denotessoftbank官网

softbank官网  时间:2021-01-05  阅读:()
ErrorAnalysisofNamedEntityRecognitioninBCCWJMasaakiIchihara1KanakoKomiya1TomoyaIwakura2MaikoYamazaki31IbarakiUniversity3FujitsuLaboratoriesLtd.
,2TokyoInstituteofTechnology{11t4004s@hcs,kkomiya@mx}.
ibaraki.
ac.
jp,iwakura.
tomoya@jp.
fujitsu.
com,yamazaki@lr.
pi.
titech.
ac.
jp1IntroductionNamedEntityRecognitionisaprocessbywhichnamedentities(NEs)suchasthenamesofpersons,locations,andartifactsareextracted.
Mostnamedentityrecognitiontechniqueshavebeenstudiedonnewsarticles,however,theirperformancesondier-entdomaintextssuchasblogs,booksandmaga-zinesarestillnotevaluatedwell.
ThispaperreportsanerroranalysisofKNPonsixdomainsforreveal-ingcausesoferrorsforfurtherimprovementofNErecognition1.
2ErrorAnalysisofKNPonBCCWJJapanesedependencyandcasestructureanalyzerKNP2([2]and[3])wasusedasthenamedentityrecognizer.
TheversionsweusedwereKNPVer.
4.
11andJUMANVer.
7.
0.
Thesixgenres,"Q&Asites","whitepapers","blogs","books","magazines",and"newspaperar-ticles",inBalancedCorpusofContemporaryWrit-tenJapanese(BCCWJ)wereusedasthetargetcor-pora.
OnehundredthirtysixtextsextractedfromBC-CWJ,theyareavailableasClassA3,wereusedfortheexperiments.
TheyweremanuallyannotatedwithninekindsofNEthatweredenedbyInformationRetrievalandExtractionExercise(IREX)4.
TheseNEtypesarethenamesofpersons,locations,artifacts,dates,times,moneys,percents,andoptional5.
Theanno-tationwasdonebyvemembersofNEteamoftheProjectNextNLP,andcheckedbyfourmembersofit.
1ThispaperisanEnglishversionof(Ichiharaetal.
,2015)[1]withadditionalinformationandsomecorrections.
2http://nlp.
ist.
i.
kyoto-u.
ac.
jp/EN/index.
phpKNP3http://plata.
ar.
media.
kyoto-u.
ac.
jp/mori/research/NLR/JDC/ClassA-1.
list4http://nlp.
cs.
nyu.
edu/irex/index-e.
html5KNPdoesnotextractoptionaltags.
WecomparedKNPoutputswiththemanuallyan-notatedtextsandanalyzederrors.
Table1showstheperformancesofKNP.
Theequa-tionsofrecall,precision,accuracy,andF-measureareasfollows.
"Correct",thenumeratorofrecall,precision,andaccuracy,isthenumberofthecor-rectanswersofKNP.
"Annotated",thedenominatorofrecall,denotesthenumberoftheNEsthatweremanuallyannotated.
"KNPoutputs",thedenomi-natorofprecision,denotesthenumberoftheNEsthatKNPoutput.
Thedenominatorofaccuracyisthelogicalsum(OR)of"Annotated"and"KNPout-puts".
Thedenominatorsofrecall,precision,andac-curacyvarybecauseKNPsometimescannotextractsomeNEsandsometimesextractswronginforma-tion.
Also,anNEthatthesystemoutputsometimesconsistsofmultipleannotatedNEsasillustratedbyanexampleinFigure1andviceversa.
Table1showstherecallislowerthantheprecision.
KNP:PERSON/PERSONAnnotationLOCATION/LOCATIONLOCATION/LOCATIONFigure1:AnexampleofanNEKNPoutputincludesmultipleannotatedNEsRecall=CorrectAnnotated(1)Precision=CorrectKNPoutputs(2)Accuracy=CorrectAnnotated∪KNPoutputs(3)Fmeasure=2Recall·PrecisionRecall+Precision(4)Table1:PerformancesofKNPPerformanceRateCorrectDenominatorRecall61.
79%2641Precision74.
79%16322182Accuracy57.
95%2816F-measure67.
68Theerrorswereclassiedintothefollowingvetypes.
Exampleswereshownwithdescription.
NoextractionTheerrorwhereKNPdidnotex-tracttokensasanNEthoughtheywereanno-tated.
KNP:AnnotationARTIFACT/ARTIFACTNoannotationTheerrorwhereKNPextractedtokensasanNEthoughtheywerenotanno-tated.
KNP:PERSON/PERSONAnnotationWrongrangeTheerrorwhereKNPextractedto-kensasanNEandonlytherangewaswrong.
(Theextractedtokenswerepartiallyannotatedortheywerethepartoftheannotatedtokens.
)KNP1:PERSON/PERSONAnnotation1PERSON/PERSONKNP2:ORGANIZATION/ORGANIZATIONAnnotation2ORGANIZATION/ORGANIZATIONWrongtagTheerrorwhereKNPextractedtokensasanNEandonlythetagtypewaswrong.
KNP:PERSON/PERSONAnnotationLOCATION/LOCATIONWrongrangeandtagTheerrorwhereKNPex-tractedtokensasanNEandboththerangeandthetagtypewerewrong.
KNP:PERSON/PERSONAnnotationLOCATION/LOCATIONTable2:SummaryoferrorsErrortypeNumRateNoextraction61952.
28%Noannotation15913.
43%Wrongrange16213.
68%Wrongtag12710.
73%Wrongrangeandtag1179.
88%Allerrors1184100.
00%Table2showsasummaryoferrors.
Theseerrorswerecountedbythelogicalsum(OR)ofannotatedNEsandKNPoutputs.
Themostfrequenterrorwas"Noextraction"anditaccountedformorethanhalfofthetotalerrors.
Thesecondmostfrequenter-rorwas"Wrongrange"andmostofthemweretheerrorswhereextractedtokenswerethepartoftheannotatedtokens.
Table3showsasummaryoferrorsbytypesofNEs.
Theseerrorswerealsocountedbythelogi-calsum(OR)ofannotatedNEsandKNPoutputs.
"Correct"and"Error"arethenumbersofthecorrectanswersandtheerrorsofKNP.
"Total"isthesumof"Correct"and"Error".
"Noextraction"and"Er-rorswithextraction"inthetablemeanthenumbersof"Noextraction"andtheerrorsotherthan"Noex-traction",respectively.
"Noextractionrate"istheratioof"Noextraction"in"Error".
Table3showsthatnoextractionratesof"ARTI-FACT","PERCENT","TIME",and"OPTIONAL"areespeciallyhigh.
Atthesametime,therearesmallnumberofNEsof"PERCENT"and"TIME"inthecorpora.
Therefore,wecansee"ARTIFACT"isthebigreasonwhythenoextractionrateofalltagsishigh.
Noextractionrateof"OPTIONAL"is100%becauseKNPdoesnotextractOPTIONALsandthisisanotherreason.
Table3alsoshowsthatmostof"TIME","MONEY",and"PRECENT"werecorrectlytaggedbyKNPiftheyweretagged.
Mostoftheerrorswhentheywereextractedarethoseof"ORGANIZA-TION","PERSON",and"LOCATION".
Thesumoferrorsof"ARTIFACT"and"DATE"arelessthan30%ofallerrorswhentheywereextracted.
Table4showstheaccuraciesandtheratesofnoextractionin"Total"accordingtothetagtype.
"Ac-curacy"istheratioofthecorrectanswersin"Total",thesumofcorrectanswersanderrorsofKNP,and"Noextraction/Total"istheratioofnoextractioninit.
Theseerrorswerealsocountedbythelogicalsum(OR)ofannotatedNEsandKNPoutputs.
Table4showsthattheaccuracyof"ARTIFACT"isparticularlylowcomparingwiththeothertags.
Thesametableshowstheratioofnoextractionin"Total"isalsohigh.
Therefore,wecouldseethat"Noextraction"of"ARTIFACT"isthebiggestcauseTable3:SummaryoferrorsbytypesofNEsTagCorrectErrorTotalNoextractionErrorswithextractionNoextractionrateARTIFACT902593491926774.
13%DATE343145488628342.
76%LOCATION4092266357215431.
86%MONEY884922250.
00%ORGANIZATION2362004367712338.
50%PERCENT79129110283.
33%PERSON3642225868813439.
64%TIME2393290100.
00%OPTIONAL01071071070100.
00%AllTags16321184281661956552.
28%Table4:Accuraciesandratesofnoextractionin"Total"accordingtothetagtypeTagAccuracyNoextraction/TotalARTIFACT25.
79%55.
01%DATE70.
29%12.
70%LOCATION64.
41%11.
34%MONEY95.
65%2.
17%ORGANIZATION54.
13%17.
66%PERCENT86.
81%10.
99%PERSON62.
12%15.
02%TIME71.
88%28.
13%OPTIONAL0.
00%100.
00%AllTags57.
95%21.
98%oftheerrorsofKNPandthemainreasonoflowrecall.
3ErrorAnalysisof"NoEx-traction"Thetargetcorporaweusedconsistedofsixgenres,"Q&Asites","whitepapers","blogs","books","magazines",and"newspaperarticles",inBCCWJ.
Table5showsasummaryoferrorsbygenresoftexts.
Theseerrorsexcept"Noextraction"arethosethatKNPoutput.
"Correct"and"Error"arethenumberofthecorrectanswersandtheerrorsofKNP.
"Total"isthesumof"Correct"and"Error".
"Noextraction"and"Errorswithextraction"intheta-blemeanthenumbersof"Noextraction"andtheerrorsotherthan"Noextraction",respectively.
"Noextractionrate"istheratioof"Noextraction"in"Error".
"Docs"isthenumberofdocumentsofthegenre.
Thetotalnumberoferrors(1169)andtotalnum-beroferrorswithextraction(550)aredierentfromthoseinTables2and3(1184and565).
Thisisbe-causesomeNEsthatKNPoutputincludemultipleTable6:Accuraciesandratesofnoextractionin"Total"accordingtothegenreGenreAccuracyNoextraction/TotalQ&A40.
00%44.
21%Whitepaper58.
73%20.
63%Blog50.
74%27.
89%Book50.
35%28.
07%Magazine53.
45%14.
66%Newspaper72.
27%15.
49%All58.
26%22.
10%annotatedNEs.
Inaddition,thenumberofwordsvariesaccordingtothegenre.
WethinkthisisareasonwhythetotalnumberoftheNEswasnotproportionaltothenumberofthedocuments.
Table5showsthatthegenrewhosenoextractionratewasthehighestwas"Q&Asites"andthegenrewiththelowestratewas"magazines".
Table6showstheaccuraciesandtheratesofnoextractionin"Total"accordingtothegenre.
"Accu-racy"istheratioofthecorrectanswersin"Total",thesumofcorrectanswersanderrorsofKNP,and"Noextraction/Total"istheratioofnoextractioninit.
Theseerrorsexcept"Noextraction"arethosethatKNPoutput.
"Accuracy"of"All"(58.
26%)isdierentfrom"Recall"inTable1(61.
79%)becausethenumberoftheNEsKNPoutputwasdierentfromthenumberoftheNEsthatwereannotatedbyhumans.
Table6showsthat"newspaperarticles"isthegenrewhoseaccuracyisthehighest.
WethinkthisisbecauseKNPwastrainedwithnewspaperarticlesofMAINICHISHIMBUN.
Table6alsoshowsthegenrewiththelowestaccuracywas"Q&Asites".
WethinkthisisbecausethewritingstyleofQ&Asiteswasthemostdierentfromthatofnewspaperarticles.
Thesametableshowsthatthegenrewhosenoextractionratewasthehighestwas"Q&Asites"Table5:SummaryoferrorsbygenresoftextsGenreCorrectErrorTotalNoextractionErrorswithextractionNoextractionrateDocsQ&A76114190843073.
68%74Whitepaper42730072715015050.
00%8Blog171166337947256.
63%34Book2172144311219356.
54%5Magazine1861623485111131.
48%2Newspaper5552137681199455.
87%13AllGenres16321169280161955052.
95%136andthegenrewiththelowestratewas"magazines".
3.
1NoExtractionofQ&ASites"Q&Asites"wasthegenrewhoseaccuracywasthelowest.
Theexamplesofnoextractionerrorsin"Q&Asites"areshownasfollows.
iManynamesofproducts,characters,andmedicineswerenotextracted.
(SakuraWars)(SuperNintendoEntertainmentSystem)(ActRaiser)4(Res-identEvil4)(KamenRider)(Ultraman)(Gundam)(Minostacin)(Aspirin)iiAbbreviationswerenotextracted.
Formalnamesarenotedinbrackets.
(MarioWorld)(SuperMarioWorld)GC((NintendoGameCube))JNB((JapanNetBank))LA((LosAngeles))iiiTheunusualdateexpressionswerenotextracted.
(90/11/21)ivHiraganaexpressionsweresometimeswronglyparsed.
"(Satoshi)"in"(CHIEBUKURERSatoshi)"shouldbethenameofpersonbutitiswronglyparsedas"(Satoru)":averb.
vNEswritteninalphabetsandnumberswerenotextracted.
"(JREast)"wereextracted.
3.
2NoExtractionofNewspaperAr-ticles"Newspaperarticles"wasthegenrewhoseaccuracywasthehighest.
Theexamplesofnoextractioner-rorsin"newspaperarticles"areshownasfollows.
iSomeNEswithspecicprexesandsuxeswerenotextracted.
(half**,ex.
halftime)(**region,ex.
(capitalregion)(threemajormetropolitanareas))(**area)(**point)(same**,ex.
(same**year)(sameday)(sameyearautumn))iiOPTIONALswerenotextractedbecauseKNPdoesnotextractoptionaltags.
iiiTheunusualEnglishexpressionsinJapanesesen-tenceswerenotextracted.
KOERAJAPANivBracketssometimescausetheerrors.
(Phoenix(Arizona,US))vNEsthatconsistofgeneralnounswerenotex-tracted.
Thiscouldbethereasonwhythenamesofproductsandcharacterswerenotextracted.
(Hirune,anap)(Zaurus)(FamilyMart)(Sharp)(TheRenaissance)"Softbank"sometimescouldbeextractedandsometimescouldnot.
Theywereparsedasnom-inativecasewhentheywereextractedandas"inclause"whentheywerenot.
4DiscussionAccordingtotheexamplesdescribed,wethinkthatthelackofknowledgeinthedictionaryandtheerrorsoftheparserarethebigreasonsoftheerrorsofthenamedentityrecognition.
Inparticular,thenamesofartifactsincludingthenamesofproductsorchar-actersareoftennewwordsthatwerecoined.
TheseNEsarenotinthedictionaryKNPusesandthere-fore,theyshouldbejudgediftheyweretheNEsornotdependsonthefeaturesofthesurroundingpat-ternsandthesyntacticfeatures.
Asaresult,thecorrectparsingwouldbeimportantfortheNEsthatcannotusedictionaryinformation.
However,theca-sualwritingstylelikeQ&Asitescausestheerrorsinmorphologicalanalysisandparsing.
Wethinkthatifthesentencesoftheseinformalwritingstylescouldbecorrectlyanalyzedandparsed,theerrorswouldbedecreased.
Thetrainingoftextswithinformalwritingstylescouldbethesolutionofthisproblem.
Inaddition,mostoftheNEsthatwerenotextractedbyKNPwerefoundinWikipediaorotherWebsites.
Thisinformationalsocouldhelptherecallimprove.
5ConclusionThispaperreportsanerroranalysisofthenamedentityrecognizerKNPonsixdomainsforrevealingcausesoferrors.
ThetextsofBCCWJweremanu-allyannotatedandcomparedwiththeautomaticallytaggedtexts.
Theanalysisrevealedthatthemostfrequenterrorwas"Noextraction":thecasewherethetokenswerenotextractedbyKNPthoughtheywereannotated.
Italsorevealedthat"Noextrac-tion"of"ARTIFACT"isthebiggestcauseoflowrecalland"Q&Asite"isthegenrewhoseaccuracyisthelowest.
Wefocusedonthenoextractionerrorsandfoundoutthatthelackofdictionaryinformationandthevariouswritingstylescausetheseerrors.
AcknowledgementsThisworkwaspartiallysupportedbyJSPSKAK-ENHIGrantNumber24700138.
WewouldliketothankDr.
RyoheiSasanowhoprovidesusthehelp-fulinformationaboutKNPandteammembersofNEteamofProjectNextNLP.
References[1]MasaakiIchihara,MaikoYamazaki,andKanakoKomiya.
Erroranalysisofnamedentityextrac-tioninbccwj(bccwj).
7,p.
toappear,2015.
[2]RyoheiSasanoandSadaoKurohashi.
Japanesenamedentityrecognitionusingnon-localinfor-mation(injapanese).
IPSJJournal,Vol.
49,No.
11,pp.
3765–3776,2008.
[3]knp.
,19,pp.
110–113,2013.

Linode 18周年庆典活动 不断改进产品结构和体验

今天早上相比很多网友和一样收到来自Linode的庆祝18周年的邮件信息。和往年一样,他们会回顾在过去一年中的成绩,以及在未来准备改进的地方。虽然目前Linode商家没有提供以前JP1优化线路的机房,但是人家一直跟随自己的脚步在走,确实在云服务器市场上有自己的立足之地。我们看看过去一年中Linode的成就:第一、承诺投入 100,000 美元来帮助具有社会意识的非营利组织,促进有价值的革新。第二、发...

月神科技:香港CN2/洛杉矶CN2/华中电信高防vps,月付20元起

月神科技怎么样?月神科技是由江西月神科技有限公司运营的一家自营云产品的IDC服务商,提供香港安畅、香港沙田、美国CERA、华中电信等机房资源,月神科技有自己的用户群和拥有创宇认证,并且也有电商企业将业务架设在月神科技的平台上。目前,香港CN2云服务器、洛杉矶CN2云主机、华中电信高防vps,月付20元起。点击进入:月神科技官方网站地址月神科技vps优惠信息:香港安畅CN2-GIA低至20元核心:2...

Pia云服务商春节6.66折 美国洛杉矶/中国香港/俄罗斯和深圳机房

Pia云这个商家的云服务器在前面也有介绍过几次,从价格上确实比较便宜。我们可以看到最低云服务器低至月付20元,服务器均采用KVM虚拟架构技术,数据中心包括美国洛杉矶、中国香港、俄罗斯和深圳地区,这次春节活动商家的活动力度比较大推出出全场6.66折,如果我们有需要可以体验。初次体验的记得月付方案,如果合适再续约。pia云春节活动优惠券:piayun-2022 Pia云服务商官方网站我们一起看看这次活...

softbank官网为你推荐
国内域名注册国内最好的域名注册服务机构?vps主机云主机和VPS主机之间有什么区别虚拟主机推荐虚拟主机哪个好虚拟主机推荐有哪些好的虚拟主机推荐域名服务商如何更换域名服务商域名主机什么是域名主机网站空间域名什么是网站域名和网站空间免费网站空间免费网站空间哪个好深圳网站空间怎么样建立网站mysql虚拟主机如何建立支持PHP+MySQL的虚拟主机?
国外虚拟主机 百度域名 海外域名注册 域名注册使用godaddy 域名查询软件 成都主机租用 免费vps 个人域名备案 私人服务器 shopex空间 青果网 免费全能空间 免费网站申请 我爱水煮鱼 ntfs格式分区 四核服务器 卡巴斯基是免费的吗 路由跟踪 美国迈阿密 1美元 更多