TREC赛酷ocr
赛酷ocr 时间:2021-02-24 阅读:(
)
AssessingtheImpactofOCRErrorsinInformationRetrievalGuilhermeTorresanBazzo,GustavoAcauanLorentz,DannySuarezVargas,andVivianeP.
Moreira(B)InstituteofInformatics,UFRGS,PortoAlegre,Brazil{guilherme.
bazzo,gustavo.
lorentz,dsvargas,viviane}@inf.
ufrgs.
brAbstract.
AsignicantamountofthetextualcontentavailableontheWebisstoredinPDFles.
Theselesaretypicallyconvertedintoplaintextbeforetheycanbeprocessedbyinformationretrievalortextminingsystems.
Automaticconversiontypicallyintroducesvariouserrors,espe-ciallyifOCRisneeded.
Inthisempiricalstudy,wesimulateOCRerrorsandinvestigatetheimpactthatmisspelledwordshaveonretrievalaccu-racy.
Inordertoquantifysuchimpact,errorsweresystematicallyinsertedatvaryingratesinaninitiallycleanIRcollection.
Ourresultsshowedthatsignicantimpactsarenoticedstartingata5%errorrate.
Further-more,stemminghasproventomakesystemsmorerobusttoerrors.
Keywords:OCR·Retrievaleectiveness·Noisytext1IntroductionEstimatessaythatmostinformationusefulfororganizationsisrepresentedinanunstructuredformat,predominantlyasfreetext[6].
AsignicantportionofthisusefulinformationisstoredinPDFles–researcharticles,books,companyreports,andpresentationsaretypicallydisseminatedinPDFformat.
PDFdoc-umentsneedtobeconvertedintoplaintextbeforebeingprocessedbyanInfor-mationRetrieval(IR)oratextminingsystem.
Theselescaneitherbedigitallycreatedorcreatedfromscanneddocuments.
Whiletheformeraregeneratedfromanoriginalelectronicversionofadocument(i.
e.
,containthetextcharacters),thelatercontainimagesoftheoriginaldocumentandneedtogothroughOpticalCharacterRecognition(OCR)sothattheircontentscanbeextracted.
Despitebeingaddressedbyresearchersfordecades,OCRisstillimperfect.
Asaresult,theextractedtextcontainserrorsthattypicallyinvolvecharacterexchanges.
AlthoughdigitallycreatedPDFsarecleaner,theyarenotproblem-freesince,forexample,hyphenatedterms(duetoseparationintosyllables)maybeidenti-edastwotokensandindexedincorrectly.
ExtractionerrorscanhaveanegativeimpactonthequalityofIRsystemsandarefoundeveninmainstreamsearchengines.
Figure1presentsanexcerptoftheresultpagegeneratedbyGoogleScholarforthequery"informationretrievaltechniques".
Inthesmallsnippetfromamatchingdocument,wecanseefourcSpringerNatureSwitzerlandAG2020J.
M.
Joseetal.
(Eds.
):ECIR2020,LNCS12036,pp.
102–109,2020.
https://doi.
org/10.
1007/978-3-030-45442-5_13AssessingtheImpactofOCRErrorsinInformationRetrieval103errors–threetermswereerroneouslysegmentedintotwotokens,andtwotermswereconcatenatedintoonetoken.
Theeectisthataquerywiththecorrectspellingfore.
g.
,"thebarriersencounteredinretrievinginformation"wouldbeunabletoretrievethatdocument.
Approachesfortreatingmisspelledqueriescannotsolvethisproblemastheissueisinthedocument,notinthequery.
Furthermore,thereareimportantdierencesbetweenthetypesoferrorsmadebyhumanswhiletypingandthosemadebyOCRsystems[9].
Thefactthatthisisstillanopenissueisevidencedbytworecentcompeti-tionsorganizedinthescopeoftheInternationalConferenceonDocumentAnal-ysisandRecognition(ICDAR)[2,12].
Thebestperformingapproachesemploystate-of-the-artmethodssuchascharacter-basedNeuralMachineTranslationandrecurrentnetworks(bidirectionalLSTMs)takingBERTmodelsasinput.
Thebestresultsfortheerrordetectiontaskwerebelow0.
7intermsofF1inseverallanguages[12],showingthatthereisstillalotofroomforimprovement.
OurgoalistorevisittheproblemofretrievingOCR-edtextandquantifytheimpactthattheseerrorshaveontheaccuracyofIRsystems.
Ideally,toquantifytheimpact,oneneedsanIRtestcollectionwithsourcePDFles,theirextractedandcorrectedversions,asetofqueries,andtheircorrespondingrelevancejudg-ments.
Unfortunately,tothebestofourknowledge,suchacollectiondoesnotexistandcreatingonewoulddemandsignicanteort.
Inlinewithpreviousworksonthistopic[3,7],ourapproachwastosystematicallyinserterrorsinastandardIRcollectioncontainingplaintextdocuments,queries,andrelevancejudgments.
Dierenterrorratesweretestedsothatwecouldgaugetheireects.
Inordertosimulaterealerrors,wecollected,assessed,andmanuallycorrectedasampleofOCR-edPDFdocuments.
Statisticsdrawnfromthissamplewereusedtoguidetheerrorinsertionapproach.
OurexperimentswereperformedinanIRcollectioncontainingdocumentsinPortuguese–alanguagethatmakesuseofdiacritics(e.
g.
,`a,a,a,a,e,,cetc.
).
Thesecharactersaretypicallyamongtheoneswithmoreextractionerrors.
Theresultsshowedthaterrorratesstartingat5%cancauseasignicantimpactinmanysystemcongurationsandthatstemmingmakessystemsmorerobusttocopingwitherrors.
(a)ExcerptfromGoogleScholar(b)SourcePDFleFig.
1.
Exampleofextractionerrorsidentiedinamainstreamsearchengine.
2RelatedWorkExistingworkondealingwithOCR-edtextsspansoveralongperiodandfocusedonapproachesfordetectingandxingerrors[4,5,9,10].
Specicallyonthetopic104G.
T.
Bazzoetal.
ofimprovingtheretrievalofOCRtext,Beitzeletal.
[1]surveyedanumberofsolutions–mostofwhichdatetothelate1990s.
TRECranaconfusiontracktoassessretrievaleectivenessondegradedcollections.
Theirmodiedtestcollectionshad5and20%charactererrorrates.
Fiveteamstookpartinthechallenge.
Theorganizersreportedthatcounter-intuitiveresultshadbeenfoundandthat"thereisstillagreatdealtobeunderstoodabouttheinteractionofthediverseapproaches"[7].
Croftetal.
[3]sharesomesimilaritieswithourwork.
However,ratherthaninjectingerrorsintoacleantextcollection,theauthorsoptedtorandomlyselectwordstobediscardedfromthedocumentand,asaconsequence,theywerenotindexed.
Thelimitationofsuchapproachisthatitdoesnotaccountforissueswithwrongsegmentation(addingorsuppressingthespacecharacter)orcasesinwhichtheerrormodiesthewordintoanothervalidword.
Themainndingwasthatperformancedegradationwasmorecriticalforveryshortdocuments.
Inadetailedinvestigation,Taghvaetal.
[13]observedthatwhiletheresultsseemtohaveinsignicantdegradationonaverage,individualqueriescanbegreatlyimpacted.
Furthermore,theyreportanimpressiveincreaseinthenumberofindextermsinthepresenceoferrorsandthatrelevancefeedbackmethodsareunabletoovercomeOCRerrors.
Thispaperdiersfromexistingworksinanumberofaspects.
Thecongura-tionsweassessincludetheuseofstemming,morerecentrankingalgorithms,andmorelevelsofdegradation.
Finally,weexperimentwithadierenttestcollectioninalanguagethathasnotbeenextensivelyusedforIR.
3SimulatingErrorsThemethodologyweproposetoinserterrorsisshowninFig.
2.
Ourgoalistoreplicate,asmuchaspossible,thepatternofproblemsthatactuallyhappeninPDFconversionstoplaintextfrombothdigitallycreatedandscanneddocu-ments.
Inordertoachievethat,oneneedsasampleofalignedpairsofextractedandexpectedcontents(shownasinputinFig.
2).
Theexpectedcontentsneedtobemanuallyproducedbycorrectingtheextractedtext.
Thisisalaboriousandtime-consumingtask.
Bycomparingthesepairsatcharacterlevel,wegenerateacharacterexchangelist.
pairsGenerationofcharacterexchangelistErrorRateSourceDocumentsErrorInsertionDocumentswithErrorsCandidateSelectionFig.
2.
Approachforerrorinjectionindocuments.
AssessingtheImpactofOCRErrorsinInformationRetrieval105Toalignthepairs,weusedtheNeedleman-Wunsch[8]algorithm.
Thisalgorithmgeneratesthebest(global)alignmentoftwosequences,withtheadditionofgapstoaccountformismatchingcharacters.
Wefoundexchangesofone-to-one(e.
g.
,"inserted"→"insorted"),one-to-two(e.
g.
,"document"→"docurnent"),ortwo-to-one(e.
g.
,"light"→"hght")characters.
Thefrequenciesoftheexchangeswerecomputedandstoredinthecharacterexchangelist.
Then,theyareusedtobiastheerrorinsertionalgorithmtowardsthemostfrequentexchanges.
Byanalyzingthepatternoferrorsfound,wecameupwithacategorizationofthetypesofissues.
(i)Exchangeofcharacters.
Thisisthemostcommonerrorfound(90%ofallerrors)anditiscausedbythelowqualityofthedocumentsweareprocessing.
Everyexchangeinourexchangelisthasassignedtoitselfthefrequencyofitsappearance,whichweuse,inconjunctionwiththetournamentselection,toelectoneerrortoagiventerm.
(ii)Separatedterms.
Thiserrorcorrespondsto5%ofthecasesandithappenswhenaspacecharacteriserro-neouslyinsertedinthemiddleofaterm.
(iii)Joinedterms.
Thiserror,whichhasafrequencyof4.
9%,happenswhenthespacebetweentermsisomitted,resultingintheunexpectedconcatenationofterms.
(iv)Erroneoussymbol.
Thisissueaccountsfor0.
1%ofallerrors,usuallyrepresentsdirtoraprintingerroratthescanneddocument.
Issues(i)to(iii)canpotentiallyaectrecallasrelevantdocumentscontain-ingtermswiththeseproblemswillnotberetrievedbythequery.
Issue(iv)canalsolowerprecisionsincethefragmentofatermcanmatchaqueryforwhichthedocumentisnotrelevant(e.
g.
,iftheterm"encounter"foundinadocumentdisfragmentedintothetokens"en"and"counter",thendcanerroneouslymatchaquerywiththeterm"counter").
Twoalternativesfortheselectionofcandidatetermswereemployed.
Intherst,anytermfromanydocumentcouldbeselected.
Inthesecond,amoretargetedselectionwasmadeinwhichcandidatetermsweretakenonlyfromjudgeddocuments(i.
e.
,thedocumentsintheqrelsle).
Usingthedesirederrorrate,weiteratethrougheverycandidateterminthedocuments.
Thetermischosentobemodiedwithaprobabilityequivalenttothegivenerrorrate.
Ifthetermisselected,thenthechoiceoferrorismadetakingtheobservedfrequency.
Thiswasachievedbydrawingarandomoatbetween0and1andmatchingitagainstthecorrespondingerrorfrequency.
Theselectionofwhichexchangetoapplywasmadeusingtournamentselectionintenroundsaccordingtothefrequencyoftheexchange.
4ExperimentalEvaluationThisSectiondescribestheexperimentalevaluationoftheerrorinsertionmethodtoassesstheimpactofOCRerrorsinIRsystems.
Theresources,tools,andcongurationsusedinourexperimentswereasfollows.
Data.
Togeneratethecharacterexchangelist,wetookasampleof900PDFdocumentscontainingabstractsfromresearcharticlespublishedatthewebsite106G.
T.
Bazzoetal.
ofaBrazilianOilCompany1.
Theextractedtextwasmanuallycheckedandtheextractionerrorswerexedtocreatethelistofpairs.
TheIRcollectionusedwasFolhadeSaoPaulo,aBrazilianNewspaper.
Ithas103Kdocuments,100queries,andithasbeenusedinimportantevaluationcampaignssuchasCLEF[11].
Table1.
Numberofindexterms(inthousands)andtheproportionalincreaseincomparisontothebaseline.
SettingBaseline1%5%10%25%50%ALL-NS273355(30%)523(91%)659(141%)937(243%)1,243(355%)ALLST203253(24%)352(73%)434(113%)605(197%)801(293%)JDNS273342(25%)473(73%)574(110%)770(182%)983(260%)JDST203245(20%)324(59%)386(90%)514(153%)660(224%)Tools.
TheOCRsoftwareusedwasAbbyyFinereader142.
ThechoicewasmadeafteritsgoodresultcomparedtoanumberofotheralternativesincludingTesseract,a9t9,Omnipage,andWondershare.
TheIRSystemwasApacheSolr3.
ExperimentalProcedure.
Inourexperimentalprocedure,wevariedthefol-lowingparameters.
TheRankingfunction,takingthreepossibilities:Cosine(COS)usingTF-IDFweighting,BM25,andDivergencefromRandomness(DFR).
Theuseofstemming:applyingalightstemmer(ST)andnostem-ming(NS).
Theerrorrateswere1%,5%,10%,25%,and50%.
Baselinerunsusingtheoriginaldocumentswerealsocreated.
Thecandidatetermsforerrorinsertionwereeitheranytermfromanydocument(ALL)oranytermfromthejudgeddocuments(JD).
Thesevariationsamountedtoatotalof72experimen-talruns,whichwereevaluatedusingstandardIRmetrics.
StatisticalsignicancewasmeasuredusingT-tests.
Queriesweremadebysimplytakingthetitleeldfromthetopics.
Thegoalwastosimulaterealqueriesthataretypicallyshort.
Table1showsthenumberofindextermsforthecombinationoferrorrates,useofstemming,andcandidateterms.
Asexpected,thenumberofindexentriesgrowsremarkablywiththeerrorrates,reachingmorethanafour-foldincreaseforunstemmedrunswitha50%errorrate.
TheresultsforallexperimentalrunsareinTable2.
Therunsinwhichthemeanaverageprecision(MAP)decreasewasfoundtobestatisticallysignicant(inrelationtothebaseline)ata99%condenceintervalareinadarkershadeandtheoneswitha95%signicanceareinalightershade.
ThebestrankingfunctionintermsofabsoluteMAPvalueswasDFR,fol-lowedbyBM25.
However,therewerenodierencesontheirrobustnessin1http://publicacoes.
petrobras.
com.
br/.
2https://www.
abbyy.
com/.
3https://lucene.
apache.
org/solr/.
AssessingtheImpactofOCRErrorsinInformationRetrieval107Table2.
MAPResultsforallcongurations.
Thenumbersinbracketsindicatetheproportionalchange.
SettingBaseline1%5%10%25%50%ALL-BM25-NS0.
2510.
249(0.
8%)0.
243(3.
2%)0.
232(7.
7%)0.
211(16.
2%)0.
156(38.
1%)ALL-BM25-ST0.
2940.
291(0.
8%)0.
288(1.
9%)0.
281(4.
4%)0.
263(10.
4%)0.
223(23.
9%)ALL-COS-NS0.
2420.
243(0.
2%)0.
239(1.
3%)0.
218(9.
8%)0.
202(16.
5%)0.
166(31.
6%)ALL-COS-ST0.
2750.
273(0.
9%)0.
266(3.
6%)0.
256(7.
1%)0.
251(8.
8%)0.
223(19.
0%)ALL-DFR-NS0.
2630.
262(0.
2%)0.
258(1.
8%)0.
240(8.
8%)0.
222(15.
6%)0.
180(31.
5%)ALL-DFR-ST0.
3070.
304(1.
1%)0.
306(0.
4%)0.
295(4.
2%)0.
276(10.
1%)0.
250(18.
7%)JD-BM25-NS0.
2510.
248(1.
4%)0.
243(3.
4%)0.
232(7.
6%)0.
226(10.
2%)0.
169(32.
9%)JD-BM25-ST0.
2940.
290(1.
2%)0.
284(3.
4%)0.
280(4.
6%)0.
261(11.
2%)0.
229(21.
9%)JD-COS-NS0.
2420.
240(0.
6%)0.
237(2.
0%)0.
218(10.
0%)0.
200(17.
3%)0.
152(37.
1%)JD-COS-ST0.
2750.
277(0.
7%)0.
271(1.
7%)0.
263(4.
5%)0.
247(10.
4%)0.
209(24.
2%)JD-DFR-NS0.
2630.
263(0.
0%)0.
252(4.
2%)0.
239(9.
2%)0.
221(16.
2%)0.
163(38.
2%)JD-DFR-ST0.
3070.
306(0.
4%)0.
300(2.
3%)0.
294(4.
3%)0.
281(8.
6%)0.
236(23.
2%)thepresenceofOCRerrorsastheirpatternofMAPdecreasewasthesame.
Strangely,intworunsinwhichthecosinewasused,theinsertionoferrorsata1%rateimprovedtheperformance(ALL-COS-NSandJD-COS-ST).
Thiscanbeexplainedbythefactthaterrorsareinsertedbothrelevantandnon-relevantdocuments.
Inthesecases,theerrorswereintroducedinnon-relevantdocumentswhichmaderelevantdocumentsberankedhigher.
Theuseofstemmingconsistentlyimprovedtheresults–i.
e.
,allrunsinwhichstemmingwasusedhadhigherscoresthantheirunstemmedcounterparts.
StemminghasmadetherunsmorerobusttotheOCRerrors.
ThiscanbeseencomparingthelossinMAPoftherunswithandwithoutstemming.
Nearlyallrunsinwhichstemmingwasusedhadsmallerlossesthantheircounterparts.
Furthermore,theaidofstemmingismorenoticeableintherunswithhighererrorrates.
ThebenetofstemmingcanbeexplainedbythefactthattheOCRerrorcanbeinthesuxthatisremoved.
Lookingatthecorrelationbetweenthenumberofindexterms(Table2)andMAP,wendastrongnegativecorrelationof0.
86.
Whenthecorrelationismeasuredforstemmedandunstemmedrunsseparately,thenegativecorrelationsare0.
81and0.
90,respectively.
Thisgivesfurthersupporttothebenetsofstemming.
Lookingatoursampleofalignedextractedandexpectedtexts(assembledfromrealdocuments)weobservedanerrorrateof1.
5%.
ConsideringthisrateandtheresultsinTable2,onecanconcludethattheerrorsdonothaveasevereimpactonIRassignicantimpactsareobservedstartingat5%.
Ata10%rate,allrunsaresignicantlyaected.
Recallthatthissmallerrorratewasfoundusingthesoftwarewhichprovidedthebestresultsonrelativelyrecentdocuments.
SomestudiesthatprovidestatisticsoftheproportionoferrorsfoundinOCR-eddocumentsreportndingerrorratesofaround20%inhistoricaldocuments[4,5,14].
Atthaterrorrate,thedegradationisconsideredstatisticallysignicant.
108G.
T.
Bazzoetal.
Comparingthetwochoicesofcandidatetermsforerrorinsertionwendclosescores.
Thismeansthattheerrorinjectiontargetingthejudgeddocumentsdidnothaveaninuenceontheresults.
5ConclusionDespitehavingbeeninvestigatedfordecades,theissuesassociatedwithretriev-ingnoisytextstillremainunsolvedinmanyIRsystems.
Inthispaper,werevisitthistopicbyassessingtheimpactthatdierenterrorrateshaveonretrievalper-formance.
Wetesteddierentsetups,includingrankingalgorithmsandtheuseofstemming.
Ourndingssuggestthatstatisticallysignicantdegradationstartsataworderrorrateof5%andthatstemmingisabletomakesystemsmoreresilienttotheseerrors.
Asfuturework,itwouldbeusefultoassesswhichtypeoferroridentiedin(Sect.
3)hasthegreatestimpactinretrievalquality.
Acknowledgments.
ThisworkwaspartiallysupportedbyPetrobras,CNPq/Brazil,andbyCAPESFinanceCode001.
References1.
Beitzel,S.
M.
,Jensen,E.
C.
,Grossman,D.
A.
:AsurveyofretrievalstrategiesforOCRtextcollections.
In:ProceedingsoftheSymposiumonDocumentImageUnderstandingTechnologies(2003)2.
Chiron,G.
,Doucet,A.
,Coustaty,M.
,Moreux,J.
:ICDAR2017competitiononpost-OCRtextcorrection.
In:InternationalConferenceonDocumentAnalysisandRecognition(ICDAR),vol.
01,pp.
1423–1428(2017)3.
Croft,W.
B.
,Harding,S.
,Taghva,K.
,Borsack,J.
:AnevaluationofinformationretrievalaccuracywithsimulatedOCRoutput.
In:SymposiumofDocumentAnal-ysisandInformationRetrieval(1994)4.
Droettboom,M.
:Correctingbrokencharactersintherecognitionofhistoricalprinteddocuments.
In:Proceedings2003JointConferenceonDigitalLibraries,pp.
364–366,May20035.
Evershed,J.
,Fitch,K.
:CorrectingnoisyOCR:contextbeatsconfusion.
In:Pro-ceedingsoftheFirstInternationalConferenceonDigitalAccesstoTextualCulturalHeritage(DATeCH2014),pp.
45–51(2014)6.
Grimes,S.
:Unstructureddataandthe80percentrule,p.
10.
CarabridgeBridge-points(2008)7.
Kantor,P.
B.
,Voorhees,E.
M.
:TheTREC-5confusiontrack:comparingretrievalmethodsforscannedtext.
Inf.
Retrieval2(2),165–176(2000).
https://doi.
org/10.
1023/A:10099026095708.
Needleman,S.
,Wunsch,C.
:Ageneralmethodapplicabletothesearchforsim-ilaritiesintheaminoacidsequenceoftwoproteins.
J.
Mol.
Biol.
48,443–453(1970)9.
Nguyen,T.
,Jatowt,A.
,Coustaty,M.
,Nguyen,N.
,Doucet,A.
:DeepstatisticalanalysisofOCRerrorsforeectivepost-OCRprocessing.
In:ACM/IEEEJointConferenceonDigitalLibraries(JCDL),pp.
29–38,June2019AssessingtheImpactofOCRErrorsinInformationRetrieval10910.
Parapar,J.
,Freire,A.
,Barreiro,A.
:RevisitingN-grambasedmodelsforretrievalindegradedlargecollections.
In:Boughanem,M.
,Berrut,C.
,Mothe,J.
,Soule-Dupuy,C.
(eds.
)ECIR2009.
LNCS,vol.
5478,pp.
680–684.
Springer,Heidelberg(2009).
https://doi.
org/10.
1007/978-3-642-00958-76611.
Peters,C.
,Braschler,M.
:Europeanresearchletter:cross-languagesystemeval-uation:theCLEFcampaigns.
J.
Am.
Soc.
Inf.
Sci.
Technol.
52(12),1067–1072(2001)12.
Rigaud,C.
,Doucet,A.
,Coustaty,M.
,Moreux,J.
P.
:ICDAR2019competitiononpost-OCRtextcorrection.
In:InternationalConferenceonDocumentAnalysisandRecognition(ICDAR)(2019)13.
Taghva,K.
,Borsack,J.
,Condit,A.
:Evaluationofmodel-basedretrievaleective-nesswithOCRtext.
ACMTrans.
Inf.
Syst.
14(1),64–93(1996)14.
Tanner,S.
,Munoz,T.
,Ros,P.
H.
:Measuringmasstextdigitizationqualityandusefulness:lessonslearnedfromassessingtheOCRaccuracyoftheBritishlibrary's19thcenturyonlinenewspaperarchive.
D-LibMag.
15(7/8),1082–9873(2009)
HostKvm也发布了开年促销方案,针对香港国际和美国洛杉矶两个机房的VPS主机提供7折优惠码,其他机房业务提供8折优惠码。商家成立于2013年,提供基于KVM架构的VPS主机,可选数据中心包括日本、新加坡、韩国、美国、中国香港等多个地区机房,均为国内直连或优化线路,延迟较低,适合建站或者远程办公等。下面列出几款主机配置信息。美国洛杉矶套餐:美国 US-Plan1CPU:1core内存:2GB硬盘...
百纵科技官网:https://www.baizon.cn/百纵科技:美国云服务器活动重磅来袭,洛杉矶C3机房 带金盾高防,会员后台可自助管理防火墙,添加黑白名单 CC策略开启低中高.CPU全系列E52680v3 DDR4内存 三星固态盘列阵。另有高防清洗!美国洛杉矶 CN2 云服务器CPU内存带宽数据盘防御价格1H1G10M10G10G19元/月 购买地址2H1G10M10G10G29元/月 购买...
RAKsmart 商家估摸着前段时间服务器囤货较多,这两个月的促销活动好像有点针对独立服务器。前面才整理到七月份的服务器活动在有一些配置上比上个月折扣力度是大很多,而且今天看到再来部分的服务器首月半价,一般这样的促销有可能是商家库存充裕。比如近期有一些服务商挖矿服务器销售不好,也都会采用这些策略,就好比电脑硬件最近也有下降。不管如何,我们选择服务器或者VPS主机要本着符合自己需求,如果业务不需要,...
赛酷ocr为你推荐
windows优化大师怎么用Windows优化大师怎么用?暴风影音怎么截图怎么截取暴风影音图片湖南商标注册在湖南搞商标注册是代理好还是自己去好一点?湖南商标注册的流程又是什么样的呢?怎么在qq空间里添加背景音乐怎么在QQ空间里免费添加背景音乐????1433端口怎么去看1433端口申请证书手机申请证书godaddy通过什么网址可以查godaddy的域名信息神雕侠侣礼包大全神雕侠侣手游华山论剑礼包有什么 怎么领取畅想中国未来的中国是什么样子的bt封杀北京禁用BT下载,是真的吗?为什么?
备案域名查询 a2hosting 大硬盘 yardvps 创宇云 申请空间 发包服务器 美国十次啦服务器 免费申请个人网站 空间技术网 天翼云盘 华为云服务登录 厦门电信 东莞idc 贵阳电信测速 防cc攻击 lamp是什么意思 免费主页空间 shuangcheng winserver2008r2 更多