsverlag,pp.
220-21,2002.
Selten,Reinhard.
"WhatisboundedrationalityInGigerenzer,GerdandSelten,Reinhard,eds.
,Boundedrationality:theadaptivetoolbox.
TheMITPress,pp.
13-36,2001.
SenettiJ.
T.
"OnBernoulli,Sharpe,financialrisk,andtheSt.
Petersburgparadox.
"JournalofFinance31,pp.
960-962,1976.
Shafer,Glenn.
TheSt.
Petersburgparadox.
InSamuelKotzandNormanL.
Johnson,eds.
,Encyclopediaofstatisticalsciences8,pp.
865-870,1988.
Shapiro,BarbaraJ.
Beyondreasonabledoubtandprobablecause–historicalperspectivesontheAnglo-Americanlawofevidence.
Berkeley:UniversityofCaliforniaPress,1991.
Shapley,Lloyd.
S.
"ThePetersburgParadox–Acongame"JournalofEconomicTheory14,pp.
439-442,1977.
Shefrin,Hersh.
Bey0ndGreedandFear,OxfordUniversityPress,2002.
Sheynin,Oscar.
"Ontheearlyhistoryofthelawoflargenumbers.
"InEditors,EgonS.
PearsonandMauriceG.
Kendall,eds.
,StudiesintheHistoryofStatisticsandProbability[vol.
1].
London,pp.
231–239,1970.
Sinn,Hans-Werner.
konomischeEntscheidungenbeiUngewissheit,Tübingen:Mohr,pp.
194-197,1980.
Spiess,Otto.
ZurVorgeschichtedesPetersburgerProblems,"inB.
L.
vanderWaerden(ed.
):DieWerkevonJakobBernoulli3,K9.
Basel:BirkhuserVerlag,557-568.
(translatedtoEnglishinPulskampRichardJ.
"CorrespondenceofNicolasBernoulliconcerningtheSt.
PetersburgGame,"Internetresource,http://cerebro.
xu.
edu/math/Sources/Montmort/stpetersburg.
pdf,1999.
),1975.
Spremann,Klaus.
"Whyblackswansexist,"inMichaelHankeandJürgenHuber,eds.
,Information,Interactionand(In)EfficiencyinFinancialMarkets,Vienna:Linde,pp.
170-181,2008.
Starmer,Chris.
"DevelopmentsinNon-ExpectedUtilityTheory:TheHuntforaDescriptiveTheoryofChoiceunderRisk.
"JournalofEconomicLiterature38,pp.
332–382,2000.
Stigler,GeorgeJ.
"ThedevelopmentofutilitytheoryII.
"JournalofPoliticalEconomy58(4),pp.
373-396,1950.
Stigler,StephenM.
TheHistoryofStatistics:themeasurementofuncertaintybefore1900,CambridgeMA,1986.
Sundali,JamesandCroson,Rachel.
"Biasesincasinobetting:Thehothandandthegambler'sfallacy.
"JudgmentandDecisionMaking1(1),pp.
1-12,July2006.
Székely,GaborandRichards,DonaldSt.
P.
"TheSt.
Petersburgparadoxandthecrashofhigh-techstocksin2000",TheAmericanStatistician58,pp.
225-31,2004.
Székely,GaborandRichards,DonaldSt.
P.
"RemainSteadfastwiththeSt.
PetersburgParadoxtoQuantifyIrrationalExuberance",mimeo,Penn.
StateUniversity,Dept.
ofStatistics,June27,2005.
Taleb,NassimNicholas.
TheBlackSwan:TheImpactoftheHighlyImprobable.
NewYork:RandomHouse,2007.
Todhunter,Isaac.
Mathematicaltheoryofprobability–FromthetimeofPascaltothatofLaplace.
CambridgeandLondon:MacMillanandCo,1865.
Treisman,Michel.
"AsolutiontothePetersburgparadox.
"BritishJournalofMathematicalandStatisticalPsychology9,pp.
224-227,1983.
TylerCowenandJackHigh.
"Time,boundedutility,andtheSt.
Petersburgparadox.
"TheoryandDecision25,Number3,pp.
219-223,November1988.
VickreyWilliamSpencer.
"Counterspeculation,auctions,andcompetitivesealedtenders.
"JournalofFinance.
16,pp.
8-37,1961.
VivianRobertWilliam.
"SimulatingDanielBernoulli'sSt.
Petersburggame:Theoreticalandempiricalconsistency.
"Simulation&Gaming.
Vol.
35(4),pp.
499-504,2004.
WakkerP.
"UnboundedUtilityforSavage's'FoundationsofStatistics,'andOtherModels.
"MathematicsofOperationsResearch.
18,pp.
446-485,1993.
WeaverWarren.
LadyLuck.
NewYork:AnchorBooks.
1963.
Weber,Max.
"DieGrenznutzlehreunddas"psychophysischeGrundgesetz.
"ArchivfürSozialwissenschaftundSozialpolitik27,546-58,1908.
WeirichPaul.
"TheSt.
PetersburgGambleandRisk'.
"TheoryandDecision.
17,pp.
193-202,1984.
WhitworthWilliamAllan.
ChoiceandChance.
Secondedition,Cambridge:Deighton.
BellandCo.
,pp.
222-230,1870.
Wicksell,Knut.
"ZurVerteidigungderGrenznutzenlehre.
"ZeitschriftfürdiegesamteStaatswissenschaft56(4),pp.
577-91,1900.
41YaariMenahemE.
"TheDualTheoryofChoiceUnderRisk,"Econometrica.
55,pp.
95–115,1987.
42INSTRUCTIONSYouareabouttoparticipateinaneconomicexperiment.
Duringtheexperiment,pleasedonottalktoanyone.
Pleasemakeyourdecisiononyourownandfollowtheinstructionscarefully.
Itisinyourownintereststhatyouunderstandtheinstructions.
GENERALINFORMATIONIntheexperiment,youareaskedtosubmitabidforagamblethathasamonetarypayoff.
Youwriteyourbidandyournameonyoursheetofpaperwhichwillbecollectedlater.
Theparticipantwhosubmitsthehighestbidwinsthegamble,andwillpaytousthesecondhighestbid;theotherparticipantswillnotwinanythingandwillnotpayanything.
Thewinnerplaysthegambleandearnsthemonetarypayoffofthegamble.
Themoneyamountwillbepaidoutimmediately.
Pleasenotethatthewinnerofthegamblepaysapriceforthegamblewhichmaybehigherthanthemoneythatheorshewinsinthegamble.
Thereforeweadviseyoutochooseyourbidcarefully.
Therewillbenorefund,ifyoumakealoss!
Youbidonthefollowinggamble.
THEGAMBLETherearetwoballsinabag.
Theballsareidenticalexceptforthelabel.
Oneballislabelledwith'+',theotherisunlabelled.
Youdrawoneballfromthebag.
Ifyoudrawtheballlabelled'+'itisreturnedintothebagandyoudrawagain.
Eachtimeyoudrawthe'+'labelledballitwillberecorded.
Thegamecontinuesuntilyoudrawtheunlabelledballforthefirsttime.
Thenthegamblestopsandyoureceiveyourpayoffaccordingtotherecordednumberof'+'drawsthatyouhavemade.
Letthisnumberbedenotedbyk.
Thenyourpayofffromthegambleis2kEuro.
Inwords:YourpayoffistwoEurotothepowerofthenumberoftimesyoudrawthe'+'labelledball.
Fork≤5,theresultingpayoffsarepresentedinthefollowingtable.
YoursequenceofdrawsYourpayoffin20=1+21=2++22=4+++23=8++++24=16+++++25=32….
Notice,ofcourse,thatkmaybemoreorlessthan5.
Indeed,kcouldbeverylarge.
Yourminimumpayoffinthegambleis1Euro.
Thereisnomaximumpayoffinthegamble.
Onlyoneparticipantwinsthegambleandplaysitout.
Thepricethisparticipanthastopayfortheparticipationinthegambleisdeterminedbythesecondhighestbidsubmittedintheauction.
Pleasewriteyourbidinthespaceattheendofthissheetofpaper.
Youwillprivatelysubmityourbidwithoutknowingthebidsoftheotherparticipants.
Yourbidshouldbeyourmaximumwillingness-to-pay(inEuro)forparticipationinthegamble;ifyourbidisthehighestbid,thepriceyoupaywillnotexceedyourbidbutitmightequalyourbid.
AllbidsshallbeinEuro,decimalsafterthecommaindicateEurocents.
Thesmallestunitonecanbidis0,01Euroand0,01Euroisalsotheminimumbidforthegamble.
Afterallbidshavebeencollected,thewinnerintheauctionwillbedetermined.
Thegamblewillbeassignedtotheparticipantwhosubmittedthehighestbid.
Incaseofadraw,thatis,ifseveralparticipantssubmitthehighestbid,thewinnerwillbedeterminedbyrandomlyselectingoneofthehighestbidders.
Aswehavealreadysaid,thepricethewinnerpaysforthegambleequalsthesecondhighestbid.
Unlessthereismorethanonehighbidder,thepricewillbesmallerthanthehighestbid.
Example:Assumeoneparticipantsubmitsabidof0,02Euroandthesecondparticipantbids0,03Eurowhileallotherparticipantssubmitabidequalto0,01Euro.
Thesecondbidderwinsthegambleandpaysthesecondhighestpriceof0,02Euro.
Ifthesecondparticipantsubmitsabidof0,02Euroinstead,her/hisbidisequaltothebidofthefirstparticipant.
Thewinner,eitherparticipant1or2,mustbedeterminedthrougharandomdraw.
Thepricethewinnerpays,i.
e.
,thesecondhighestbid,isthenequaltoher/hisownbidof0,02Euro.
Writeyournamehere:Writeyourbidhere:,EuroComment:FURTHERINSTRUCTIONSThewinnerofthegamblewillbedetermined,andthegamblewillbeplayedout.
Thewinnerwilldrawballsfromthebag(withreplacement)untiltheunlabeledballshowsup.
GENERALINFORMATIONOnthissheetyouareaskedtoreplytothreefurtherquestionsregardingtheoutcomesofthegamble.
Thefirstquestionwillaskyoutostatethreeoutcomes.
Thesecondandthethirdarequizquestions.
Thissheetofpaperrepresentsyourlotforatombola.
Ifyourlot(i.
e.
,thissheet)isdrawninthetombolaandyouransweriscorrectyouwin10Euro,otherwiseyouwinnothing.
Intotal,thetombolainvolves3draws(withreplacement)fromthelots(i.
e.
,sheets)ofallparticipants.
Inotherwords,aftereachdrawthedrawnlotisreturnedtotheotherlotstoparticipateinthenexttombola.
QUESTIONS431)Onelotwillbedrawn(withreplacement)afterthegamblehasbeenplayedout.
Thenumberoftimesthe'+'labelledballhasbeendrawninthegamblewillbecomparedwiththethreeoutcomesyoustateonthissheet(ifyoursheetisdrawn).
Ifthesequencelengththathasrealizedinthegamblecoincideswithoneofthethreenumbersyoustatebelowandyourlotisdrawninthetombola,youwin10Euro.
Pleasewritedownherethethreenon-negativenumbers:k1=k2=k3=2)Thesecondlotwillbedrawnnext.
Thenumberofdrawsofthe'+'labelledballthathasa(mathematical)probabilityof1/128willbecomparedtothenumberyoustatebelow.
Youwin10Euroonthisquestion,ifyourlotisdrawnandyourreplyiscorrect.
k=3)Finally,thethirdlotwillbedrawn.
Thenumberyoustatehereafterwillbecomparedtotheexpectedpayoffofthegamble.
Ifyouransweriscorrectandyourlotisdrawn,youwin10Euroonthisquestion.
Expectedpayoffinthegamble=Writeyournamehere:
老薛主机,虽然是第一次分享这个商家的信息,但是这个商家实际上也有存在有一些年头。看到商家有在进行夏季促销,比如我们很多网友可能有需要的香港VPS主机季度及以上可以半价优惠,如果有在选择不同主机商的香港机房的可以看看老薛主机商家的香港VPS。如果没有记错的话,早年这个商家是主营个人网站虚拟主机业务的,还算不错在异常激烈的市场中生存到现在,应该算是在众多商家中早期积累到一定的用户群的,主打小众个人网站...
pacificrack发布了7月最新vps优惠,新款促销便宜vps采用的是魔方管理,也就是PR-M系列。提一下有意思的是这次支持Windows server 2003、2008R2、2012R2、2016、2019、Windows 7、Windows 10,当然啦,常规Linux系统是必不可少的!1Gbps带宽、KVM虚拟、纯SSD raid10、自家QN机房洛杉矶数据中心...支持PayPal、...
青果云香港CN2_GIA主机测评青果云香港多线BGP网络,接入电信CN2 GIA等优质链路,测试IP:45.251.136.1青果网络QG.NET是一家高效多云管理服务商,拥有工信部颁发的全网云计算/CDN/IDC/ISP/IP-VPN等多项资质,是CNNIC/APNIC联盟的成员之一。青果云香港CN2_GIA主机性能分享下面和大家分享下。官方网站:点击进入CPU内存系统盘数据盘宽带ip价格购买地...
75ff.com为你推荐
蓝色骨头手机都是人类的骨头灰歌名是什么嘉兴商标注册个人如何申请商标注册丑福晋大福晋比正福晋大么sss17.comwww.com17com.com是什么啊?ip在线查询通过对方的IP地址怎么样找到他的详细地址?mole.61.com摩尔庄园RK的秘密是什么?www.javmoo.comJAV编程怎么做?www.zhiboba.com上什么网看哪个电视台直播NBA33tutu.com33gan.com改成什么了dpscycle魔兽世界国服,求几个暗影MS的输出宏
cc域名 提供香港vps 外贸主机 2014年感恩节 wordpress技巧 42u标准机柜尺寸 双12活动 商家促销 java虚拟主机 个人免费空间 小米数据库 52测评网 微信收钱 泉州电信 百度云1t umax120 华为云服务登录 厦门电信 ledlamp 阿里dns 更多