REVIEWOpenAccessFunctionalgeneticsforall:engineerednucleases,CRISPRandthegeneeditingrevolutionAnnaFGilles1,2andMichalisAverof1,3*AbstractDevelopmentalbiology,asallexperimentalscience,isempoweredbytechnologicaladvances.
Theavailabilityofgenetictoolsinsomespecies-designatedasmodelorganisms-hasdriventheiruseasmajorplatformsforunderstandingdevelopment,physiologyandbehavior.
Extendingthesetoolstoawiderrangeofspeciesdetermineswhether(andhow)wecanexperimentallyapproachdevelopmentaldiversityandevolution.
Duringthelasttwodecades,comparativedevelopmentalbiology(evo-devo)wasmarkedbytheintroductionofgeneknockdownanddeepsequencingtechnologiesthatareapplicabletoawiderangeofspecies.
Theseapproachesallowedustotestthedevelopmentalroleofspecificgenesindiversespecies,tostudybiologicalprocessesthatarenotaccessibleinestablishedmodelsand,insomecases,toconductgenome-widescreensthatovercomethelimitationsofthecandidategeneapproach.
TherecentdiscoveryofCRISPR/Casasameansofprecisealterationsintothegenomepromisestorevolutionizedevelopmentalgenetics.
Inthisreviewwedescribethedevelopmentofgeneeditingtools,fromzinc-fingernucleasestoTALENsandCRISPR,andexaminetheirapplicationingenetargeting,theirlimitationsandtheopportunitiestheypresentforevo-devo.
Weoutlinetheiruseingeneknock-outandknock-inapproaches,andinmanipulatinggenefunctionsbydirectingmoleculareffectorstospecificsitesinthegenome.
Theease-of-useandefficiencyofCRISPRindiversespeciesprovideanopportunitytoclosethetechnologygapthatexistsbetweenestablishedmodelorganismsandemerginggenetically-tractablespecies.
Keywords:Comparativedevelopmentalbiology,Modelorganisms,Genetargeting,Homologousrecombination,Gene-editingnucleases,CRISPRReviewEvo-devo:drivenbytechnologicaladvancesOurunderstandingofdevelopmentalmechanismsisshapedbytheexperimentalmodelsandapproachesathand.
ThepowerfulgeneticapproachesavailableinDrosophila,C.
elegans,zebrafish,miceandArabidopsishavelargelydrivendevelopmentalresearchduringthepastdecades,focusingitonquestionsthatareexperimentallytractableinthesespecies.
However,biologicaldiversitygreatlysur-passeswhatcanbestudiedintheseorganisms.
Phenom-enasuchasregeneration,polyphenismandchromatindiminutionchallengesomeofourconventionalviewsofdevelopment,butarestillpoorlyunderstoodbecausetheyarenotaccessibleinourcurrentexperimentalmodels.
Also,understandingtheevolutionarypathsbywhichdi-versityisgeneratedrequiresthatwecomparedevelop-mentalmechanismsamongseveralanimals,wellbeyondtheestablishedmodelorganisms.
Exploringthesetopicsrequiresextendingourgeneticapproachestonewspecies.
Establishinggenetictoolsinneworganismshasalwaysbeenachallengeforcomparativedevelopmentalbiology.
Evo-devostartedtoflourishwhencloninggenesandstudyingtheirexpressionpatternsinembryoscouldbeextendedtoawiderangeofanimals,withtheadventofPCRandwhole-mountinsituhybridizationtechniquesinthe1990s.
Thesetechniquesallowed'candidategenes'tobeassociatedwithspecificdevelopmentaleventsindifferentanimalsandforevolutionary-developmentalhypothesestobeformulatedbasedonthisinformation.
Testingthesehypothesesexperimentallyandexploringalternativepossibilitiesinanunbiasedfashionbecame,atthatpoint,majorchallengesforthefutureofevo-devo.
*Correspondence:michalis.
averof@ens-lyon.
fr1InstitutdeGénomiqueFonctionnelledeLyon(IGFL),coleNormaleSupérieuredeLyon,46Alléed'Italie,Lyon69364,FranceFulllistofauthorinformationisavailableattheendofthearticle2014GillesandAverof;licenseeBioMedCentralLtd.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/4.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycredited.
TheCreativeCommonsPublicDomainDedicationwaiver(http://creativecommons.
org/publicdomain/zero/1.
0/)appliestothedatamadeavailableinthisarticle,unlessotherwisestated.
GillesandAverofEvoDevo2014,5:43http://www.
evodevojournal.
com/content/5/1/43Twoimportantstepstowardmeetingthosechallengesweremadesincethelate1990s:theestablishmentofgeneknockdownapproachesbasedonRNAiandotherantisensemethods(seebelow)andtheinventionoflow-costdeepsequencingtechnologies,whichopenedthedoortounbiasedgenome-widestudies.
Bothmethodscouldbeappliedtoawiderangeofspecies.
Wewillfocushereonfunctionalgeneticsapproaches.
ThefirstimportantadvanceinthisdirectionwasmadewiththediscoveryofRNAinterference(RNAi),amech-anismthatusessmallRNAs(processedfromlargerdouble-strandedprecursors)torecognizeanddegradespecificRNAtargets[1-4].
RNAiisanaturalmechanismthatevolvedineukaryotestoprotectthegenomeagainstinvadingvirusesandtransposons[4].
ThisdefensemechanismcanberedirectedtotargetspecificmRNAsofinterestbyprovidingdouble-strandedRNAmatch-ingthetargetsequence.
SincetheRNAimachineryisfoundnaturallyinmosteukaryotes,RNAi-mediatedgeneknockdownhasturnedouttobewidelyapplic-able.
ThisapproachhasalsobeencomplementedbyotherantisensemethodsthattargetRNAusingdifferenttypesofoligonucleotides(morpholinos,antagomirs,LNAsandothers[5-8]).
Together,theseantisenseapproacheshavegivenustheopportunitytoknockdowngenefunctionsattheRNAlevelinawiderangeofanimals,includingcnidarians,arthropods,nematodes,planar-ians,annelids,echinoderms,tunicatesandvertebrates(forexample,[1,3,9-13]).
RNAi-basedscreensinnewexperimentalmodelshaveallowedustostudybiologicalproblemsthatweregeneticallyintractableinthepast,suchastissuehomeostasisandregenerationinplanarians[14]orparticularaspectsofinsectphysiologyanddevel-opmentinbeetles(http://ibeetle.
uni-goettingen.
de/).
TheflurryofRNAiandotherantisensestudiescarriedoutattheturnofthecenturyrevealedthepoweroftheseapproaches,butalsotheirlimitations.
Besidestechnicallimitationsrelatingtodelivery,toxicityandoff-targetef-fects,forwhichsolutionsandappropriatecontrolscanoftenbefound[15-17],thereareintrinsiclimitationsinthetypeofgeneticmanipulationthatcanbecarriedout:interferencewithgenefunctionisusuallytransient,unlocalized,andprimarilytargetsmRNA.
Antisenseapproachesdonotusuallyallowustoachievecompletelossofgenefunction,toperformstablegeneticmodifi-cation,topursuegain-of-functionandconditionalap-proaches,ortostudycis-regulatoryelements.
Insomeorganisms,theseknockdownapproacheshavebeencomplementedbytransgenesis[18-24],whichgivesaccesstostablegeneticmodificationandgain-of-functionexperimentsviagenemis-expression.
Transgenesisalsoenablestheuseofreporterconstructstostudycis-regula-toryelementsandtogeneratetoolsforliveimaging,aswellasopportunitiestogeneratemosaicanimals,whereclonesofcellscanbemarked,geneticallymodifiedandcomparedtowild-typecellsinthesameindividual[25].
Thepowerofthetransgenicapproachinnewexperimen-talmodelscanbeseen,forexample,incelllabelingandtracingexperimentscarriedouttostudyregenerativeprogenitorcellsincrustaceansandaxolotls[26,27].
Thedevelopmentoftransgenesisrequiresasignificantinvestmentoftimeandeffort,sothisapproachisstilllimitedtofewspecies.
Amongthefunctionalapproachesthatareapplicabletoawiderangeofspecies,wecanalsocountpharma-cologicaltreatments,whichrelyontheuseofsmallmoleculeeffectorstointerferewithspecificregulatorypathways[28].
Together,thesetechnologicaladvancesallowedevo-devotoadvancefromdescriptivecross-speciescompari-sons(inthe1990s)tocomparisonsofgenefunctionwithinadecade.
Inspiteofthisprogress,mostsystemsarestilllaggingfarbehindstandardmodelsintermsofexperimentalpowerandprecision.
Thearrivalofefficientandwidelyapplicablegeneeditingapproachesissettonarrowthatgap,revolutionizinggeneticapproachesbothinestablishedmodelsandinemergingexperimentalspecies.
GenetargetingapproachesTheabilitytomodifyachosensequenceinitsnativelocusoffersgreatadvantagesoverconventionaltrans-genesisandRNAi-mediatedknockdown,bothintermsofversatilityandprecision.
Itenablesustomanipulatebothcodingsequencesandcis-regulatoryelements,toperformgain-andloss-of-functionexperiments,andtogeneratereportersandsensorsthataccuratelyreflectendogenousgeneexpressionandfunction.
Manipulatingageneinitsnativecontextisalsoamorepreciseap-proachbecauseitallowsustostudygenevariantswithintheirnativecis-regulatoryenvironment,wheretheyareexpressedinbiologicallymeaningfullevelsandpatterns.
ConventionalgenetargetinghasexploitedthenaturalabilityofcellstorecombineDNAfragmentsthatbearhomologoussequences,copyinggeneticchangesfromanengineeredtemplatesequencetoahomologoussiteinthegenome.
Inpracticethisofteninvolvesintegratinganex-ogenoussequence,includingappropriatemarkers,intothelocusofinterest.
Theefficiencyofthisprocessislow,intheorderof1in103-107cellsreceivingthetemplateDNA,anditoccursamongahighbackgroundofnon-homologousin-tegrationevents[29,30].
Forthisreason,conventionalgenetargetingisworkableonlyinsystemswhereweareabletoscreenverylargenumbersoftransfectedcellsandselecttheraretargetingevents,forexample,inculturedmamma-liancellsandinyeast[29,31-33].
Theefficiencyofgenetargeting,however,isstronglyenhanced(100to10,000-fold)whenthetargetedlocusisGillesandAverofEvoDevo2014,5:43Page2of13http://www.
evodevojournal.
com/content/5/1/43disruptedbyadouble-strandDNAbreak[34-38].
Forexample,double-strandbreaksproducedbytheexcisionoftransposableelementsareknowntoinducehomolo-gousrecombinationaroundthesiteofexcision[39,40].
Thus,toimprovetheefficiencyandspecificityofgenetargeting,muchattentionhasfocusedondirectingdouble-strandbreakstouniqueDNAsequencesinthegenome.
Double-strandbreakscanelicittwotypesofmolecularrepairmechanismatthesiteofdamage:non-homologousendjoining(NHEJ)inwhichthebrokenendsarere-ligatedtoeachother,orhomology-directedrepair(HDR)inwhichthebreakisrepairedusingahomologousDNAsequenceastemplate(see[41]).
NHEJandHDRhavedifferentconsequences,whicharebothrelevantforgeneediting.
NHEJisthepredominantrepairmechanism,butitiserror-prone,resultingintheintroductionofsmallin-sertionsordeletions(indels)atthesiteofthebreak.
Thus,NHEJprovidesanefficientwaytodisruptgenefunction(knock-out).
Incontrast,HDRisbasedonprecisecopyingofthetemplateandcanservetoinsertspecificchangesthathavebeenengineeredintherepairtemplate(hom-ology-dependentknock-in).
NHEJcanalsobeusedtoligatethebrokenendstoanexogenouslinearDNAfragment,intheabsenceofsequencehomology(hom-ology-independentknock-in)[42-45].
NHEJandHDRarealmostubiquitousinlivingorganisms,sothesetar-getingapproaches(summarizedinFigure1)couldinprinciplebeappliedinanyspeciesofinterest.
Oneofthefirstapproachesforgeneratingdouble-strandbreaksatspecificsitesinthegenomeexploitednaturalsequence-specificendonucleaseswithlongrec-ognitionsequences.
Theseso-called'meganucleases'recognizesequencesthataretypically15to30nucleo-tideslong,providingsufficientspecificitytotargetuniquesequencesineukaryoticgenomes.
Meganucleaseshavebeensuccessfullyusedingenetargeting[35,36],butengineeringtheseproteinstotargetnewsequenceshasproventobeamajorchallenge[53].
Anotherapproachhasreliedonartificialtriple-helix-formingoligonucleo-tides[54,55],butthescopeofthisapproachisalsolimitedbecausetriple-helixformationisonlypossiblewithsomesequences.
Endonucleaseswithcustomizablesequencespecificitieshavebeenadreamofgenetargetingsincethe1990s.
Modulargeneeditingnucleases:zinc-fingernucleasesandTALENsAmajorbreakthroughcamewiththerealizationthatmodularDNArecognitiondomainscouldbeexploitedcombinatoriallytogeneratenucleasestargetingawiderangeofsequences[56].
Thezinc-fingerdomain,whichtypicallyrecognizes3-nucleotidemotifsonDNA,wasthefirsttobeexploitedinthisway.
Artificialenzymes,calledzinc-fingernucleases(ZFNs),wereengineeredbyjoiningseveralzinc-fingerdomains-recognizingadja-centtrinucleotidemotifs-tothecatalyticdomainoftheendonucleaseFokI(reviewedin[57]).
Sequence-specificitywasfurtherincreasedbyengineeringZFNsinawaythatrequirestheirheterodimerizationthroughtheFokIdomainforefficientcleavage[58].
Thus,targetingan18-nucleotidetargetsitecould(inprinciple)beachievedbyaZFNpaircarrying6zinc-fingerdomainswiththeappropriatesequencespecificities.
Todate,ZFNshavebeenusedtotargetmanygenesindiverseorganisms,exploitingbothNHEJ-mediatedknock-outandHDR-mediatedknock-inapproaches[57].
Despitetheirsuccessindemonstratingthepowerofthemodularapproach,ZFNssuffertwomajordraw-backsthathavelimitedtheiruse.
First,notallsequencescanbetargetedbyZFNs,becausezinc-fingermodulesarenotyetavailableforallpossiblenucleotidetriplets(forexample,[59]).
Second,thesequencespecificityofindividualzinc-fingerdomainscannotalwaysbepre-ciselydefined,andmaybeinfluencedbyneighboringdo-mainsintheprotein[60,61].
ThiscontextdependenceFigure1Genetargetingstrategiesusingtargeteddouble-strandbreaks.
WhenchromosomalDNAiscleaved(redarrowhead),theresultingdouble-strandbreakisrepairedbynon-homologousendjoining(NHEJ)orbyhomology-dependentrepair(HDR).
NHEJmayresultinperfectrejoining,oftheends,orintheintroductionofpointmutationsandindels(knock-out).
NHEJmayalsojoinexogenouslinearDNA(showninyellow)tothebrokenendsofthechromosome(homology-independentknock-in);theorientationandreadingframeintheseinsertionsisrandom,unlessdirectedbycomplementaryoverhangs[42,44,45].
HDRrepairsthedouble-strandbreakbyprecisecopyingofarepairtemplatecarryinganexogenoussequence(showninyellow)flankedbysequenceswithhomologytothetargetedlocus(inblue)(homology-dependentknock-in).
TherepairtemplateusuallyconsistsofcircularplasmidDNAwithlonghomologyarms[46-50]orshortsingle-strandedoligonucleotides(ssODNs)bearing10to40nucleotidesofhomologoussequenceateachend[48,50-52].
GillesandAverofEvoDevo2014,5:43Page3of13http://www.
evodevojournal.
com/content/5/1/43meansthatZFNspecificityisnoteasytopredict,leadingtofailuresintargeting[62]andtheneedforcostlydesignandtesting.
ThemodularapproachwastakenastepfurtherwiththediscoveryoftheTALeffector(TALE)DNA-bindingmodulesofXanthomonasbacteria,andtheirsimpleDNArecognitioncode[63,64].
TALproteinsaretran-scriptionfactorswithamodularDNA-bindingregionthatconsistsofmultipletandemrepeats.
EachoftheserepeatsisasmallDNAbindingdomaincapableofrecognizingasinglenucleotide;twoaminoacidresidueswithineachrepeatdetermineitsspecificityforA,G,CorT,andthisspecificityisnotsignificantlyinfluencedbyneighboringdomains[65].
Thus,usingthesamecombinatoriallogicthatwasappliedtoZFNs,TALef-fectornuclease(TALEN)heterodimerswithpre-definedsequencespecificitiescanbegeneratedbyassemblingmultipleTALrepeats-onepernucleotideofthetargetsite-linkedtothecatalyticdomainofFokI[66-68].
Thus,a24-nucleotidesequencecanbetargetedbygeneratingaTALENheterodimer,whereeachmonomerconsistsofanarrayof12TALrepeatsfusedtoFokI.
TALENsofferthreegreatadvantagesoverZFNs.
First,themodularityoftheTALdomainsandthesimplicityoftheirDNArecognitioncodemeanthatvirtuallyanysequencecanbetargetedbyTALENs.
Second,thespecificityofTALdomainsdoesnotappeartobeascontext-dependentasthatofzincfingers,whichre-sultsinmoreaccuratepredictionsoftargetspecificityandahighertargetingsuccessrate.
Third,genetargetingexperimentsindiversespeciesrevealthatTALENsareveryefficient,yieldingtargetingefficienciesashighas30to100%forNHEJ-mediatedknock-outsand1to10%forHDR-mediatedknock-ins(measuredasthefractionofinjectedindividualsgivingrisetoprogenycarryingatargetedallele).
Hightargetingrateshavebeenachievedinawiderangeoforganisms,includinginsects,nematodes,annelids,tunicates,vertebratesanddiverseplants[69-76].
ThefactthateachTALdomaintargetsasinglenucleo-tidemeansthatlongTALarraysneedtobeassembledinordertotargetuniquesequencesinaeukaryoticgen-ome.
Ingeniousprotocolshavebeendevelopedforthispurpose[77-79],bringingTALENtechnologywithinthereachofeverycompetentmolecularbiologylab.
SimpleandefficientgeneeditingusingtheRNA-guidednucleaseCRISPR/Cas9Thelasttwoyearshaveseenthedevelopmentofanewapproachtobuildendonucleaseswithcustomizedsequencespecificities,whichhasrevolutionizedgeneeditingbyitssimplicityandefficiency.
Theapproachisborrowedfromahighlyefficientimmunemechanismofbacteriaandarchaea,whichemploysRNA-guidedendonucleasestospecificallytargetanddegradeviralDNA[80-82](reviewedin[83]).
Thegenomesofmanyprokaryotespossesshypervari-ableloci,termedclusteredregularlyinterspacedshortpalindromicrepeats(CRISPR),whichincorporateshortsequencesfrominvadingvirusesandexpressthemintheformofCRISPR-derivedRNAs(crRNAs).
ThesesmallRNAsassociatewithspecificCRISPR-associated(Cas)proteinstoformanactiveCRISPR/Casendonucle-asecomplex,whosespecificityisdeterminedbysimplebasecomplementaritybetweencrRNAandthetargetviralDNA.
ImmunitytoaviralinfectionisdeterminedbythepresenceofcorrespondingviralsequencesinCRISPRloci[80,84,85].
TheCRISPRmechanismbearssomestrikinganalogieswitheukaryoticRNAiandpiRNA-mediateddefensemechanismsa[83,86].
Inaground-breakingstudypublishedin2012,Jinekandcolleaguesdemonstratedthatthisnucleotide-basedrecogni-tionmechanismcouldprovideastraightforwardapproachforgeneratingcustomizablenucleasesforgenetargeting[87].
TheyusedtheCRISPRsystemofStreptococcuspyogenes,whichinvolvesasingleCasprotein(Cas9)andtwoRNAs(crRNAandtrans-actingantisenseRNA,alsoknownastracRNA)tobuildanactiveCRISPR/Casendonucleasecomplex.
Jineketal.
showedthatitispossibletocombinethesetwoRNAsintoasinglechimericguideRNA(knownasgRNAorsgRNA)thatcanefficientlydirectCas9activitytospecificDNAtargetsinvitro(Figure2).
TheguideRNAhasaregionof20nucleotidesatits5′end,whichbindsthetargetDNAanddeterminesspecificity;any20-nucleotidesequence(N20)canbeplacedatthatsiteb.
The3′regionoftheguideRNA,correspondingtothebacterialtracRNA,isanin-variablesequencethatisrequiredtoformacomplexwithCas9.
Targetrecognitionalsodependsonadditionalinterac-tionsbetweenCas9andthetargetDNA,whichrequirethepresenceofaspecificsequencemotif,the'protospa-ceradjacentmotif'(PAM),immediatelydownstreamofthe20-nucleotidesequencetargetedbytheguideRNA.
ThePAMsequencedoesnothaveacounterpartontheguideRNA(Figure2).
StreptococcuspyogenesCRISPR/Cas9requiresaPAMthatisNGG;itcanthustargetanysequencethatmatchesthemotifN20NGG.
Onceatargetisbound,twoseparatenucleasedomainsofCas9arein-volvedincleavingeachstrandofthetargetDNA.
Cleav-ageoccurswithintheguideRNAtargetregion,usuallythreenucleotidesupstreamofthePAM[81,82,87].
Withinlessthantwoyearssincethefirstdemonstra-tionofCRISPR-mediatedgeneediting[89-93],therehasbeenanexplosionofreportsdescribingtheapplicationofCRISPRindiverseanimalandplantspecies(reviewedin[94]).
Theapproachestogenerateknock-outsandknock-insaresimilartothosepreviouslydescribedforZFNsandTALENs,relyingontheendonucleasetogen-erateadouble-strandbreakatthetargetedlocusandonGillesandAverofEvoDevo2014,5:43Page4of13http://www.
evodevojournal.
com/content/5/1/43thecell'simpreciseortemplate-directedmechanismsofrepairingthatbreak(Figure1).
However,comparedtoZFNsandTALENs,CRISPRhasradicallyimprovedtheaccessibilityofgenetargetingduetoitsstraightforwardapproachforcustomizingsequencespecificity,viatarget-specificguideRNAs.
Itstargetingefficienciesarecompar-ablewiththebestefficienciesachievedusingTALENsinawiderangeofanimalsandplants(forexample,[46,51,95,96]),includingorganismswheregenetarget-ingisnotyetwidelyavailable,suchassilkmoths,axo-lotls,Xenopusandmonkeys[97-100].
Moreover,whileTALENactivityisinhibitedbyDNAmethylation[101],CRISPRactivitydoesnotappeartobeso[102].
Table1summarizestherelativebenefitsanddrawbacksofZFNs,TALENsandCRISPR.
CRISPRdeliveryandtargetrangeDifferentapproacheshavebeenusedtodelivergene-editingnucleasesintotargetcells,includingmicroinjec-tionandtransfection.
CRISPRsystemsrequirethedeliveryofCas9togetherwithguideRNA.
Cas9maybeexpressedfromahelperplasmidcarryingthecodingsequenceofCas9(fusedwithanuclearlocalizationsignalandsometimes'codon-optimized')underthecontrolofanappropriatepromoter.
Alternatively,ifapromoterisunavailable,Cas9canbeprovidedintheformofinvitrotranscribedcappedmRNAoraspurifiedre-combinantprotein[104,105].
Inestablishedmodels,suchasDrosophila,transgenicstrainshavebeengener-atedthatexpressCas9inthegermline[47,48,96].
DeliveryoftheguideRNAismoreconstrainedbe-causeinvitrotranscriptionorplasmid-derivedexpres-sionimposesomelimitationsonthesequenceoftheRNAandmay,therefore,influencetherangeofpotentialtargets.
InvitrotranscriptionofRNAisusuallycarriedoutusingtheRNApolymeraseofbacteriophagesT7,T3orSP6,whichgeneratetranscriptsthatstartwithGG(T3orT7RNApolymerase)orGA(SP6polymerase)[106].
ThealternativetoinvitrosynthesisistoexpresstheguideRNAfromaplasmidortransgeneinvivo.
SmallRNAsareconventionallyexpressedusingRNApolymeraseIIIpromoters,becausetheyoftenrequirepreciselydefinedinitiationandterminationsitesandshouldnotenterthemRNAprocessingpathway.
Thus,guideRNAsareusuallyexpressedviatheU6snRNATable1ComparisonofZFN,TALENandCRISPRapproachesZFNTALENCRISPRModeofactionDNAbreaktargetedbyprotein-DNArecognitionDNAbreaktargetedbyprotein-DNArecognitionDNAbreaktargetedbyRNA-DNAbasecomplementarityNucleasedesignandassemblyDifficult(commercialservicesexpensive)FeasibleinmostlabsbutlaborintensiveEasy(seeTable2)SuccessrateofnucleasedesignaLowHighHighTargetingefficiencyVariableHighwithmostnucleasesHighwithmostguideRNAsTargetrangeLimitedbyrangeandcontext-dependenceofZFmodulesUnlimitedLimitedbyPAMsequence(potentiallyunlimited)Potentialoff-targeteffectsYesYesYesSensitivitytoDNAmethylationNotknownSensitivetoCpGmethylationNotsensitivetoCpGmethylationHighthroughputtargetingNoLimitedYesasee[71,103].
PAM,protospaceradjacentmotif;TALEN,TALeffectornuclease;ZFN,zinc-fingernuclease.
Figure2CRISPR/Cas9interactingwithtargetDNA.
TheCRISPR/Cas9complexofStreptococcuspyogenesconsistsoftheCas9protein(ingray)andaguideRNAthatisachimeraofnaturalcrRNAandtracRNA(inorange).
Thetargetingsequenceatthe5′endoftheguideRNAbase-pairswithcomplementarysequencesonthetargetDNA(inblue);thetargetingsequenceis20nucleotideslong,butmaybeshortenedtoincreasespecificity[88](theadditionof1to2unpairednucleotidesatthe5′endisalsotolerated[51,88]).
ThepresenceofaPAM(protospaceradjacentmotif,NGGforStreptococcuspyogenes),locatedimmediatelydownstreamofthe20-nucleotidesequencetargetedbytheguideRNA,isalsoessentialfortargetrecognitionandcleavage.
ThePAMsequencedoesnothaveacounterpartontheguideRNA.
FollowingrecognitionofthePAMandbase-pairingbetweentheguideRNAandthetarget,Cas9cleaveseachofthetargetDNAstrandsafewnucleotidesupstreamofthePAM(redarrowheads).
EachstrandiscleavedbyadifferentnucleasedomainpresentinCas9(HNHandRuvCdomains).
ThesedomainshavebeenmutatedindependentlytogenerateCas9nickases[82,87].
GillesandAverofEvoDevo2014,5:43Page5of13http://www.
evodevojournal.
com/content/5/1/43promoter[46,89-91,107];U6promotersgeneratetran-scriptsthatstartwithaG.
Inprinciple,thesesequenceconstraintsdictatethat,usingStreptococcuspyogenesCas9(withNGGasaPAM),wecanoptimallytargetsequencesthatcontainGGN18NGGorGAN18NGGmotifsusinginvitrotran-scribedguideRNAsandGN19NGGusingtheU6pro-motertodriveguideRNAexpression.
Inpractice,however,itseemsthatmismatchesatthe5′endoftheguideRNAarewelltolerated,givingacceptablelevelsofgenetargeting[51,88].
Moreover,alternativeguideRNAexpressionstrategiesareemerging,whichovercometheconstraintsimposedbytheU6promoter[108-110].
Thus,thePAMsequencemaybetheonlystringentlimi-tationtoCRISPR'stargetrange.
PAMrecognitionseemstoplayakeyroleinCRISPRtargetrecognition[111],sotherequirementforaPAMinthetargetsequenceislikelytoremain.
These-quenceconstraintsimposedbythePAMmaybeover-comebyexploitingthenaturaldiversityofCRISPRsystems[112-114],orbyrationaldesignandartificialselectionofCas9variantsthatrecognizedifferentPAMsequences.
Off-targeteffectsWhetherusingZFNs,TALENsorCRISPR,targetingachosen,uniquesequenceinthegenomemaybeaccom-paniedbyunintendedcleavageatotherloci.
Severalstudieshaveinvestigatedthespecificityandpotentialoff-targetsofCRISPR[89,102,115-121],focusingonthestringencyofbase-pairingbetweentheguideRNAandthetarget.
Thesestudieshaveestablishedthatmis-matchesaretolerated,especiallyatthe5′endoftheguideRNA,butthattherearenosimplerulespredictingthelikelihoodofmis-targetingbasedonthenumberandpositionofmismatches.
Insomecases,evensequenceswithmultiplemismatchestotheguideRNAweretar-getedefficiently[116].
Inonestudy,targetingspecificitydeterioratedwhenhighconcentrationsofCRISPR/Cas9wereused[118].
ArecentstudyhasalsohighlightedtheroleplayedbythePAMsequenceasCRISPR/Cas9interrogatescom-plexDNAsequencestoidentifytargetsites[111].
ThestudyshowsthattheCRISPR/Cas9complexfirstidenti-fiespotentialtargetsbasedonthePAMsequence,andtheninterrogatestheseforsequencecomplementaritywiththeguideRNA.
ThecomplexdoesnotappeartointeractwithsequencesthatmatchtheguideRNAtargetingmotif(N20)buthavenoadjacentPAM.
Theseobservationssuggestthatoff-targetswillgenerallynotincludesequencesthatarelackingthePAM.
Inspecieswherethegenomesequenceisknown,computationaltoolsarenowroutinelyusedtoselectguideRNAsandtoevaluatepotentialoff-targetingbasedonsequencesimilarityandonthepresenceofaPAM(seeOnlineResourcesforCRISPRinTable2).
Anumberofapproachescanbetakentoconfronttheoff-targetproblemandtomitigateitseffects.
First,itisoftenpossibletocontrolforunspecificeffectsthroughappropriateexperimentaldesign.
AstrategycommonlyemployedinRNAistudiesistoexaminewhethercon-sistentphenotypesareobtainedbytargetingdifferentpartsofagene,usingnon-overlappingdouble-strandedRNAfragmentsorsiRNAs[17].
ThesamestrategycanbeeasilyappliedinmostcasesofgenetargetingbyCRISPR,byusingdifferentguideRNAs.
GuideRNAstargetingdifferentsequencesareveryunlikelytosharethesameoff-targeteffects.
Notably,heteroalleliccombi-nationsofknock-outsgeneratedusingdifferentguideRNAsarelikelytocomplementoff-targetmutationsandtogivehighlyspecificknock-outphenotypes.
StrategiesforimprovingthespecificityofCRISPRarealsobeginningtoemerge,exploitingthecombinedac-tionofpairsofCRISPRnucleases,ormethodsthatin-creasethespecificityofindividualnucleases.
ThefirstapproachreliesonmutantsofCas9,knownasnickases,thatcleaveonlyoneofthetwoDNAstrands.
Usingsuchmutants,adoublestrandbreakcanbegeneratedbytarget-ingapairofcloselylinkedsingle-strandbreaks(nicks)onoppositeDNAstrands.
Therequirementthatthesenickscoincidedrasticallyimprovestargetingspecificitycom-paredtothatofsingleCRISPRnucleases[44,117,119,124].
AvariantofthisapproachcombinestheCRISPR/Cas9DNAbindingactivitywiththeFokIendonuclease,whosedimerizationrequirementsensurethatnonickingoccursatoff-targetsites[109,125].
Forefficientcleavage,these'pairednickase'approachesrequirethatadjacenttargetsites,offsetbyupto30nucleotides,canbefoundonoppositeDNAstrands.
AsecondapproachtoincreasethespecificityoftargetingbyCRISPRreliesontheobservationthatshortrecognitionsequencesarelessforgivingintermsofallowedmismatchesbetweentheguideRNAanditstargets[88](similarobser-vationsonspecificityandtargetsizehavebeenmadewithTALENs,[65]).
Thus,guideRNAswithtargetingsequencesof17to19nucleotidesshowhightargetingefficienciesandmuchreducedoff-targeteffectscomparedtooneswithcanonical20-nucleotidetargetingsequences[88].
Ultimately,itmayalsobepossibletoimprovethestringencyofCRISPRtargetrecognitionbyselectingorengineeringCas9nucleasesthatareintrinsicallylesspromiscuous.
Opportunitiesforevo-devoandfuturechallengesCRISPR-mediatedgenetargetingopensawiderangeofopportunities,bothinestablishedmodelorganismsandinnewlyemergingones.
AquickguideforapplyingCRISPRinnewspeciesisgiveninTable2.
GillesandAverofEvoDevo2014,5:43Page6of13http://www.
evodevojournal.
com/content/5/1/43Table2AquickguidetoCRISPRforbeginnersa1.
PrerequisitesDeliverymethod,reachingthegermlineorothercellsofinterest:microinjection,transfection,electroporationGenomicsequenceoftargetgenesRobustphenotypicassaystodeterminetheeffectofgenetargeting2.
ExperimentalstrategyDecideonthetargetingapproach(knock-inorknock-out),dependingonwhetheryouwanttodisruptgenefunction,engineeraspecificmutation,generateareporter,etcetera.
WhentestingCRISPRforthefirsttime,chooseasimpleknock-outapproach,selectingtargetsthatproducephenotypesthatareeasytoscore,suchaspigmentationgenesoraGFPtransgene[70,98,122],orgeneswithaknown,robustandspecificphenotype.
Forknock-insToknock-inlargeconstructs,useHDRtemplatesinwhichtheknock-inconstructisflankedbyhomologyarms-typically>1kbinlength-matchingthesequencesoneithersideofthedouble-strandbreak[46-49];shorterhomologyarmsgivelowerefficiencies[50].
Providethetemplateasacircularplasmid.
Tointroducesmallchanges,usesyntheticsingle-strandedoligos(ssODNs)bearing10to40nucleotidesofhomologoussequenceateachendastemplatesforHDR[48,50-52].
ThesequencetargetedbyCRISPRshouldbemutatedintherepairtemplatetoprotectthetemplateandtargetedallelesfromcleavage.
Alternatively,ahomology-independentknock-inapproach(seeFigure1)maybeusedtoknock-inlargeDNAfragments[42,45]orshortdouble-strandedoligos(dsODNs)[44].
Usingthisapproach,theinsertionmaybeimprecise[45]ordirectedbycomplementaryoverhangs[42,44].
SelectanapproachthatwillminimizelethalityduetoNHEJ-mediatedindelsinsomatictissues,forexample,byrestrictingCRISPR/Casactivitytothegermline[48,123],targetingconstructstointrons,oradoptingastrategythatimprovestherelativeefficiencyofknock-ins[42,45,50].
3.
DesignofguideRNAs-findingtargetsequencesUsethemostreliablegenomicsequenceavailableforthetargetgene.
Considerthatthetargetedsitemaybearnucleotidepolymorphisms;ifthisislikelytobeanissue,obtainsequencesfromthestrainusedforgenetargetingand/ortestmultipleguideRNAs.
Useonlinesoftwaretosearchforpotentialtargetsites(seeOnlineResourcesforCRISPR,below).
ThesoftwaresearchagivensequenceforsiteswithasuitablePAMmotif(NGGforS.
pyogenesCas9)andadditionalsequenceconstraintsdependingonthemodeofguideRNAproduction(GGN18NGGforinvitroT7-synthesisofguideRNAs,GN19NGGforU6-mediatedexpression).
Thelatterrequirementscanberelaxed,asextraGsmaybeaddedtothe5′endoftheguideRNAwithoutsignificantlycompromisingtargetingefficiency[51,88].
Whenworkingwithasequencedgenome,thesoftwarecanalsodetectpotentialunintendedtargetsandhelpselectguideRNAswithfeweroff-targets.
AlthoughthepresenceofthePAMsequenceatthegenomictargetsiteisessential,itshouldnotbeincludedintheguideRNA(seeFigure2).
ForanN20NGGtargetsite,onlytheN20sequenceisincorporatedatthe5′endoftheguideRNA.
DesignandtestmultipleguideRNAs,ifpossible,tocontrolforoff-targeteffectsandbecausesomeguideRNAsfail(duetopolymorphisms,RNAsecondarystructureorforunexpectedreasons).
Strategiestoreduceoff-targeteffectsmayrequirespecialdesignofguideRNAs:pairednickaseapproachesrequirepairsoftargetsequencesoffsetbynomorethat30nucleotidesonoppositeDNAstrands[44,109,117,119,124,125];truncatedguideRNAsbeartargetingsequencesthatareshorterthan20nucleotides[88].
4.
ProvidingguideRNAsandCas9GuideRNAsareeasilygeneratedbycloningpairsofsyntheticoligos,correspondingtothetwostrandsofthetargetsequence(determinedabove),intovectorscarryingtheinvariableportionoftheguideRNA(availableatwww.
addgene.
org/CRISPR).
Cloningisfacilitatedbyarestrictionsiteonthevector-usuallyBbsIorBsaI,whichdoesnotconstraintheclonedsequence-andcompatibleoverhangsintheannealedoligos.
TheguideRNAscanbeexpressedeitherbyinvitrotranscriptionviathebacteriophageT3,T7orSP6promoters,orbyinvivoexpressionviatheU6promoter.
ForinitialexperimentsinspecieswhereU6promotersandterminatorsareuntested,chooseinvitrosynthesisoftheguideRNA.
Vectorsandprotocolscanbefoundatwww.
addgene.
org/CRISPR.
Cas9canbeexpressedfromahelperplasmidcarryingthecodingsequenceofCas9underthecontrolofanappropriatepromoter.
Alternatively,ifapromoterisunavailableforthespeciesofinterest,Cas9canbeprovidedintheformofinvitrotranscribedcappedmRNAoraspurifiedrecombinantprotein[104,105].
Forinitialexperimentsperformedbymicroinjection,theuseofrecombinantCas9proteinovercomesuncertaintieswithuntestedpromotersandmRNAtranslation.
5.
RapidassaysofCRISPRactivityandgenotypingThemeltingcurveandsurveyororT7E1endonucleaseassaysareinvaluableforarapidassessmentofCRISPRactivityinnewspecies,forroutinetestingofnewguideRNAspriortomorelaboriousexperiments,andforgenotypinganimalsatspecifictargetsites.
TheseassaysdetectindelsandotherpointmutationsgeneratedbyNHEJ.
TheyrelyonPCRandrequireonlyasmallamountofstartingmaterial.
GenomicDNAisextractedfromembryosortissuestobetestedandPCRisperformedusingprimersthatflankthetargetsite.
UntreatedgenomicDNAgivesaPCRproductwithperfectlyannealedstrands(unlesstherearenaturalpolymorphismswithinthefragment),whereasmutagenizedgenomicDNAalsoyieldssomeheteroduplexDNA,consistingofstrandsthatdifferbysmallindelsandpointmutations.
Thefollowingassaysareusedtodetectofthesemismatches.
GillesandAverofEvoDevo2014,5:43Page7of13http://www.
evodevojournal.
com/content/5/1/43Knock-outapproacheswillsurelybemorewidelyappliedinnewlyestablishedexperimentalsystemsduetotheextraordinaryefficiencyofNHEJ-mediatedknock-out,whichapproaches100%insomespecies.
Generatinganull-alleleordisruptingaspecificcis-regulatoryelem-entnowseemswithinreachinawiderangeofanimalsandwillbeprimarilylimitedbyourabilitytoscreenforthesemutations(byphenotypeorbyPCR)andtomain-tainmutantstocks.
Tosomeextent,thehighefficiencyofCRISPR-andTALEN-mediatedknock-outmayalsohelptoovercometheproblemofstock-keeping.
Thehighfrequencyofbi-allelicknock-outininjectedembryosusingCRISPRorTALENhasraisedthepossibilityofcarryingout'G0Table2AquickguidetoCRISPRforbeginnersa(Continued)-Surveyor/T7E1endonucleaseassaysarebasedoncleavageoftheheteroduplexesbyamismatch-specificendonuclease-eitherSurveyororT7endonuclease1[126,127].
Cleavageproducts,indicatingthepresenceofmispairedDNA,aredetectedbyelectrophoresisonanagarosegel.
Thisisasensitivedetectionmethod,bestperformedon400to800bpampliconswithtargetsitespositionednearthemiddle.
-Themeltingcurveassay[128]reliesonthefactthatheteroduplexDNAhasalowermeltingtemperaturethanthecorrespondinghomoduplexfragments.
Thattemperaturedifference,whichisintheorderof1to2°Cfor100to200bpfragments,canbedetectedbyperformingmeltingcurvesinreal-timePCRinstrumentswithhightemperatureresolution.
MorespecificPCR-basedassayscanbedevisedforknock-inapproaches,employingpairsofprimersthatspanthegenomiclocusandknock-infragment.
ThePCRproductscanbeclonedandsequencedtoexaminethenatureandspectrumofcorrespondingmutations.
6.
ScoringphenotypesTheeffectsofCRISPRtargetingcanbeassessedintheanimalswhereCRISPRwasdelivered(G0)orintheirprogeny.
ItisimportanttokeepinmindthatG0saremosaicswhereonlysomecellsarelikelytocarryallelestargetedbyCRISPR;inthebestcasesasignificantproportionoftheanimalshowsbi-allelictargetingandacorrespondingphenotype.
Thedegreeanddistributionoftargetedcellcloneshoweveraredifficulttodetermine,unlessacell-autonomousmarkerisused(forexample,targetingofsomepigmentgenes,knock-inofGFP).
IfthegermlineofG0shasbeenhit,targetedalleleswillberecoveredinthenextgeneration(G1).
IncontrasttoG0s,G1individualsarenon-mosaicandmayinheritonetargetedallele(perlocus)fromtheCRISPR-targetedparent.
AnimalsmaybegenotypedbyPCR(seeabove)andcrossedtoproducehomozygotesandtomaintainmutantlines.
Choosingreliable,specificphenotypicassaysandappropriatecontrolsiscrucial.
Phenotypesmaybesubtleorshowincompletepenetrance.
7.
Off-targeteffectsandcontrolsUnintendedtargets(off-targets)maybeanywhereinthegenomeandaredifficulttopredict.
Twostrategiescanhelptoovercomeproblemswithoff-targeteffects:appropriateexperimentaldesignallowingustodetectandaccountforoff-targeteffectsandapproachesthatimprovethespecificityofCRISPR.
Inmostcasesitispossibletocontrolforoff-targetsbyusingdifferentguideRNAstoachievetargeting;guideRNAstargetingdifferentsequencesareveryunlikelytosharethesameoff-targets.
AllelesgeneratedusingdifferentguideRNAsmaybebroughttogetherbycrossing,inheteroalleliccombina-tionsthatarelikelytocomplementoff-targetmutations.
ThespecificityofCRISPRcanbesignificantlyimprovedbyusingpairednickases[44,109,117,119,124,125]ortruncatedguideRNAs[88](seemaintext).
Off-targetmutationswillsegregateawayfromtargetedallelesingeneticcrosses,unlesstheyarelinkedonthechromosome.
8.
OnlineresourcesforCRISPRGeneralwww.
genome-engineering.
org/crisprwww.
addgene.
org/CRISPRwww.
flycrispr.
molbio.
wisc.
eduwww.
crisprflydesign.
orggroups.
google.
com/forum/#!
forum/crisprSoftwarefordesigningguideRNAscrispr.
mit.
eduwww.
addgene.
org/CRISPR/reference/#gRNAtools.
flycrispr.
molbio.
wisc.
edu/targetFinderwww.
e-crisp.
org/E-CRISP/designcrispr.
htmlwww.
rgenome.
net/cas-offinderCRISPRtechnologyisrecentandrapidlyevolving.
Onlineresourcesarelikelytochange,asimprovementsandnewtoolsareintroduced.
aUsefulpracticaladviceandaprotocol(appliedtocelllines)canalsobefoundin[129].
GillesandAverofEvoDevo2014,5:43Page8of13http://www.
evodevojournal.
com/content/5/1/43genetics',examiningphenotypesdirectlyintheinjectedembryos(forexample,[48,98,122,130,131]).
Phenotypicanalysiswithoutcrossescouldbeusedasa'quickanddirty'approachinspeciesthathavelonggenerationtimes,orforpreliminaryscreensonalargenumberofcandidategenes,similartoRNAi.
Theobviousdrawbackofthistypeofanalysisisthegeneticmosaicismoftheorganism,whichisdifficulttocontrolandwillleadtopartialandvariablephenotypes.
However,mosaicismcouldalsobeanadvantageincontextswheregeneticmanipulationwithinspecificcelllineagesorinrandomcellclonesisdesirabletoover-comelethality,ortoassesscellautonomousversusnon-autonomouseffectsofgenefunction.
Particularlysowhentheextentofmosaicismcanbemonitoredormanipulated(see[48]).
Tissue-andstage-specificknock-outsmaybeachievedbymanipulatingtheexpressionofCas9[48].
Knock-inapproachesprovideanevenwiderrangeofop-portunities,includingprecisemodificationofgenesintheirnativegenomiccontext,andgeneratingvisiblereportersforregulatoryandphysiologicalevents,anddriversfortransgeneexpression.
Themajorchallengetoovercomehereisthat,foranygivenguideRNAorTALEN,thefrequencyofmutagenicNHEJrepairwillbemuchhigher(byanorderofmagnitude)thanthefrequencyofHDR-orNHEJ-drivenknock-in(seeFigure1).
Ahighknock-outfrequencyinthesomaticcellsofinjectedanimalscanleadtolethalitythatpreventsknock-instoberecoveredinthenextgeneration.
Thisproblemcouldbeovercomeinanumberofways:byusinggermline-specificcis-regulatoryelementstorestricttheactivityofCas9tothegermline[48,123];bytargetingsitesthatareunlikelytobelethalifmutated,forexample,targetingknock-instointronicsequences,withappropriatesplicesignalstogeneratefunctionalgenefusions;byfindingwaystoimprovetheefficiencyofHDRrelativetoNHEJ,suchasbyknockingdowntheactivityofDNAligase4orotherfactorsthatareessentialforNHEJ[49,50,132];orbydevelopingstrategiesthatexploitNHEJ-mediatedgeneknock-instoachievehigherefficiencies[42-45](seeFigure1).
Beyondknock-outandknock-instrategies,theabilitytodirectdouble-strandbreakstospecificsitesinthegenomeraisestheprospectofchromosomeengineering.
Generatingchromosomaldeletionsandinversionsispresentlynotoneoftheusualtoolsemployedinevo-devo,butoneonlyneedstoconsidertheenormouscontributionofbalancerchromosomesinDrosophilageneticstoappre-ciateitspotentialvalueinemergingmodelorganisms[133].
Balancersareinvaluabletoolsforselectingandkeepingtrackofchromosomesbearingmutations,es-peciallywhenthesemutationsaredeleteriousandnotassociatedwithadominantmarker(forexample,theknock-outofanessentialgene).
CRISPRandTALENsnowallowustogeneratetargetedchromosomalinver-sions[134-136]associatedwithrecessivelethalmutationsand,thus,tocreatebalancers,inorganismswhereagen-omesequenceandmapareavailable.
Lastbutnotleast,thecustomizablespecificityofCRISPRmaybeharnessedtodirectothermoleculareffectors-besidesnucleases-tospecificsitesinthegenome(reviewedin[137]).
Forexample,catalyticallyinactiveversionsofCas9havebeenusedtointerferewithtranscription[138,139],coupledwithtranscrip-tionalactivators,repressorsorchromatinmodifierstogenerateartificialtranscriptionalregulators[117,139-143],orlinkedwithfluorescentproteinstorevealchromosomedynamics[144].
Thisapproachallowsustomanipulatetheactivityofregulatoryelementsintheirnativecontextwithoutintroducingchangesintheirnucleotidesequence,providingtoolsofunprecedentedprecisioninoureffortstomanipulateandtounderstandgeneregulation.
CRISPRtechnologyisyoung-barelytwoyearsold-andstillrapidlyevolving.
Improvements,newapplica-tionsandadaptationsofthetechniquetonewspecieshavebeenpublishedatoverwhelmingspeedduringthelastyear,andsurelymoreareforthcoming.
Thisisatruerevolutionforcomparativestudies.
Practicalissues,suchasthedeliverymethodandourabilitytoselectandtopropagatemutants,arestilllikelytolimitthefullde-ploymentofCRISPRinmanyspecies.
Notwithstandingtheseissues,targetedmutagenesisandprecisegeneeditingarenowwithinreachinaverywiderangeoforganisms.
EndnotesaItisinterestingtonotethattheadaptivediversifica-tion,specificityandefficiencyofimmunitymechanismsprovidethebasisforsomeofthemostpowerfultoolsinmolecularbiology:restrictionenzymes,antibodies,RNAiandCRISPR.
bSomewhatshortersequencesmayalsobeused(seeOff-targeteffects).
AbbreviationsCas:CRISPR-associatedprotein;CRISPR:Clusteredregularlyinterspacedshortpalindromicrepeats;crRNA:CRISPR-derivedRNA;HDR:Homology-directedrepair;NHEJ:Non-homologousendjoining;PAM:Protospaceradjacentmotif;RNAi:RNAInterference;TALEN:TALeffectornuclease;tracRNA:Trans-actingantisenseRNA;ZFN:Zinc-fingernuclease.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsAFGandMAwrotethemanuscript.
Bothauthorsreadandapprovedthefinalmanuscript.
AcknowledgementsWethankThomasAuer,FilippodelBene,FrédéricFlamant,MartinKlingler,NikosKonstantinides,ZachariasKontarakis,TassosPavlopoulos,MiltosTsiantisandmembersofourlabforreadingandcommentingonthemanuscript.
OurworkissupportedbygrantANR-12-CHEX-0001-01oftheAgenceGillesandAverofEvoDevo2014,5:43Page9of13http://www.
evodevojournal.
com/content/5/1/43NationaledelaRecherche,bytheMarieCurieITNnetwork'NEPTUNE'andbyafellowshipfromtheUniversitéClaudeBernardLyon1.
Authordetails1InstitutdeGénomiqueFonctionnelledeLyon(IGFL),coleNormaleSupérieuredeLyon,46Alléed'Italie,Lyon69364,France.
2BMICgraduateprogrammeandUniversitéClaudeBernard-Lyon1,Lyon,France.
3CentreNationaldelaRechercheScientifique(CNRS),Lyon,France.
Received:28August2014Accepted:3October2014Published:18November2014References1.
FireA,XuS,MontgomeryMK,KostasSA,DriverSE,MelloCC:Potentandspecificgeneticinterferencebydouble-strandedRNAinCaenorhabditiselegans.
Nature1998,391:806–811.
2.
HamiltonAJ:AspeciesofsmallantisenseRNAinposttranscriptionalgenesilencinginplants.
Science1999,286:950–952.
3.
TuschlT,ZamorePD,LehmannR,BartelDP,SharpPA:TargetedmRNAdegradationbydouble-strandedRNAinvitro.
GenesandDevelopment1999,13:3191–3197.
4.
TijstermanM,KettingRF,PlasterkRHA:ThegeneticsofRNAsilencing.
AnnualReviewOfGenetics2002,36:489–519.
5.
NaseviciusA,EkkerSC:Effectivetargetedgene"knockdown"inzebrafish.
NatGenet2000,26:216–220.
6.
WahlestedtC,SalmiP,GoodL,KelaJ,JohnssonT,HokfeltT,BrobergerC,PorrecaF,LaiJ,RenK,OssipovM,KoshkinA,JakobsenN,SkouvJ,OerumH,JacobsenMH,WengelJ:Potentandnontoxicantisenseoligonucleotidescontaininglockednucleicacids.
ProcNatlAcadSciUSA2000,97:5633–5638.
7.
HeasmanJ:Morpholinooligos:makingsenseofantisenseDevBiol2002,243:209–214.
8.
KrutzfeldtJ,RajewskyN,BraichR,RajeevKG,TuschlT,ManoharanM,StoffelM:SilencingofmicroRNAsinvivowith"antagomirs.
".
Nature2005,438:685–689.
9.
SanchezAlvaradoA,NewmarkPA:Double-strandedRNAspecificallydisruptsgeneexpressionduringplanarianregeneration.
ProcNatlAcadSciUSA1999,96:5049–5054.
10.
BucherG,ScholtenJ,KlinglerM:ParentalRNAiinTribolium(Coleoptera).
CurrBiol2002,12:R85–R86.
11.
LaydenMJ,RttingerE,WolenskiFS,GilmoreTD,MartindaleMQ:MicroinjectionofmRNAormorpholinosforreversegeneticanalysisinthestarletseaanemone,Nematostellavectensis.
NatProtoc2013,8:924–934.
12.
ConzelmannM,WilliamsEA,TunaruS,RandelN,ShahidiR,AsadulinaA,BergerJ,OffermannsS,JékelyG:ConservedMIPreceptor-ligandpairregulatesPlatynereislarvalsettlement.
ProcNatlAcadSciUSA2013,110:8224–8229.
13.
YamadaL:Morpholino-basedgeneknockdownscreenofnovelgeneswithdevelopmentalfunctioninCionaintestinalis.
Development2003,130:6485–6495.
14.
ReddienPW,BermangeAL,MurfittKJ,JenningsJR,SanchezAlvaradoA:Identificationofgenesneededforregeneration,stemcellfunction,andtissuehomeostasisbysystematicgeneperturbationinplanaria.
DevCell2005,8:635–649.
15.
OatesAC,BruceAEE,HoRK:Toomuchinterference:injectionofdouble-strandedRNAhasnonspecificeffectsinthezebrafishembryo.
DevBiol2000,224:20–28.
16.
ElbashirSM,HarborthJ,LendeckelW,YalcinA,WeberK,TuschlT:Duplexesof21-nucleotideRNAsmediateRNAinterferenceinculturedmammaliancells.
Nature2001,411:494–498.
17.
EcheverriCJ,BeachyPA,BaumB,BoutrosM,BuchholzF,ChandaSK,DownwardJ,EllenbergJ,FraserAG,HacohenN,HahnWC,JacksonAL,KigerA,LinsleyPS,LumL,MaY,Mathey-PrevotB,RootDE,SabatiniDM,TaipaleJ,PerrimonN,BernardsR:Minimizingtheriskofreportingfalsepositivesinlarge-scaleRNAiscreens.
NatMethods2006,3:777–779.
18.
BerghammerAJ,KlinglerM,WimmerEA:Auniversalmarkerfortransgenicinsects.
Nature1999,402:370–371.
19.
SasakuraY,AwazuS,ChibaS,SatohN:Germ-linetransgenesisoftheTc1/marinersuperfamilytransposonMinosinCionaintestinalis.
ProcNatlAcadSciUSA2003,100:7726–7730.
20.
PavlopoulosA,AverofM:EstablishinggenetictransformationforcomparativedevelopmentalstudiesinthecrustaceanParhyalehawaiensis.
ProcNatlAcadSciUSA2005,102:7888–7893.
21.
SobkowL,EpperleinHH,HerklotzS,StraubeWL,TanakaEM:AgermlineGFPtransgenicaxolotlanditsusetotrackcellfate:Dualoriginofthefinmesenchymeduringdevelopmentandthefateofbloodcellsduringregeneration.
DevBiol2006,290:386–397.
22.
WittliebJ,KhalturinK,LohmannJU,Anton-ErxlebenF,BoschTCG:TransgenicHydraallowinvivotrackingofindividualstemcellsduringmorphogenesis.
ProcNatlAcadSciUSA2006,103:6208–6211.
23.
RenferE,Amon-HassenzahlA,SteinmetzPR,TechnauU:Amuscle-specifictransgenicreporterlineoftheseaanemone,Nematostellavectensis.
ProcNatlAcadSciUSA2010,107:104–108.
24.
BackfischB,RajanVBV,FischerRM,LohsC,ArboledaE,Tessmar-RaibleK,RaibleF:StabletransgenesisinthemarineannelidPlatynereisdumeriliishedsnewlightonphotoreceptorevolution.
ProcNatlAcadSciUSA2013,110:193–198.
25.
BlairSS:GeneticmosaictechniquesforstudyingDrosophiladevelopment.
Development2003,130:5065–5072.
26.
KraglM,KnappD,NacuE,KhattakS,MadenM,EpperleinHH,TanakaEM:Cellskeepamemoryoftheirtissueoriginduringaxolotllimbregeneration.
Nature2009,460:60–65.
27.
KonstantinidesN,AverofM:Acommoncellularbasisformuscleregenerationinarthropodsandvertebrates.
Science2014,343:788–791.
28.
YehJ-RJ,CrewsCM:Chemicalgeneticsaddingtothedevelopmentalbiologytoolbox.
DevCell2003,5:11–19.
29.
CapecchiMR:Genetargetinginmice:functionalanalysisofthemammaliangenomeforthetwenty-firstcentury.
NatRevGenet2005,6:507–512.
30.
DengC,CapecchiMR:Reexaminationofgenetargetingfrequencyasafunctionoftheextentofhomologybetweenthetargetingvectorandthetargetlocus.
MolCellBiol1992,12:3365–3371.
31.
HinnenA,HicksJB,FinkGR:Transformationofyeast.
ProcNatlAcadSciUSA1978,75:1929–1933.
32.
SmithiesO,GreggRG,BoggsSS,KoralewskiMA,KucherlapatiRS:InsertionofDNAsequencesintothehumanchromosomalbeta-globinlocusbyhomologousrecombination.
Nature1985,317:230–234.
33.
ThomasKR,FolgerKR,CapecchiMR:Highfrequencytargetingofgenestospecificsitesinthemammaliangenome.
Cell1986,44:419–428.
34.
SzostakJW,Orr-WeaverTL,RothsteinRJ,StahlFW:Thedouble-strand-breakrepairmodelforrecombination.
Cell1983,33:25–35.
35.
RouetP,SmihF,JasinM:Introductionofdouble-strandbreaksintothegenomeofmousecellsbyexpressionofarare-cuttingendonuclease.
MolCellBiol1994,14:8096–8106.
36.
ChoulikaA,PerrinA,DujonB,NicolasJF:InductionofhomologousrecombinationinmammalianchromosomesbyusingtheI-SceIsystemofSaccharomycescerevisiae.
MolCellBiol1995,15:1968–1973.
37.
DonohoG,JasinM,BergP:Analysisofgenetargetingandintrachromosomalhomologousrecombinationstimulatedbygenomicdouble-strandbreaksinmouseembryonicstemcells.
MolCellBiol1998,18:4070–4078.
38.
TaghianDG,NickoloffJA:Chromosomaldouble-strandbreaksinducegeneconversionathighfrequencyinmammaliancells.
MolCellBiol1997,17:6386–6393.
39.
GloorGB,NassifNA,Johnson-SchlitzDM,PrestonCR,EngelsWR:TargetedgenereplacementinDrosophilaviaPelement-inducedgaprepair.
Science1991,253:1110–1117.
40.
RobertV,BessereauJ-L:TargetedengineeringoftheCaenorhabditiselegansgenomefollowingMos1-triggeredchromosomalbreaks.
EmboJ2007,26:170–183.
41.
KrebsJE,KilpatrickST,GoldsteinSE:Lewin'sGenesXI.
Burlington,MA:Jones&BartlettPublishers;2014.
42.
MarescaM,LinVG,GuoN,YangY:Obligateligation-gatedrecombination(ObLiGaRe):custom-designednuclease-mediatedtargetedintegrationthroughnonhomologousendjoining.
GenomeRes2013,23:539–546.
43.
CristeaS,FreyvertY,SantiagoY,HolmesMC,UrnovFD,GregoryPD,CostGJ:Invivocleavageoftransgenedonorspromotesnuclease-mediatedtargetedintegration.
BiotechnolBioeng2013,110:871–880.
44.
RanFA,HsuPD,LinC-Y,GootenbergJS,KonermannS,TrevinoAE,ScottDA,InoueA,MatobaS,ZhangY,ZhangF:DoublenickingbyRNA-GuidedCRISPRCas9forenhancedgenomeeditingspecificity.
Cell2013,154:1380–1389.
GillesandAverofEvoDevo2014,5:43Page10of13http://www.
evodevojournal.
com/content/5/1/4345.
AuerTO,DuroureK,DeCianA,ConcordetJP,DelBeneF:HighlyefficientCRISPR/Cas9-mediatedknock-ininzebrafishbyhomology-independentDNArepair.
GenomeRes2014,24:142–153.
46.
DickinsonDJ,WardJD,ReinerDJ,GoldsteinB:EngineeringtheCaenorhabditiselegansgenomeusingCas9-triggeredhomologousrecombination.
NatMeth2013,10:1028–1034.
47.
GratzSJ,UkkenFP,RubinsteinCD,ThiedeG,DonohueLK,CummingsAM,O'Connor-GilesKM:HighlySpecificandEfficientCRISPR/Cas9-CatalyzedHomology-DirectedRepairinDrosophila.
Genetics2014,196:961–971.
48.
PortF,ChenHM,LeeT,BullockSL:OptimizedCRISPR/CastoolsforefficientgermlineandsomaticgenomeengineeringinDrosophila.
ProcNatlAcadSciUSA2014,111:E2967–E2976.
49.
BeumerKJ,TrautmanJK,BozasA,LiuJL,RutterJ,GallJG,CarrollD:EfficientgenetargetinginDrosophilabydirectembryoinjectionwithzinc-fingernucleases.
ProcNatlAcadSciUSA2008,105:19821–19826.
50.
BeumerKJ,TrautmanJK,MukherjeeK,CarrollD:DonorDNAUtilizationduringGeneTargetingwithZinc-fingerNucleases.
G3(Bethesda)2013,doi:10.
1534/g3.
112.
005439.
51.
HwangWY,FuY,ReyonD,MaederML,KainiP,SanderJD,JoungJK,PetersonRT,YehJ-RJ:HeritableandprecisezebrafishgenomeeditingusingaCRISPR-Cassystem.
PLoSONE2013,8:e68708.
52.
ChenF,Pruett-MillerSM,HuangY,GjokaM,DudaK,TauntonJ,CollingwoodTN,FrodinM,DavisGD:High-frequencygenomeeditingusingssDNAoligonucleotideswithzinc-fingernucleases.
NatMeth2011,8:753–755.
53.
TakeuchiR,LambertAR,MakAN-S,JacobyK,DicksonRJ,GloorGB,ScharenbergAM,EdgellDR,StoddardBL:Tappingnaturalreservoirsofhomingendonucleasesfortargetedgenemodification.
ProcNatlAcadSciUSA2011,108:13077–13082.
54.
MajumdarA,MuniandyPA,LiuJ,LiuJL,LiuST,CuenoudB,SeidmanMM:Targetedgeneknockinandsequencemodulationmediatedbyapsoralen-linkedtriplex-formingoligonucleotide.
JBiolChem2008,283:11244–11252.
55.
PeiD,CoreyDR,SchultzPG:Site-specificcleavageofduplexDNAbyasemisyntheticnucleaseviatriple-helixformation.
ProcNatlAcadSciUSA1990,87:9858–9862.
56.
KimYG,ChaJ,ChandrasegaranS:Hybridrestrictionenzymes:zincfingerfusionstoFokIcleavagedomain.
ProcNatlAcadSciUSA1996,93:1156–1160.
57.
CarrollD:Genomeengineeringwithzinc-fingernucleases.
Genetics2011,188:773–782.
58.
MillerJC,HolmesMC,WangJ,GuschinDY,LeeY-L,RupniewskiI,BeausejourCM,WaiteAJ,WangNS,KimKA,GregoryPD,PaboCO,RebarEJ:Animprovedzinc-fingernucleasearchitectureforhighlyspecificgenomeediting.
NatBiotechnol2007,25:778–785.
59.
MaederML,Thibodeau-BegannyS,OsiakA,WrightDA,AnthonyRM,EichtingerM,JiangT,FoleyJE,WinfreyRJ,TownsendJA,Unger-WallaceE,SanderJD,Müller-LerchF,FuF,PearlbergJ,GbelC,DassieJP,Pruett-MillerSM,PorteusMH,SgroiDC,IafrateAJ,DobbsD,McCrayPB,CathomenT,VoytasDF,JoungJK:Rapid"open-source"engineeringofcustomizedzinc-fingernucleasesforhighlyefficientgenemodification.
MolCell2008,31:294–301.
60.
IsalanM,ChooY,KlugA:Synergybetweenadjacentzincfingersinsequence-specificDNArecognition.
ProcNatlAcadSciUSA1997,94:5617–5621.
61.
SanderJD,DahlborgEJ,GoodwinMJ,CadeL,ZhangF,CifuentesD,CurtinSJ,BlackburnJS,Thibodeau-BegannyS,QiY,PierickCJ,HoffmanE,MaederML,KhayterC,ReyonD,DobbsD,LangenauDM,StuparRM,GiraldezAJ,VoytasDF,PetersonRT,YehJ-RJ,JoungJK:Selection-freezinc-finger-nucleaseengineeringbycontext-dependentassembly(CoDA).
NatMeth2010,8:67–69.
62.
RamirezCL,FoleyJE,WrightDA,Müller-LerchF,RahmanSH,CornuTI,WinfreyRJ,SanderJD,FuF,TownsendJA,CathomenT,VoytasDF,JoungJK:Unexpectedfailureratesformodularassemblyofengineeredzincfingers.
NatMeth2008,5:374–375.
63.
BochJ,ScholzeH,SchornackS,LandgrafA,HahnS,KayS,LahayeT,NickstadtA,BonasU:BreakingtheCodeofDNABindingSpecificityofTAL-TypeIIIEffectors.
Science2009,326:1509–1512.
64.
MoscouMJ,BogdanoveAJ:AsimpleciphergovernsDNArecognitionbyTALeffectors.
Science2009,326:1501.
65.
GuilingerJP,PattanayakV,ReyonD,TsaiSQ,SanderJD,JoungJK,LiuDR:BroadspecificityprofilingofTALENsresultsinengineerednucleaseswithimprovedDNA-cleavagespecificity.
NatMeth2014,11:429–435.
66.
ChristianM,CermakT,DoyleEL,SchmidtC,ZhangF,HummelA,BogdanoveAJ,VoytasDF:TargetingDNAdouble-strandbreakswithTALeffectornucleases.
Genetics2010,186:757–761.
67.
LiT,HuangS,JiangWZ,WrightD,SpaldingMH,WeeksDP,YangB:TALnucleases(TALNs):hybridproteinscomposedofTALeffectorsandFokIDNA-cleavagedomain.
NucleicAcidsRes2011,39:359–372.
68.
MillerJC,TanS,QiaoG,BarlowKA,WangJ,XiaDF,MengX,PaschonDE,LeungE,HinkleySJ,DulayGP,HuaKL,AnkoudinovaI,CostGJ,UrnovFD,ZhangHS,HolmesMC,ZhangL,GregoryPD,RebarEJ:ATALEnucleasearchitectureforefficientgenomeediting.
NatBiotechnol2011,29:143–148.
69.
BedellVM,WangY,CampbellJM,PoshustaTL,StarkerCG,KrugRGII,TanW,PenheiterSG,MaAC,LeungAYH,FahrenkrugSC,CarlsonDF,VoytasDF,ClarkKJ,EssnerJJ,EkkerSC:Invivogenomeeditingusingahigh-efficiencyTALENsystem.
Nature2012,491:114–118.
70.
WatanabeT,OchiaiH,SakumaT,HorchHW,HamaguchiN,NakamuraT,BandoT,OhuchiH,YamamotoT,NojiS,MitoT:Non-transgenicgenomemodificationsinahemimetabolousinsectusingzinc-fingerandTALeffectornucleases.
NatCommun2012,3:1017–1018.
71.
BeumerKJ,TrautmanJK,ChristianM,DahlemTJ,LakeCM,HawleyRS,GrunwaldDJ,VoytasDF,CarrollD:ComparingZincFingerNucleasesandTranscriptionActivator-LikeEffectorNucleasesforGeneTargetinginDrosophila.
G3(Bethesda)2013,3:1717–1725.
72.
TakasuY,SajwanS,DaimonT,Osanai-FutahashiM,UchinoK,SezutsuH,TamuraT,ZurovecM:EfficientTALENconstructionforBombyxmorigenetargeting.
PLoSONE2013,8:e73458.
73.
LoT-W,PickleCS,LinS,RalstonEJ,GurlingM,SchartnerCM,BianQ,DoudnaJA,MeyerBJ:PreciseandheritablegenomeeditinginevolutionarilydiversenematodesusingTALENsandCRISPR/Cas9toengineerinsertionsanddeletions.
Genetics2013,195:331–348.
74.
BannisterS,AntonovaO,PoloA,LohsC,HallayN,ValinciuteA,RaibleF,Tessmar-RaibleK:TALENsmediateefficientandheritablemutationofendogenousgenesinthemarineannelidPlatynereisdumerilii.
Genetics2014,197:77–89.
75.
YoshidaK,TreenN,HozumiA,SakumaT,YamamotoT,SasakuraY:GermcellmutationsoftheascidianCionaintestinaliswithTALEnucleases.
Genesis2014,52:431–439.
76.
CarrollD:Genomeengineeringwithtargetablenucleases.
AnnuRevBiochem2014,83:409–439.
77.
CermakT,DoyleEL,ChristianM,WangL,ZhangY,SchmidtC,BallerJA,SomiaNV,BogdanoveAJ,VoytasDF:EfficientdesignandassemblyofcustomTALENandotherTALeffector-basedconstructsforDNAtargeting.
NucleicAcidsRes2011,39:e82.
78.
ReyonD,TsaiSQ,KhayterC,FodenJA,SanderJD,JoungJK:FLASHassemblyofTALENsforhigh-throughputgenomeediting.
NatBiotechnol2012,30:460–465.
79.
SakumaT,OchiaiH,KanekoT,MashimoT,TokumasuD,SakaneY,SuzukiK-I,MiyamotoT,SakamotoN,MatsuuraS,YamamotoT:Repeatingpatternofnon-RVDvariationsinDNA-bindingmodulesenhancesTALENactivity.
SciRep2013,3:3379.
80.
BarrangouR,FremauxC,DeveauH,RichardsM,BoyavalP,MoineauS,RomeroDA,HorvathP:CRISPRProvidesAcquiredResistanceAgainstVirusesinProkaryotes.
Science2007,315:1709–1712.
81.
GarneauJE,DupuisM-,VillionM,RomeroDA,BarrangouR,BoyavalP,FremauxC,HorvathP,MagadánAH,MoineauS:TheCRISPR/CasbacterialimmunesystemcleavesbacteriophageandplasmidDNA.
Nature2010,468:67–71.
82.
GasiunasG,BarrangouR,HorvathP,SiksnysV:Cas9-crRNAribonucleoproteincomplexmediatesspecificDNAcleavageforadaptiveimmunityinbacteria.
ProcNatlAcadSciUSA2012,109:E2579–E2586.
83.
WiedenheftB,SternbergSH,DoudnaJA:RNA-guidedgeneticsilencingsystemsinbacteriaandarchaea.
Nature2012,482:331–338.
84.
MojicaFJ,Díez-VillaseorC,García-MartínezJ,SoriaE:Interveningsequencesofregularlyspacedprokaryoticrepeatsderivefromforeigngeneticelements.
JMolEvol2005,60:174–182.
85.
BolotinA,QuinquisB,SorokinA,EhrlichSD:Clusteredregularlyinterspacedshortpalindromerepeats(CRISPRs)havespacersofextrachromosomalorigin.
Microbiology2005,151:2551–2561.
86.
MakarovaKS,GrishinNV,ShabalinaSA,WolfYI,KooninEV:AputativeRNA-interference-basedimmunesysteminprokaryotes:computationalanalysisofthepredictedenzymaticmachinery,functionalanalogieswitheukaryoticRNAi,andhypotheticalmechanismsofaction.
BiolDirect2006,1:7.
GillesandAverofEvoDevo2014,5:43Page11of13http://www.
evodevojournal.
com/content/5/1/4387.
JinekM,ChylinskiK,FonfaraI,HauerM,DoudnaJA,CharpentierE:Aprogrammabledual-RNA-guidedDNAendonucleaseinadaptivebacterialimmunity.
Science2012,337:816–821.
88.
FuY,SanderJD,ReyonD,CascioVM,JoungJK:ImprovingCRISPR-CasnucleasespecificityusingtruncatedguideRNAs.
NatBiotechnol2014,32:279–284.
89.
CongL,RanFA,CoxD,LinS,BarrettoR,HabibN,HsuPD,WuX,JiangW,MarraffiniLA,ZhangF:MultiplexgenomeengineeringusingCRISPR/Cassystems.
Science2013,339:819–823.
90.
MaliP,YangL,EsveltKM,AachJ,GuellM,DiCarloJE,NorvilleJE,ChurchGM:RNA-GuidedhumangenomeengineeringviaCas9.
Science2013,339:823–826.
91.
JinekM,EastA,ChengA,LinS,MaE,DoudnaJ,WeigelD:RNA-programmedgenomeeditinginhumancells.
Elife2013,2:e00471.
92.
HwangWY,FuY,ReyonD,MaederML,TsaiSQ,SanderJD,PetersonRT,YehJ-RJ,JoungJK:EfficientgenomeeditinginzebrafishusingaCRISPR-Cassystem.
NatBiotechnol2013,31:227–229.
93.
ChoSW,KimS,KimJM,KimJ-S:TargetedgenomeengineeringinhumancellswiththeCas9RNA-guidedendonuclease.
NatBiotechnol2013,31:230–232.
94.
SanderJD,JoungJK:CRISPR-Cassystemsforediting,regulatingandtargetinggenomes.
NatBiotechnol2014,32:347–355.
95.
BelhajK,Chaparro-GarciaA,KamounS,NekrasovV:Plantgenomeeditingmadeeasy:targetedmutagenesisinmodelandcropplantsusingtheCRISPR/Cassystem.
PlantMethods2013,9:39.
96.
KondoS,UedaR:Highlyimprovedgenetargetingbygermline-specificCas9expressioninDrosophila.
Genetics2013,195:715–721.
97.
DaimonT,KiuchiT,TakasuY:Recentprogressingenomeengineeringtechniquesinthesilkworm,Bombyxmori.
DevelopGrowthDiffer2013,56:14–25.
98.
FlowersGP,TimberlakeAT,McleanKC,MonaghanJR,CrewsCM:HighlyefficienttargetedmutagenesisinaxolotlusingCas9RNA-guidednuclease.
Development2014,141:2165–2171.
99.
GuoX,ZhangT,HuZ,ZhangY,ShiZ,WangQ,CuiY,WangF,ZhaoH,ChenY:EfficientRNA/Cas9-mediatedgenomeeditinginXenopustropicalis.
Development2014,141:707–714.
100.
NiuY,ShenB,CuiY,ChenY,WangJ,WangL,KangY,ZhaoX,SiW,LiW,XiangAP,ZhouJ,GuoX,BiY,SiC,HuB,DongG,WangH,ZhouZ,LiT,TanT,PuX,WangF,JiS,ZhouQ,HuangX,JiW,ShaJ:GenerationofGene-ModifiedCynomolgusMonkeyviaCas9/RNA-MediatedGeneTargetinginOne-CellEmbryos-1–s2.
0-S0092867414000798-main.
pdf.
Cell2014,156:836–843.
101.
ValtonJ,DupuyA,DaboussiF,ThomasS,MaréchalA,MacmasterR,MelliandK,JuilleratA,DuchateauP:OvercomingTALEDNAbindingdomain'sinabilitytobindmethylcytosine:overcomingtranscriptionactivator-likeeffector(TALE)DNAbindingdomainsensitivitytocytosinemethylation.
JBiolChem2012,287:38433.
102.
HsuPD,ScottDA,WeinsteinJA,RanFA,KonermannS,AgarwalaV,LiY,FineEJ,WuX,ShalemO,CradickTJ,MarraffiniLA,BaoG,ZhangF:DNAtargetingspecificityofRNA-guidedCas9nucleases.
NatBiotechnol2013,31:827–832.
103.
KimH,KimJ-S:Aguidetogenomeengineeringwithprogrammablenucleases.
NatRevGenet2014,15:321–334.
104.
LeeJ-S,KwakS-J,KimJ,KimA-K,NohHM,KimJ-S,YuK:CRISPR/Cas9mediatedgenomeengineeringinDrosophila.
G3(Bethesda)2014,4:1291–1295.
105.
ChoSW,LeeJ,CarrollD,KimJ-S,LeeJ:HeritablegeneknockoutinCaenorhabditiselegansbydirectinjectionofCas9-sgRNAribonucleoproteins.
Genetics2013,195:1177–1180.
106.
ImburgioD,RongM,MaK,McAllisterWT:StudiesofpromoterrecognitionandstartsiteselectionbyT7RNApolymeraseusingacomprehensivecollectionofpromotervariants.
Biochemistry2000,39:10419–10430.
107.
RenX,SunJ,HousdenBE,HuY,RoeselC,LinS,LiuL-P,YangZ,MaoD,SunL,WuQ,JiJ-Y,XiJ,MohrSE,XuJ,PerrimonN,NiJ-Q:OptimizedgeneeditingtechnologyforDrosophilamelanogasterusinggermline-specificCas9.
ProcNatlAcadSciUSA2013,110:19012–19017.
108.
NissimL,PerliSD,FridkinA,Perez-PineraP,LuTK:MultiplexedandprogrammableregulationofgenenetworkswithanintegratedRNAandCRISPR/Castoolkitinhumancells.
MolCell2014,54:698–710.
109.
TsaiSQ,WyvekensN,KhayterC,FodenJA,ThaparV,ReyonD,GoodwinMJ,AryeeMJ,JoungJK:DimericCRISPRRNA-guidedFokInucleasesforhighlyspecificgenomeediting.
NatBiotechnol2014,32:569–576.
110.
RanganathanV,WahlinK,MaruottiJ,ZackDJ:ExpansionoftheCRISPR–Cas9genometargetingspacethroughtheuseofH1promoter-expressedguideRNAs.
NatCommun2014,5:4516.
111.
SternbergSH,ReddingS,JinekM,GreeneEC,DoudnaJA:DNAinterrogationbytheCRISPRRNA-guidedendonucleaseCas9.
Nature2014,507:62–67.
112.
EsveltKM,MaliP,BraffJL,MoosburnerM,YaungSJ,ChurchGM:OrthogonalCas9proteinsforRNA-guidedgeneregulationandediting.
NatMeth2013,10:1116–1121.
113.
HouZ,ZhangY,PropsonNE,HowdenSE,ChuL-F,SontheimerEJ,ThomsonJA:EfficientgenomeengineeringinhumanpluripotentstemcellsusingCas9fromNeisseriameningitidis.
ProcNatlAcadSciUSA2013,110:15644–15649.
114.
FonfaraI,LeRhunA,ChylinskiK,MakarovaKS,LecrivainAL,BzdrengaJ,KooninEV,CharpentierE:PhylogenyofCas9determinesfunctionalexchangeabilityofdual-RNAandCas9amongorthologoustypeIICRISPR-Cassystems.
NucleicAcidsRes2014,42:2577–2590.
115.
JiangW,BikardD,CoxD,ZhangF,MarraffiniLA:RNA-guidededitingofbacterialgenomesusingCRISPR-Cassystems.
NatBiotechnol2013,31:233–239.
116.
FuY,FodenJA,KhayterC,MaederML,ReyonD,JoungJK,SanderJD:High-frequencyoff-targetmutagenesisinducedbyCrIsPr-Casnucleasesinhumancells.
NatBiotechnol2013,31:822–826.
117.
MaliP,AachJ,StrangesPB,EsveltKM,MoosburnerM,KosuriS,YangL,ChurchGM:CAS9transcriptionalactivatorsfortargetspecificityscreeningandpairednickasesforcooperativegenomeengineering.
NatBiotechnol2013,31:833–838.
118.
PattanayakV,LinS,GuilingerJP,MaE,DoudnaJA,LiuDR:High-throughputprofilingofoff-targetDNAcleavagerevealsRNA-programmedCas9nucleasespecificity.
NatBiotechnol2013,31:839–843.
119.
ChoSW,KimS,KimY,KweonJ,KimHS,BaeS,KimJ-S:Analysisofoff-targeteffectsofCRISPR/Cas-derivedRNA-guidedendonucleasesandnickases.
GenomeRes2014,24:132–141.
120.
WuX,ScottDA,KrizAJ,ChiuAC,HsuPD,DadonDB,ChengAW,TrevinoAE,KonermannS,ChenS,JaenischR,ZhangF,SharpPA:Genome-widebindingoftheCRISPRendonucleaseCas9inmammaliancells.
NatBiotechnol2014,32:670–676.
121.
KuscuC,ArslanS,SinghR,ThorpeJ,AdliM:Genome-wideanalysisrevealscharacteristicsofoff-targetsitesboundbytheCas9endonuclease.
NatBiotechnol2014,32:677–683.
122.
BlitzIL,BiesingerJ,XieX,ChoKWY:BiallelicgenomemodificationinF0XenopustropicalisembryosusingtheCRISPR/Cassystem.
Genesis2013,51:827–834.
123.
SeboZL,LeeHB,PengY,GuoY:Asimplifiedandefficientgermline-specificCRISPR/Cas9systemforDrosophilagenomicengineering.
Fly(Austin)2014,8:52–57.
124.
ShenB,ZhangW,ZhangJ,ZhouJ,WangJ,ChenL,WangL,HodgkinsA,IyerV,HuangX,SkarnesWC:EfficientgenomemodificationbyCRISPR-Cas9nickasewithminimaloff-targeteffects.
NatMeth2014,11:399–402.
125.
GuilingerJP,ThompsonDB,LiuDR:FusionofcatalyticallyinactiveCas9toFokInucleaseimprovesthespecificityofgenomemodification.
NatBiotechnol2014,32:577–582.
126.
QiuP,ShandilyaH,D'AlessioJM,O'ConnorK,DurocherJ,GerardGF:MutationdetectionusingSurveyornuclease.
Biotechniques2004,36:702–707.
127.
KimHJ,LeeHJ,KimH,ChoSW,KimJS:Targetedgenomeeditinginhumancellswithzincfingernucleasesconstructedviamodularassembly.
GenomeRes2009,19:1279–1288.
128.
BassettAR,TibbitC,PontingCP,LiuJ-L:HighlyefficienttargetedmutagenesisofDrosophilawiththeCRISPR/Cas9system.
CellRep2013,4:220–228.
129.
RanFA,HsuPD,WrightJ,AgarwalaV,ScottDA,ZhangF:GenomeengineeringusingtheCRISPR-Cas9system.
NatProtoc2013,8:2281–2308.
130.
JaoLE,WenteSR,ChenW:EfficientmultiplexbialleliczebrafishgenomeeditingusingaCRISPRnucleasesystem.
ProcNatlAcadSciUSA2013,110:13904.
131.
TreenN,YoshidaK,SakumaT,SasakiH,KawaiN,YamamotoT,SasakuraY:Tissue-specificandubiquitousgeneknockoutsbyTALENelectroporationprovidenewapproachestoinvestigatinggenefunctioninCiona.
Development2014,141:481–487.
132.
QiY,ZhangY,ZhangF,BallerJA,ClelandSC,RyuY,StarkerCG,VoytasDF:Increasingfrequenciesofsite-specificmutagenesisandgenetargetinginArabidopsisbymanipulatingDNArepairpathways.
GenomeRes2013,23:547–554.
GillesandAverofEvoDevo2014,5:43Page12of13http://www.
evodevojournal.
com/content/5/1/43133.
GreenspanRJ:FlyPushing:TheTheoryandPracticeofDrosophilaGenetics.
ColdSpringHarbor,NY:ColdSpringHarborLaboratoryPress;2004.
134.
XiaoA,WangZ,HuY,WuY,LuoZ,YangZ,ZuY,LiW,HuangP,TongX,ZhuZ,LinS,ZhangB:ChromosomaldeletionsandinversionsmediatedbyTALENsandCRISPR/Casinzebrafish.
NucleicAcidsRes2013,41:e141.
135.
ChoiPS,MeyersonM:TargetedgenomicrearrangementsusingCRISPR/Castechnology.
NatCommun2014,5:3728.
136.
ParkC-Y,KimJ,KweonJ,SonJS,LeeJS,YooJ-E,ChoS-R,KimJ-H,KimJ-S,KimD-W:Targetedinversionandreversionofthebloodcoagulationfactor8geneinhumaniPScellsusingTALENs.
ProcNatlAcadSciUSA2014,111:9253–9258.
137.
MaliP,EsveltKM,ChurchGM:Cas9asaversatiletoolforengineeringbiology.
NatMeth2013,10:957–963.
138.
QiLS,LarsonMH,GilbertLA,DoudnaJA,WeissmanJS,ArkinAP,LimWA:RepurposingCRISPRasanRNA-guidedplatformforsequence-specificcontrolofgeneexpression.
Cell2013,152:1173–1183.
139.
GilbertLA,LarsonMH,MorsutL,LiuZ,BrarGA,TorresSE,Stern-GinossarN,BrandmanO,WhiteheadEH,DoudnaJA,LimWA,WeissmanJS,QiLS:CRISPR-mediatedmodularRNA-guidedregulationoftranscriptionineukaryotes.
Cell2013,154:442–451.
140.
MaederML,LinderSJ,ReyonD,AngstmanJF,FuY,SanderJD,JoungJK:Robust,synergisticregulationofhumangeneexpressionusingTALEactivators.
NatMeth2013,10:243–245.
141.
CrockerJ,SternDL:TALE-mediatedmodulationoftranscriptionalenhancersinvivo.
NatMeth2013,10:762–767.
142.
Perez-PineraP,KocakDD,VockleyCM,AdlerAF,KabadiAM,PolsteinLR,ThakorePI,GlassKA,OusteroutDG,LeongKW,GuilakF,CrawfordGE,ReddyTE,GersbachCA:RNA-guidedgeneactivationbyCRISPR-Cas9-basedtranscriptionfactors.
NatMeth2013,10:973–976.
143.
ChengAW,WangH,YangH,ShiL,KatzY,TheunissenTW,RangarajanS,ShivalilaCS,DadonDB,JaenischR:MultiplexedactivationofendogenousgenesbyCRISPR-on,anRNA-guidedtranscriptionalactivatorsystem.
CellResearch2013,23:1163–1171.
144.
ChenB,GilbertLA,CiminiBA,SchnitzbauerJ,ZhangW,LiG-W,ParkJ,BlackburnEH,WeissmanJS,QiLS,HuangB:DynamicimagingofgenomiclociinlivinghumancellsbyanoptimizedCRISPR/Cassystem.
Cell2013,155:1479–1491.
doi:10.
1186/2041-9139-5-43Citethisarticleas:GillesandAverof:Functionalgeneticsforall:engineerednucleases,CRISPRandthegeneeditingrevolution.
EvoDevo20145:43.
SubmityournextmanuscripttoBioMedCentralandtakefulladvantageof:ConvenientonlinesubmissionThoroughpeerreviewNospaceconstraintsorcolorgurechargesImmediatepublicationonacceptanceInclusioninPubMed,CAS,ScopusandGoogleScholarResearchwhichisfreelyavailableforredistributionSubmityourmanuscriptatwww.
biomedcentral.
com/submitGillesandAverofEvoDevo2014,5:43Page13of13http://www.
evodevojournal.
com/content/5/1/43
华纳云怎么样?华纳云是香港老牌的IDC服务商,成立于2015年,主要提供中国香港/美国节点的服务器及网络安全产品、比如,香港服务器、香港云服务器、香港高防服务器、香港高防IP、美国云服务器、机柜出租以及云虚拟主机等。以极速 BGP 冗余网络、CN2 GIA 回国专线以及多年技能经验,帮助全球数十万家企业实现业务转型攀升。华纳云针对618返场活动,华纳云推出一系列热销产品活动,香港云服务器低至3折,...
photonvps怎么样?photonvps现在针对旗下美国vps推出半价促销优惠活动,2.5美元/月起,免费10Gbps DDoS防御,Linux系统,机房可选美国洛杉矶、达拉斯、芝加哥、阿什本。以前觉得老牌商家PhotonVPS贵的朋友可以先入手一个月PhotonVPS美国Linux VPS试试了。PhotonVPS允许合法大人内容,支持支付宝、paypal和信用卡,30天退款保证。Photo...
digital-vm,这家注册在罗马尼亚的公司在国内应该有不少人比较熟悉了,主要提供VPS业务,最高10Gbps带宽,还不限制流量,而且还有日本、新加坡、美国洛杉矶、英国、西班牙、荷兰、挪威、丹麦这些可选数据中心。2020年,digital-vm新增了“独立服务器”业务,暂时只限“日本”、“新加坡”机房,最高也是支持10Gbps带宽... 官方网站:https://digital-vm.co...
777tk com为你推荐
郭吉军什么叫做广告联盟真正免费的网络电话有真正的免费的网络电话吗 ?怎么在qq空间里添加背景音乐怎样在qq空间里免费添加背景音乐?手机区号手机号码godaddyGO DADDY服务器空间域名怎么样硬盘人硬盘是指什么人qq空间打扮QQ空间打扮商标注册查询官网如何在网上查询商标是否注册?iphone6上市时间苹果六什么时候出的电子商务网站模板电子商务网站模板有免费的吗?电子商务网站模板哪里有?电子商务网站模板怎么找?
免费域名空间申请 动态ip的vps buyvm 主机点评 秒解服务器 私人服务器 typecho 免费个人网站申请 双拼域名 徐正曦 卡巴斯基破解版 如何注册阿里云邮箱 流媒体加速 国外在线代理服务器 杭州电信宽带优惠 开心online .htaccess 第八届中美互联网论坛 优惠服务器 服务器操作系统 更多