tures田中丽奈

田中丽奈  时间:2021-02-21  阅读:()
Anovel,visiblelight-induced,rapidlycross-linkablegelatinscaffoldforosteochondraltissueengineeringTetsuroMazaki1,2,YasuyukiShiozaki1,2,KentaroYamane1,2,AkiYoshida1,MarikoNakamura3,YasuhiroYoshida4,DiZhou5,TakashiKitajima5,MasatoTanaka1,YoshihiroIto5,ToshifumiOzaki1*&AkihiroMatsukawa2*1DepartmentofOrthopaedicSurgery,GraduateSchoolofMedical,DentistryandPharmaceuticalSciences,OkayamaUniversity,2-5-1Shikata,Okayama700-8558,Japan,2DepartmentofPathologyandExperimentalMedicine,GraduateSchoolofMedical,DentistryandPharmaceuticalSciences,OkayamaUniversity,2-5-1Shikata,Okayama700-8558,Japan,3DepartmentofHealthandWelfareProgram,KibiInternationalUniversityJuniorCollege,8Iga-machi,Takahashi,Okayama716-8508,Japan,4DepartmentofBiomaterials,GraduateSchoolofMedical,DentistryandPharmaceuticalSciences,OkayamaUniversity,2-5-1Shikata,Okayama700-8558,Japan,5NanoMedicalEngineeringLaboratory,RIKEN,2-1Hirosawa,Wako351-0198,Japan.
Osteochondralinjuriesremaindifficulttorepair.
Wedevelopedanovelphoto-cross-linkablefurfurylamine-conjugatedgelatin(gelatin-FA).
Gelatin-FAwasrapidlycross-linkedbyvisiblelightwithRoseBengal,alightsensitizer,andwaskeptgelledfor3weekssubmergedinsalineat376C.
Whenbonemarrow-derivedstromalcells(BMSCs)weresuspendedingelatin-FAwith0.
05%RoseBengal,approximately87%ofthecellswereviableinthehydrogelat24hafterphoto-cross-linking,andthechondrogenicdifferentiationofBMSCswasmaintainedforupto3weeks.
BMP4fusionproteinwithacollagenbindingdomain(CBD)wasretainedinthehydrogelsathigherlevelsthanunmodifiedBMP4.
Gelatin-FAwassubsequentlyemployedasascaffoldforBMSCsandCBD-BMP4inarabbitosteochondraldefectmodel.
Inbothcases,thedefectwasrepairedwitharticularcartilage-liketissueandregeneratedsubchondralbone.
Thisnovel,photo-cross-linkablegelatinappearstobeapromisingscaffoldforthetreatmentofosteochondralinjury.
Managementandrepairofosteochondralinjuriesinthekneeremainchallenging.
Osteochondralinjuriesinvolvedamagetoboththearticularcartilageandtheunderlyingsubchondralbone.
Articularcartilage(hyalinecartilage)haslimitedintrinsichealingcapabilities.
Onceinjured,lesionsaretypicallyreplacedbyfibrocartilage,ascartissuewithdifferentbiomechanicalpropertiesandimpairedmechanicalfunction1,2.
Coveringtheload-bearingsurfacesofjointboneswithfibrocartilagefailstoprotectthesubchondralbonefromfurtherdegeneration.
Asosteochondraldefectsareoftenassociatedwithjointmechanicalinstability,thepotentialproblemsafterosteochondralinjuryincludeearlyosteoarthritisand/orosteoarthrosis(OA)3.
Thegoalsfortreatmentofosteochondralinjuriesaretorestorehyalinecartilageandsubchondralboneregeneration.
Overthelastfewdecades,progresshasbeenmadeusingsurgicalrepairinterventions.
Recentadvancesinthesetreatmentmethodsincludetheuseoftissuespecificcells,progenitorcells,andappropriatecellularstimulationwithgrowthfactorsattheaffectedsites4,5.
Currently,tissue-engineeringapproachesusingscaffold-basedproce-dureshavebeenattractingincreasingattention6.
Ascaffoldprovidesanenvironmentforcellattachment,pro-liferation,anddifferentiation.
Inaddition,scaffoldscanbeusedtoachievedrugdeliverywithhigh-loadingefficiencyatspecificsites.
Biologicscaffoldsemployedtodateasnaturalpolymersincludealginate,collagen,fibrin,albumin,hyaluronan,platelet-richplasma,andgelatin7.
Gelatinisaverypromisingmaterialforcellproliferationandtissueregeneration,buthasthedisadvantageofmechanicalweakness.
Recently,chemicalmodificationofgelatinhasbeenreportedtoimproveitsmechanicalpropertiesbycross-linkingwithvisiblelight8–12.
Photo-inducedcross-linkingorpolymerizationisafastandconvenientwaytoproducegelsorhigh-molecular-weightpolymers.
Thescaffoldcanbeformedatspecificsitesusinginjectablesolutionsandvisiblelight,makingtheapplicationtoadesignatedsitesimpleandminimallyinvasive.
Wehavepreviouslydevelopedanewtypeofgelatinbyincorporatingfurfurylisocyanate(gelatin-FI),OPENSUBJECTAREAS:PRE-CLINICALSTUDIESBIOMEDICALMATERIALSReceived11November2013Accepted6March2014Published25March2014CorrespondenceandrequestsformaterialsshouldbeaddressedtoA.
M.
(amatsu@md.
okayama-u.
ac.
jp)*Theseauthorscontributedequallytothiswork.
SCIENTIFICREPORTS|4:4457|DOI:10.
1038/srep044571whichwasphoto-cross-linkedwithRoseBengal(RB),afooddye.
Thephoto-crosslinkablegelatin-FIwasusefulasadirectpulpcap-pingmaterialinthedentalfield13.
Tissuecellsfeelandrespondtothestiffnessoftheirsubstrate14.
Thephysicalpropertiesofscaffoldinfluencecellfunctionandtissuemorphogenesis15.
Consequently,physicalcharacteristicsmustbeconsideredwhendesigninghydrogelsfortissue-engineeringapplica-tions16.
Itwasfoundthatthestiffnessofthehydrogelstronglyaffec-tedthecellattachment,focaladhesion,migrationandproliferation17.
Here,wedevelopedanothernewgelatinderivativethatwasmodifiedwithfurfurylamine(gelatin-FA).
Gelatin-FAwasconsolidatedbyvisiblelightmorerapidlywithstifferpropertiesthangelatin-FIinthepresenceofRB.
Inthepresentstudy,wedemonstratethatthisnovelmodifiedgelatin-FAisaneffectivescaffoldforosteochondralrepairinarabbitosteochondraldefectmodel.
Gelatin-FAhydrogelswereusedtodeliverbonemarrowstromalcells(BMSCs)andbonemorphogeneticprotein-4(BMP4)withcollagenbindingdomains(CBD)totheaffectedsites.
Theresultssuggestthatthismodifiedgelatin,incombinationwithcellsandcollagen-bindinggrowthfac-tors,isapromisingscaffoldfortissueengineeringbecauseuniformcellseedingiseasytoachieve;theimplantedcellssurviveanddiffer-entiate;andgrowthfactor(s)withCBDareretainedinthehydrogel.
ResultsPropertiesofgelatin-FA.
Aftervisiblelightirradiation,themixturewastransformedfromsolutiontogelbyaphoto-oxidationcross-linking(POC)mechanism.
Thechemistryofgelatin-FAisshowninFig.
1a.
Byutilizingthecarboxygroupsinthegelatinforcouplingwithfuran,theremainedaminogroupsinthegelatinwereexpectedtocontributetheadhesivenessandstiffnessaftercrosslinking.
The1H-NMRspectraofgelatinbeforeandafterfurfurylamineconju-gationareshowninFigure1b.
Inunconjugatedgelatin,therewasabroadpeakat7.
25ppm,contributedmostlybythebenzeneprotonofphenylalanineresidues.
Inadditiontothispeak,gelatin-FAandgelatin-FIhadthreenewpeaksfoundat6.
1,6.
2,and7.
3ppm,attributedtothefurangroup.
Theapproximatecompositionofaromaticaminoacidsinporcinegelatinis2%,whichissimilartotheestimateforfurangroupsingelatin-FA(2.
9%)basedonthepeakareain1H-NMRspectra.
Tocomparegelatin-FAwithourpreviouslyreportedgelatin-FI13,10%aqueoussolutionsofgelatin-FAandgelatin-FIweremixedwithRB(0.
5%)onaplateandilluminatedfor10,30,60,and180sbyvisiblelight.
Theplatewaswashedtoremoveuncross-linkedsolutionsandthegelationratewasobserved.
AsshowninFigure1c,approximately75%ofgelatin-FAformedahydrogelafter30sofillumination.
Conversely,gelatin-FIremainedasolutionafter60sofillumination,andonly15%wasgelledafter180sofillumination,indicatingthatgelatin-FAhasmorerapidcross-linking.
Next,therheologicalpropertiesofthemodifiedgelatinwereexaminedafterilluminationwithvisiblelight.
Boththestorage(G9)andloss(G0)moduliofgelatin-FAhydrogelswerehigherthanthemoduliofgelatin-FIhydrogels,suggestingthatgelatin-FAhydro-gelshadhigherelasticityandflexibility(Fig.
2).
IthasdemonstratedthathydrogelwithhigherG9showedsignificantlyup-regulatedexpressionsofosteocalcinandrunt-relatedtranscriptionfactor2(RUNX2),withthepresenceofalkalinephosphatase,andtheevid-enceofcalciumaccumulation15.
Meanwhile,theG0/G9(equivalenttotand)ratioofgelatin-FAhydrogelswasrelativelylow,indicatingaFigure1|Propertiesofmodifiedgelatin.
(a)Syntheticschemeofmodifiedgelatinandthecross-linkingmechanism.
(b)1H-NMRspectraofgelatininD2Obeforeandaftermodification.
(c)Timecourseofgelformationoffurfuryl-conjugatedgelatin(gelatin-FAandgelatin-FI,each10%)withRoseBengal(0.
5%)aftervisiblelightillumination.
www.
nature.
com/scientificreportsSCIENTIFICREPORTS|4:4457|DOI:10.
1038/srep044572lowviscositysimilartogelatin-FIhydrogels(Fig.
2).
Thesedatasuggestthatgelatin-FAhasbetterappropriatephysicalpropertiesrelativetogelatin-FI.
Cytotoxicityandphototoxicity.
TheRBcytotoxicityandphototo-xicitytowardBMSCswereinvestigated.
Thedataassessedat24hwereshowninFigure3a.
RBwascytotoxictomorethan70%ofthecellsat1%RB.
At0.
1%RB,thepercentageofviablecellswassignificantlyimprovedinthepresenceofgelatin-FA,indicatingacytoprotectionfunctionofgelatin-FA.
Gelatin-FAalsoreducedthephototoxicitybyvisiblelightat0.
1%and0.
01%RBconcentrations(Fig.
3a).
BMSCsingelatin-FAwerekeptaliveatthesamelevelfor7daysat0.
01%RBwithorwithoutlightillumination.
EvenatahigherconcentrationofRB(0.
1%),about50%BMSCswerealiveingelatin-FAafter7dayswhereasallofthecellsweredeadwithoutgelatin-FA(Fig.
3b).
Next,thephoto-cross-linkableintensitywasexamined.
Todothis,gelatin-FA(15%)withvariousconcentrationsofRB(0.
005,0.
01,0.
05,0.
1%)wassubmergedinPBS,andexposedtovisiblelightfor2min.
Gelatin-FAhydrogelswith0.
05%RBweremacrosco-picallyunchangedinPBSforatleast21daysat37uC(Fig.
3c).
RBconcentrationsbelow0.
01%failedtoformsolidgelsinthesubmergedconditions(notshown).
Theviabilityofcellsingelatin-FAhydrogelswith0.
05%RBwas87.
3%onday1,55.
8%onday3and44.
1%onday7afterlightexposureinthesubmergedconditions(Fig.
3d).
Thepercentviablecellsat24hin0.
05%RBwaslargerthanthosein0.
1%RB(64.
0%viable,Fig.
3a).
Thus,0.
05%RBwaschosenasasuitableconcentrationforcell-basedscaffolds.
WhenBMSCswereculturedinthegelatin-FAhydrogels,DNAandacidicmucopolysaccharidecontentsweremeasured.
AlthoughtheDNAcontentinthehydrogelsdecreasedwithtime,theacidicmucopoly-saccharidelevelwasunchangedthroughouttheobservationperiod.
Theresultingacidicmucopolysaccharide-to-DNAratio,reflectingchondrogenicdifferentiationofBMSCs,increasedwithtimeforupto3weeks,suggestingthatBMSCsdifferentiatedintochondrocytesinthegelatin-FAscaffold(Fig.
3e).
Gelatin-FAasascaffoldforBMSCimplantation.
Toexaminewhethergelatin-FAcouldbeusefulfortissueengineering,wefirstemployeditasascaffoldforBMSCs.
BMSCs(1.
53105cells)weresuspendedin15%gelation-FAcontaining0.
05%RB,andthemix-tureswereimplantedintorabbitosteochondraldefectsandexposedtovisiblelightfor2min(Fig.
4a).
Fourweekslater,thedefectlesionwasfilledwithregeneratedtissues(Fig.
4b).
Nomeaningfuldiffe-renceswerefoundingelatin-FA-treatedgroupsascomparedwiththeuntreatedcontrolsatthistimepoint.
At12weeks,thedefectlesionshoweddegenerativechangesintheuntreatedgroup.
Regene-rativetissuefilledthedefectinthegelatin-FAgroup,althoughthesurfaceappearedroughened.
Inthegelatin-FAplusBMSCsgroup,thearticularsurfaceappearedtobesimilartothesurroundingintactcartilage(Fig.
4b).
Thegrossgradingscoredemonstratedanimprovementindefectsafterthetreatmentwithgelatin-FAplusBMSCs.
Gelatin-FAbyitselfalsoimprovedtherepair(Fig.
4c).
Histologically,untreatedosteochondraldefectswerenotcoveredwithregenerativetissues.
Gelatin-FA-treatmentallowedgranula-tiontissuetofillthedefectat4weeks(Fig.
4d).
Macrophageswereevidentinthegranulationtissueingelatin-FA-treatment,whichweremoreprominentingelatin-FAplusBMSCs(Fig.
4e).
Hyalinecartilage-likecellswereseenat12weekswiththeirsurroundingmatrixstainedwithsafraninO(Fig.
4d).
Thestainedareainrepairedlesionswassignificantlylargerinthegelatin-FAplusBMSCsgroupascomparedwiththegelatin-FAgroup(Table1).
Histologicalgradingscoresat4and12weeksaftersurgeryre-vealedthattreatmentwithgelatin-FAplusBMSCsimprovedtissueregeneration(Fig.
4f).
Thescoreat12weekswassignificantlyhigherthanat4weeks(P,0.
01,byMann–WhitneyUtest).
Gelatin-FAwithoutBMSCsalsoshowedanimprovedrepaircomparedwithuntreatedcontrols(Fig.
4f).
TypeIIcollagen,notfoundinuntreatedgroups,waspresentinthegelatin-FAaloneandgelatin-FAplusBMSCsgroups,andthestainingwasmoreintenseinthegelatin-FAplusBMSCsgroup(Fig.
4g).
Likewise,aggrecanwasnotfoundinuntreatedgroupsbutstainedingelatin-FAplusBMSCsFigure2|Storage(G9)andloss(G0)moduliofgelatin-FAandgelatin-FIhydrogels(10%)at376Ccross-linkedbyvisiblelightinthepresenceofRoseBengal(0.
5%).
www.
nature.
com/scientificreportsSCIENTIFICREPORTS|4:4457|DOI:10.
1038/srep044573group(Fig.
4h).
Subchondralbonerepairwasfoundinthegelatin-FAplusBMSCsgroup(Fig.
5a).
TheBV/TVvaluewassignificantlyhigheraftertreatmentwithgelatin-FAplusBMSCsthanintheothergroups(Fig.
5b).
Allthesefindingssupportthismodifiedgelatin-FAasausefulcellscaffoldforthetreatmentofosteo-chondraldefects.
Gelatin-FAasascaffoldforgrowthfactors.
Wethenaskedwhethergelatin-FAcouldbeusedasascaffoldforgrowthfactor-basedtissueengineering.
WeusedBMP4andCBD-BMP4asgrowthfactors.
CBD-BMP4exhibitedstrongerandmorestablecollagenbindingactivitythandidwild-typeBMP413,18.
Becausegelatinisahydro-lyzedformofcollagen,wehypothesizedthatCBD-BMP4maybebetterretainedingelatin-FAhydrogelsthannativeBMP4.
Totestthis,BMP4andCBD-BMP4(380nM)weresuspendedinseparategelatinsolutions(15%gelatin-FAand0.
05%RB),photo-cross-linkedbyvisiblelight,andthenculturedinPBSfor7days.
ThesupernatantswerecollectedandBMP4concentrationsmeasuredbyELISA.
AsshowninTable2,BMP4wasrapidlyreleasedfromgelatin-FAhydrogels,whereasCBD-BMP4wasretainedinthehydrogelsforatleast7days.
WenextimplantedBMP4-orCBD-BMP4-containinggelatinsolutions(15%gelatin-FAand0.
05%RB)intoosteochondralbonedefectsandexposedthemtovisiblelightfor2min.
Growthfactor-loadedgelatin-FAhydrogelsfacilitatedcartilagerepair(Fig.
6a–d).
Inparticular,CBD-BMP4-loadedgelatin-FAshowedcompletefillingofthedefectwithatissuethatresembledthesurroundingnormalhyal-inecartilageat12weeks(Fig.
6a).
RepairtissueinthedefectstreatedFigure3|Cytotoxicityandphototoxicity.
(a)BMSCs(53103cells)wereculturedingelatin-FA(15%)andvariousconcentrationsofRB(0.
01,0.
1,and1%)andgelledbyilluminationwithvisiblelightfor2min.
After24h,the%cellviabilitywasdetermined.
*P,0.
05,**P,0.
001,vs.
RB1lightillumination(5wellseach,Mann–WhitneyUtest).
(b)BMSCs(53103cells)wereculturedingelatin-FA(15%)plusRB(0.
01or0.
1%).
The%viablecellsweremonitoredat24h,72handonday7afterlightilluminationwithvisiblelightfor2min.
Opencircle;RBonly,closedcircle;RB1gelatin-FA,opensquare;RB1lightillumination,closedsquare;RB1gelatin-FA1lightillumination(5welleach).
(c)Gelatin-FA(15%)with0.
05%RBwassubmergedinPBS,andexposedtovisiblelightfor2min,afterwhichthehydrogelswereobservedfor21daysat37uC.
Representativephotographs(5wellseach)areshown.
(d)BMSCs(53103cells)weresuspendedingelatin-FA(15%)with0.
05%RB,submergedinPBS,andexposedtovisiblelightfor2min,afterwhichthehydrogelswereobservedfor7daysat37uC.
Thepercentviablecellsinthehydrogelswereexaminedatindicatedtime-pointsafterthelightillumination(5wellseach).
(e)BMSCs(53104cells)weresuspendedingelatin-FA(15%)and0.
05%RB,submergedinPBS,andgelledbyilluminationwithvisiblelightfor2min.
DNAandacidicmucopolysaccharidecontentsinthegelatin-FAhydrogelsweremeasuredatindicatedtime-points.
Theresultantacidicmucopolysaccharide-to-DNAratiowasthencalculated(5wellseach).
www.
nature.
com/scientificreportsSCIENTIFICREPORTS|4:4457|DOI:10.
1038/srep044574withCBD-BMP4-loadedgelatin-FAwasstronglystainedbysafraninO,suggestingthepresenceofsufficientproteoglycansintherepairedtissue(Fig.
6c).
GrossandhistologicalscoresshowedthatCBD-BMP4ledtomorecartilagerepairthandidBMP4.
Tissuerepairbygelatin-FAitselfdemonstratedsomeimprovementcomparedwiththeuntreatedgroupat12weeks(Fig.
6b,d).
Toinvestigatethemolecularmechanismsofrepair,theregeneratedtissueswerehar-vestedat4weeksaftersurgeryandthemRNAexpressionofseveralchondrogenicfactorswereexamined.
SOX9,aggrecan,col1a1,andcol2a1wereallexpressedathigherlevelsintheCBD-BMP4-gelatin-FAgroupthanintheothergroups,includingtheBMP4group(Fig.
6e).
Thus,thesuperiorcartilagerepairintheCBD-BMP4groupFigure4|Gelatin-FAasacellscaffoldinanosteochondraldefectmodel.
BMSCs(1.
53105cells)weresuspendedingelatinsolution(15%gelation-FA10.
05%RB),implantedintoosteochondraldefects,andexposedtovisiblelightfor2min.
(a)Schematicillustrationoftheoperativeprocedure.
(b)Grossappearanceaftertheprocedure.
Representativephotographs(sixfemurseach).
(c)Grossgradingscoresat4and12weeksafterthesurgery.
*P,0.
05,**P,0.
01,***P,0.
001(sixfemurseach).
(d)RepresentativesafraninOstainingphotosat4and12weeksareshown(sixfemurseach).
Thescalebarindicates500mm.
(e)Representativemacrophagestainingphotosat4weeksareshown(sixfemurseach).
Thescalebarindicates200mm.
(f)Histologicalgradingscoresat4and12weeks.
*P,0.
05,**P,0.
01,***P,0.
001(sixfemurseach).
(g,h)RepresentativetypeIIcollagenimmunostaining(g)andaggrecanstaining(h)at12weeksafterthesurgeryareshown(sixfemurseach).
Thescalebarindicates500mm(g)and200mm(h).
Table1|EvaluationofsafraninOstainingSafraninOstain%SafraninOindefectdefect0.
760.
20.
860.
3Gelatin-FA1.
460.
2*1.
460.
2Gelatin-FA1BMSCs2.
260.
1*,**2.
660.
2**,***SafrainOstainwasevaluatedbyagradingscheme31.
*P,0.
05,**P,0.
001vs.
defect.
***P,0.
01vs.
gelatin-FA.
www.
nature.
com/scientificreportsSCIENTIFICREPORTS|4:4457|DOI:10.
1038/srep044575wasassociatedwithincreasedexpressionsofchondrogenicfactors.
TheBMP4groupfailedtoincreasetheexpressionofthesefactorsat4weeksafterthesurgery,possiblyowingtoitslossfromthehydrogel.
Furthermore,CBD-BMP4-loadedgelatin-FApromptedsubchon-dralbonerepair(Fig.
7a).
TheBV/TVvaluewassignificantlyhigherafterCBD-BMP4-gelatin-FAtreatmentthanwiththeothergroupsat12weeksaftersurgery(Fig.
7b).
Therefore,thismodifiedgelatin-FAwasalsousefulasascaffoldforgrowthfactor-basedtissueengineering.
DiscussionScaffoldsideallyneedtobebiocompatible,biodegradable,durable,andcapableofbeingformedintodesiredshapes.
Thenovelmodi-fiedgelatin-FAdevelopedinthepresentstudyappearstobeasuitablebiomaterialscaffold.
Comparedwithourpreviouslyreportedgelatin-FI,gelatin-FAismorerapidlycross-linkedinthepresenceofRBbyvisible-lightillumination.
Sucharapidconsol-idationissuitableforclinicaluse.
Inaddition,gelatin-FAhashigherelasticityandflexibilitythangelatin-FI,withanequivalentviscosity.
Thesesuperiorpropertiespromptedustoexaminethepotentialofgelatin-FAforuseinscaffold-basedtissueengineering.
Bycombin-inggelatin-FAwithBMSCsandCBD-BMP4,wedemonstratedthatphoto-cross-linkablegelatin-FAisapromisingscaffoldforosteo-chondralrepairbecauseitpromotesproductionofareparativematrix.
ClinicaltrialshavereportedthesafetyandtherapeuticeffectsofBMSCsadministrationinpatientswithOA19.
TheclinicaloutcomesaftertreatmentwithautologousBMSCswereasgoodasorbetterthanafterautologouschondrocyteimplantation20.
Chondrocytedif-ferentiationfromBMSCsinvitrousinggrowthfactorsrequiressig-nificanttimeandexpense,andsubsequentengineeredchondrocytesdonotfullymaintaintheirchondrogenicpropertiesafterinvivotransplantation21.
Therefore,employingBMSCsisareasonableapproachforthetreatmentofosteochondralinjuries.
OnekeypointwhenusingBMSCsforosteochondralrepairistouseanefficientdeliverysystemtolocalizethecellswithinalesionwithoutinhibitingtheinfluxofrepaircellsfromthesurroundingtissues.
BMSCsaremixturesofautologouslyacquiredpluripotentcellswithmultilineagedifferentiationandhighproliferationpotentials,allowingfortheirdifferentiationintoosteogenicandchondrogeniclineages22.
Studieshavedemonstratedthatthesevereanaerobicenvironmentinthejointisefficientforthephenotypicexpressionofchondrocytes23,24.
Maintaininghydrationandtheanaerobicenvironmentingelatin-FAhydrogelsmaystimulatethechondrogenicdifferentiationofBMSCs.
Here,weshowedthattransplantedBMSCspreservetheirchon-drogenicdifferentiationcapabilityinourgelatin-FAscaffold,asdeterminedbytheacidicmucopolysaccharide-to-DNAratio.
Alter-natively,itislikelythatBMSCsalsoattracthost-derivedmesenchy-malprogenitorcellsfromthesubchondralmarrowortheadjacentsynoviumviathereleaseofvariouscytokines19,whichinturnmayfacilitateosteochondraltissuerepair.
Wedemonstratedthatregen-eratedtissuebygelatin-FAplusBMSCstreatmentcontainedmoremacrophagesrelativetothatbygelatin-FAalone.
Furtherstudiesarenecessarytoaddresstherelativecontributionsofthesemechanisms.
Theuseofgrowthfactorswithtissueengineeringtechniquesisanotherpromisingtherapeuticstrategy.
Toincreasethetherapeuticpotencyofgelatin-FA,weemployedCBD-BMP4asagrowthfactor.
CBD-BMP4isanovelfusionproteinthatisretainedlongerthannativeBMP4intissuesconsistingofcollagen,andexhibitsanexquis-iteabilitytopromoteinvivoosteogenesis18.
BMP4iscapableofinducingosteogenic,aswellaschondrogenic,differentiation25,26.
BecauseCBD-BMP4isretainedlongeringelatin-FAhydrogels,weexpectedittofostertissuerepair.
Althoughbothgelatin-FAaloneandBMP4-gelatin-FAenhancedtissuerepairtosomedegree,CBD-BMP4-gelatin-FAproducedamarkedlyimprovedosteochondralrepair.
Duringthisprocess,gelatin-FAcoveringthedefectmayenhancetheintegrationbetweentheregeneratedtissueandthesur-roundingtissue,supportingtissuerepair.
TheacceleratedtissuerepairbyCBD-BMP4-gelatin-FAappearstobebasedonendogenouschondrogenicfactorsexpressedbyinfiltratingcellsfromthesur-roundingtissues.
SOX9isakeytranscriptionfactorforchondrogen-esis27.
SOX9activatesgenesexpressedinproliferatingchondrocytesthatincludesaggrecan28,oneofthemajorstructuralcomponentsofarticularcartilage.
Col1a1andcol2a1encodeforthemajorcom-ponentsofcollagentypesIandII,respectively.
TheincreasedexpressionofthesegenesintheCBD-BMP4groupsuggestedthatCBD-BMP4tetheringinthehydrogelscontributedtotheimprovedtissuerepair.
Figure5|Micro-computedtomography(CT)analysisat12weeksafterBMSCsimplantation.
(a)Representativethree-dimensional-CTimagesfromeachgroup(sixfemurseach)areshown.
(b)Bonegrowthwasassessedbybonevolume(BV)pertissuevolume(TV).
*P,0.
05,**P,0.
01(sixfemurseach).
Table2|ReleaseofBMP4andCBD-BMP4fromgelatin-FAhydrogelsday1day3day5day7BMP41.
2360.
101.
0360.
050.
9960.
070.
9660.
06CBD-BMP40.
2660.
02*0.
2360.
01*0.
2360.
00*0.
2160.
01*CulturesupernatantsfromBMP4orCBD-BMP4containinggelatin-FAhydrogelsweremeasuredforBMP4.
DataareODat490nm.
*P,0.
05vs.
BMP4(4welleach,Mann–WhitneyUtest).
www.
nature.
com/scientificreportsSCIENTIFICREPORTS|4:4457|DOI:10.
1038/srep044576Figure6|Gelatin-FAasagrowth-factorscaffoldinanosteochondraldefectmodel.
BMP4orCBD-BMP4(each250nM)wasmixedinto15%gelatin-FAcontaining0.
05%RB,andthemixtureswereimplantedintoosteochondralbonedefectsandexposedtovisiblelightfor2min.
(a)Representativephotographsofthegrossappearanceaftertheprocedure(fivefemurseach).
(b)Grossgradingscoresat4and12weeksaftertheprocedure(fivefemurseach).
(c)RepresentativeimagesofsafraninOstaining(fivefemurseach).
Thescalebarindicates500mm.
(d)Histologicalgradingscoresat4and12weeks(fivefemurseach).
(e)Theexpressionlevelsofchondrogenicfactorsat4weeks(5femurseach).
*P,0.
05,**P,0.
01,***P,0.
001(fivefemurseach).
****P,0.
05,vs.
untreatedcontrol(fivefemurseach,Mann–WhitneyUTest).
www.
nature.
com/scientificreportsSCIENTIFICREPORTS|4:4457|DOI:10.
1038/srep044577Thereareotherseveralconcernsthatwerenotaddressedinthisstudy.
Althoughwesucceededinproducinghyaline-likedifferen-tiatedtissuethatintegratedwiththesurroundingnativecartilageat12weeksafterthesurgeryunderfullweightbearingwithoutanyjointimmobilization,thephysiologicalandmechanicalpropertiesoftherepairedtissueremaintobeinvestigated.
Longer-termobser-vationisalsonecessary.
ItappearsthatthetransplantedBMSCsnotonlyfunctionasrepaircells,butalsostimulatethesurroundingtissuestowardsrepair.
However,theoriginofthecellspresentattherepairsite,whethertheyaretheoriginallytransplantedBMSCsorhostcellsthathavemigratedtothedefect,remainsunknown.
BMSCsmayescapefromgelatin-FAhydrogelsandmoveintothesurround-ingtissues.
AlthoughclinicaltrialshavereportedthesafetyofBMSCs19,themulti-potentpropertiesmaybepotentialthreatsforteratoma/tumorgenesisforalongterm.
Howgelatin-FAhydrogelssupporttissuerepairandwhengelatin-FAhydrogelsareabsorbedandreplacedbyregeneratedtissueisalsounclear.
Weshowedthatmacrophageswerepresentintheregeneratedtissueaftergelatin-FAtreatment.
Macrophagesareessentialtowouldhealingbytheirinter-actionswithothercellularpopulationsandreleasinggrowthfac-tors29,suggestingthatmacrophagesinthegelatin-FAscaffoldfacilitatethetissuerepair.
Aninterestingquestioniswhetheracom-binationstrategywithBMSCsandCBD-BMP4couldincreasetheregenerativepotentialofthescaffold,generatinganadditiveorsyn-ergisticeffect.
Furtherstudiesarenecessarytoaddressthesepossibilities.
Inconclusion,wehavedevelopedphoto-cross-linkablefurfury-lamine-conjugatedgelatin.
Withthismodifiedgelatin-FA,tissue-engineeringapproachesthatdeliverBMSCsandCBD-BMP4havebeenevaluatedinarabbitosteochondraldefectmodel.
Theresultsinthisstudydemonstratedthatthisnovelgelatin-FAisusefulforcell-based,aswellasgrowthfactor-based,scaffolds.
Gelatinisabiocompatible,biodegradableandmaneuverablematerialwithnoharmfuleffects.
Treatmentstrategiesusingphoto-cross-linkablegelatin-FAcouldbebeneficialforthetreatmentofosteochondralinjuries.
MethodsMaterials.
Porcineskingelatin(G2500),furfurylamine(FA),furfurylisocyanate(FI),deuteriumoxide(D2O),andRoseBengal(RB)werepurchasedfromSigma-Aldrich(St.
Louis,MO,USA).
1-Ethyl-3-(3-dimethylaminopropyl)carbodiimidehydrochloride(EDC)and2-morpholinoethanesulfonicacidmonohydrate(MES)werepurchasedfromDojindoMolecularTechnologies,Inc.
(Kumamoto,Japan).
N-hydroxysuccinimide(NHS)waspurchasedfromWakoPureChemicalIndustries(Osaka,Japan).
RecombinantmouseBMP4,affinitypurifiedanti-mouseBMP4polyclonalIgG,andbiotinylatedanti-mouseBMP4IgGwerepurchasedfromR&DSystems(Minneapolis,MN,USA).
CBD-BMP4fusionproteinwaspreparedasdescribedpreviously13.
Synthesisoffurfurylconjugatedgelatin.
Gelatin(5.
0g)wasdissolvedin250mLMESbuffer(50mM,pH5.
0)at40uC.
Subsequently,1.
533g(8mmol)EDC,0.
806g(7mmol)NHS,and2.
68g(28mmol)FAwereadded,andthesolutionwasmaintainedat40uCfor24h.
Thesolutionwasthendialyzedusingadialysismembrane(molecularweightcutoff:3,500Da)for2daysat40uC.
TheFA-conjugatedgelatinwasobtainedbylyophilizationandreferredtoasgelatin-FA.
Gelatincoupledwithfurfurylisocyanate(gelatin-FI)wasprepared,aspreviouslyreported13.
Thestructureofmodifiedgelatinwascharacterizedusingnuclearmagneticresonancespectroscopy(NMR).
ThesamplesweredissolvedinD2O,andthemeasurementperformedusingaJNM-AL300spectrometer(JASCOInternationalCo.
,Tokyo,Japan).
Visiblelightinducedcross-linkingandformationofhydrogels.
Anaqueoussolutionofgelatin-FAwasmixedwithanequalvolumeofRB.
Afterilluminatingfor2minwithvisiblelightfromalamp(LuminarAceLA-HDF158A,HayashiWatch-worksCo.
,Tokyo,Japan),themixturewastransformedfromasolutiontoahydrogelthroughphoto-oxidationcross-linking,asillustratedinFigure1A.
RheologicalexperimentswerecarriedoutwithanARES-G2rheometer(TAinstruments,NewCastle,DE,USA)usingtheparallelplates(25-mmdiameter,0u)configurationat37uCintheoscillatorymode.
Theevolutionofthestorage(G9)andloss(G0)moduliwererecordedasafunctionoftimeatafrequencyof1Hzandastrainof1%.
Animals.
FemaleNewZealandwhiterabbitsweighing2.
0–2.
5kgwereobtainedfromShimizuLaboratorySupplies(Kyoto,Japan).
Animalswerehousedinatemperature-controlledenvironmentwitha12-hlight/12-hdarkcycleandallowedfreeaccesstowaterandfood.
TheanimalcareandusecommitteeatOkayamaUniversityapprovedallanimalexperimentsconductedinthisstudy.
Allmethodswerecarriedoutinaccordancewiththeapprovedguidelines.
Bonemarrowstromalcells(BMSCs).
BMSCswerepurifiedasdescribedpreviously30.
Inbrief,bonemarrowcellswereaspiratedfromthehumerus,femur,andtibiaof5rabbits.
Thecellswerecentrifugedandwashedtwicewithphosphate-bufferedsaline(PBS,pH7.
4).
Thecellsweresuspendedinlow-glucoseDulbecco'sModifiedEagleMedium(DMEM)supplementedwith10%fetalbovineserum(FBS)andantibioticsandculturedovernightin100mm320mmdishesat37uCinahumidifiedincubatorwith5%CO2.
Unattachedcellswereremovedandthemediumwasreplacedevery3daysuntilthecellsreached80%confluence.
Coloniesformedcellsweredetachedwith0.
25%trypsin-EDTAsolution,washedtwicewithmedium,anddividedintotwodishes.
CellsatpassagestwotothreewereusedasBMSCs.
Underappropriatecultureconditions,differentiationassayswereperformedtoconfirmcelldifferentiationintochondrogenicandosteogeniclineages(notshown).
Thecellswereroutinelyalivemorethan97%bytrypanblueexclusion.
Cytotoxicityandphototoxicity.
RBtoxicityandphototoxiceffectswereexaminedusingBMSCs.
BMSCs(53103cells)wereincubatedina96-wellplateat37uCinaCO2incubatorfor24h.
Gelatin-FA(15%)andRB(0.
01,0.
1,and1%)wereaddedtotheDMEMwith1%FBSandgelledbyilluminationwithvisiblelightfor2minandculturedfor24h.
Inothersetofexperiments,Gelatin-FA(15%)wasgelledwithRB(0.
01and0.
1%)andexposedtovisiblelightfor2min,andculturedfor24,72hand7days.
EachwellwaswashedthreetimeswithPBSandmediumwasadded.
ThecellproliferationreagentWST-1(RocheDiagnostics,Indianapolis,IN)wasusedtodeterminethenumberofviablecellsaccordingtothemanufacturer'sinstructions.
ThecellnumbersinwellswithoutRBweredefinedasthecontrolsforeachgroup,andthenumberofcellsineachwellwasnormalizedtoitscontroltogive%viability.
Cellevaluationinthegelatin-hydrogel.
BMSCs(53104cells)weresuspendedinculturemedium(DMEMand10%FBS)containing15%gelatin-FAand0.
05%RB.
Themixturewascross-linkedbyvisiblelightilluminationfor2min.
Thehydrogelswereincubatedinaculturemedium,andthemediumwasreplacedevery3days.
Ondays1,7,14,and21,thehydrogelswerewashedtwicewithPBSandsonicatedin100mLextractionbuffer.
TheDNAcontentandacidicmucopolysaccharidecontentinthehydrogelsweredeterminedusingDNAQuantitykits(PrimarycellCo.
,Figure7|Micro-computedtomography(CT)analysisat12weeksafterBMP4orCBD-BMP4implantation.
(a)Representativethree-dimensional-CTimagesfromeachgroup(fivefemurseach).
(b)Bonegrowthwasassessedbybonevolume(BV)pertissuevolume(TV).
*P,0.
05,**P,0.
01,***P,0.
001(fivefemurseach).
www.
nature.
com/scientificreportsSCIENTIFICREPORTS|4:4457|DOI:10.
1038/srep044578Hokkaido,Japan)andacidicmucopolysaccharideassaykits(PrimarycellCo.
),accordingtothemanufacturers'instructions.
Osteochondraldefectmodel.
Rabbitswereanesthetizedwithketamine(1mg/kg)andisoflurane(0.
25–5L/min).
Cylindricalosteochondraldefectsweremadebilaterallyatthecenterofthemedialfemoralcondylewitha3.
0-mmdiameterdrilltoadepthof3.
0mm.
Fortymicrolitersofgelatinsolution(15%gelatin-FAand0.
05%RB)withorwithoutBMSCsorgrowthfactorswasappliedtothedefectsandcross-linkedwithvisiblelightfor2min.
BMP4andCBD-BMP4wereemployedasgrowthfactors.
Thedefectsuntreatedwereusedascontrols.
TherabbitsemployedinBMSCstransplantationmodelwere18rabbits(36femurs:defectcontrol;6femurs32timepoints(4weeksand12weeks),gelatin-FA;6femurs32,gelatin-FA1BMSCs;6femurs32).
Forgrowthfactortransplantation,20rabbitswereused(40femurs:defectcontrol;5femurs32timepoints(4weeksand12weeks),gelatin-FA;5femurs32,gelatin-FA1BMP4;5femurs32,gelatin-FA1CBD-BMP4;5femurs32).
Thefemursweretreatedatrandom.
Thejointcapsuleandtheskinwereclosedinlayerswith5-0nylonsutures.
Therabbitswereallowedfullweightbearingwithoutanyjointimmobilization.
Rabbitsweresacrificedat4and12weeksafterthesurgery,andthelesionwasassessedbyagrossgradingscheme31.
Inbrief,thedefectlesionwasscoredbasedonfourcategories,eachonascaleof0–4(bestscore:16):coverage,neocartilagecolor,defectmargins,andsurface.
Thefemoralcondylewasthenresectedandscannedbymicrocomputedtomography(micro-CT;HitachiAloka,Tokyo,Japan)at48-mmslices.
Regionsofinterestwerecenteredonthecylindricaldefectareaandanalyzedbyimage-analyzingsoftwareAZEVirtualPlace(AZE,Ltd,Tokyo,Japan).
Thebonegrowthwasmeasuredasbonevolume(BV)pertissuevolume(TV).
Subsequently,thefemoralcondylewasfixedin4%paraformaldehyde,decalcifiedin10%EDTA,embeddedinparaffin,andthesectionswerestainedwithhematoxylinandeosinandsafraninO.
Thesectionswereassessedbyahistologicalgradingscheme31,inwhichthedefectlesionwasscoredonascaleofmatrix(0–4),celldistribution(0–3),surface(0–4),safraninOstain(0–4),andpercentsafraninOindefect(0–4),with19beingthebestscore.
Forimmunohistochemistry,thesectionswereincubatedwithamonoclonalantibodytomacrophages(DAKO,Glostrup,Denmark),collagentypeII(ThermoFisherScientific,Waltham,MA),aggrecan(Abcam,Cambridge,UK)orcontrolIgG(5mg/mL)for1hatroomtemperature.
Thespecimenswererinsedandthenincubatedfor30minwithperoxidase-labeledpolymer(DAKO)atroomtemperature.
Diaminobenzidine(DAKO)wasusedasachromogenandcounterstainingwasperformedwithhematoxylin.
Quantitativereal-timepolymerasechainreaction(PCR).
RegeneratedtissueswerehomogenizedwithISOGEN(NipponGeneCo.
,Toyama,Japan),andtotalRNAwasisolatedaccordingtothemanufacturer'sinstructions.
First-strandcDNAwassynthesizedfrom2mgoftotalRNAwitholigo(dT)12–18asprimers,andthecDNAswereusedasatemplateforPCR.
Quantitativereal-timePCRwasperformedwithBrilliantIIIUltra-FastSYBRGreenQPCRMasterMix(AgilentTechnologies,SantaClara,CA,USA)andspecificprimers.
TovalidatetheSYBRGreenPCRproducts,adissociationstepwasperformedtoverifytheTm(annealingtemperature)oftheSYBRGreenPCRproductafterthePCRwasrun.
TheexpressionlevelsofeachmRNAwerenormalizedtotheexpressionofthehousekeepinggenehypoxanthinephosphoribosyltransferase.
TheprimersusedinthisstudyarelistedinSupplementaryTableS1.
Statisticalanalysis.
StatisticalanalyseswereperformedusingANOVAsformultiplesamplesifnototherwisespecified.
Insomecases,Mann–WhitneyUtestswereused.
AP-valueof,0.
05wasconsideredstatisticallysignificant.
1.
Buckwalter,J.
A.
,Mankin,H.
J.
&Grodzinsky,A.
J.
Articularcartilageandosteoarthritis.
InstrCourseLect54,465–480(2005).
2.
Mandelbaum,B.
R.
etal.
Articularcartilagelesionsoftheknee.
AmJSportsMed26,853–861(1998).
3.
Buckwalter,J.
A.
,Martin,J.
A.
&Brown,T.
D.
Perspectivesonchondrocytemechanobiologyandosteoarthritis.
Biorheology43,603–609(2006).
4.
Nukavarapu,S.
P.
&Dorcemus,D.
L.
Osteochondraltissueengineering:Currentstrategiesandchallenges.
BiotechnolAdv31,706–721(2013).
5.
Panseri,S.
etal.
Osteochondraltissueengineeringapproachesforarticularcartilageandsubchondralboneregeneration.
KneeSurgSportsTraumatolArthrosc20,1182–1191(2012).
6.
Filardo,G.
,Kon,E.
,Roffi,A.
,DiMartino,A.
&Marcacci,M.
Scaffold-basedrepairforcartilagehealing:asystematicreviewandtechnicalnote.
Arthroscopy29,174–186(2013).
7.
Olson,A.
,Graver,A.
&Grande,D.
Scaffoldsforarticularcartilagerepair.
JLongTermEffMedImplants22,219–227(2012).
8.
Hoch,E.
,Schuh,C.
,Hirth,T.
,Tovar,G.
E.
&Borchers,K.
Stiffgelatinhydrogelscanbephoto-chemicallysynthesizedfromlowviscousgelatinsolutionsusingmolecularlyfunctionalizedgelatinwithahighdegreeofmethacrylation.
JMaterSciMaterMed23,2607–2617(2012).
9.
Hoshikawa,A.
etal.
Encapsulationofchondrocytesinphotopolymerizablestyrenatedgelatinforcartilagetissueengineering.
TissueEng12,2333–2341(2006).
10.
Hu,X.
,Ma,L.
,Wang,C.
&Gao,C.
Gelatinhydrogelpreparedbyphoto-initiatedpolymerizationandloadedwithTGF-beta1forcartilagetissueengineering.
MacromolBiosci9,1194–1201(2009).
11.
Lien,S.
M.
,Ko,L.
Y.
&Huang,T.
J.
EffectofporesizeonECMsecretionandcellgrowthingelatinscaffoldforarticularcartilagetissueengineering.
ActaBiomater5,670–679(2009).
12.
Okino,H.
,Nakayama,Y.
,Tanaka,M.
&Matsuda,T.
Insituhydrogelationofphotocurablegelatinanddrugrelease.
JBiomedMaterRes59,233–245(2002).
13.
Son,T.
I.
etal.
Visiblelight-inducedcrosslinkablegelatin.
ActaBiomater6,4005–4010(2010).
14.
Discher,D.
E.
,Janmey,P.
&Wang,Y.
L.
Tissuecellsfeelandrespondtothestiffnessoftheirsubstrate.
Science310,1139–1143(2005).
15.
Wang,L.
S.
,Du,C.
,Chung,J.
E.
&Kurisawa,M.
Enzymaticallycross-linkedgelatin-phenolhydrogelswithabroaderstiffnessrangeforosteogenicdifferentiationofhumanmesenchymalstemcells.
ActaBiomater8,1826–1837(2012).
16.
Brandl,F.
,Sommer,F.
&Goepferich,A.
Rationaldesignofhydrogelsfortissueengineering:impactofphysicalfactorsoncellbehavior.
Biomaterials28,134–146(2007).
17.
Wang,L.
S.
,Boulaire,J.
,Chan,P.
P.
,Chung,J.
E.
&Kurisawa,M.
Theroleofstiffnessofgelatin-hydroxyphenylpropionicacidhydrogelsformedbyenzyme-mediatedcrosslinkingonthedifferentiationofhumanmesenchymalstemcell.
Biomaterials31,8608–8616(2010).
18.
Shiozaki,Y.
etal.
Enhancedinvivoosteogenesisbynanocarrier-fusedbonemorphogeneticprotein-4.
IntJNanomedicine8,1349–1360(2013).
19.
Gupta,P.
K.
,Das,A.
K.
,Chullikana,A.
&Majumdar,A.
S.
Mesenchymalstemcellsforcartilagerepairinosteoarthritis.
StemCellResTher3,25(2012).
20.
Nejadnik,H.
,Hui,J.
H.
,FengChoong,E.
P.
,Tai,B.
C.
&Lee,E.
H.
Autologousbonemarrow-derivedmesenchymalstemcellsversusautologouschondrocyteimplantation:anobservationalcohortstudy.
AmJSportsMed38,1110–1116(2010).
21.
Pelttari,K.
etal.
PrematureinductionofhypertrophyduringinvitrochondrogenesisofhumanmesenchymalstemcellscorrelateswithcalcificationandvascularinvasionafterectopictransplantationinSCIDmice.
ArthritisRheum54,3254–3266(2006).
22.
Pittenger,M.
F.
etal.
Multilineagepotentialofadulthumanmesenchymalstemcells.
Science284,143–147(1999).
23.
BASSETT,C.
A.
&HERRMANN,I.
Influenceofoxygenconcentrationandmechanicalfactorsondifferentiationofconnectivetissuesinvitro.
Nature190,460–461(1961).
24.
Hansen,U.
etal.
Combinationofreducedoxygentensionandintermittenthydrostaticpressure:ausefultoolinarticularcartilagetissueengineering.
JBiomech34,941–949(2001).
25.
Kuroda,R.
etal.
Cartilagerepairusingbonemorphogeneticprotein4andmuscle-derivedstemcells.
ArthritisRheum54,433–442(2006).
26.
Pang,E.
K.
etal.
Effectofrecombinanthumanbonemorphogeneticprotein-4doseonboneformationinaratcalvarialdefectmodel.
JPeriodontol75,1364–1370(2004).
27.
deCrombrugghe,B.
etal.
Transcriptionalmechanismsofchondrocytedifferentiation.
MatrixBiol19,389–394(2000).
28.
Sekiya,I.
etal.
SOX9enhancesaggrecangenepromoter/enhanceractivityandisup-regulatedbyretinoicacidinacartilage-derivedcellline,TC6.
JBiolChem275,10738–10744(2000).
29.
Brancato,S.
K.
&Albina,J.
E.
Woundmacrophagesaskeyregulatorsofrepair:origin,phenotype,andfunction.
AmJPathol178,19–25(2011).
30.
O'oughlin,A.
etal.
Topicaladministrationofallogeneicmesenchymalstromalcellsseededinacollagenscaffoldaugmentswoundhealingandincreasesangiogenesisinthediabeticrabbitulcer.
Diabetes62,2588–2594(2013).
31.
Wayne,J.
S.
,McDowell,C.
L.
,Shields,K.
J.
&Tuan,R.
S.
Invivoresponseofpolylacticacid-alginatescaffoldsandbonemarrow-derivedcellsforcartilagetissueengineering.
TissueEng11,953–963(2005).
AcknowledgmentsWethankDr.
TakayukiFurumatsu,Ms.
ReinaTanaka,Mr.
YasuharuArashima,andMr.
HaruyukiWatanabefortheirexcellenttechnicalassistance.
Thisworkwassupportedinpartby1)grantsfromMinistryofEducation,Culture,Sports,ScienceandTechnology,Japan,andtheJapanSocietyforthePromotionofScience,Grant-in-AidforScientificResearch(S)ofKAKENHI22220009and(C)ofKAKENHI25462334,andby2)theStrategicInternationalResearchCooperativeProgram,JapanScienceandTechnologyAgency(JST),AS232Z00465F.
AuthorcontributionsT.
M.
,A.
M.
,T.
O.
andY.
I.
,ledtheprojectandconductedthedataanalysis.
T.
M.
andA.
M.
,wrotethepaper.
T.
M.
,Y.
S.
,K.
Y.
,A.
Y.
,M.
K.
,Y.
Y.
,D.
Z.
,T.
K.
andM.
T.
,performedtheexperimentsandcollectedthedata.
AdditionalinformationSupplementaryinformationaccompaniesthispaperathttp://www.
nature.
com/scientificreportswww.
nature.
com/scientificreportsSCIENTIFICREPORTS|4:4457|DOI:10.
1038/srep044579Competingfinancialinterests:Theauthorsdeclarenocompetingfinancialinterests.
Howtocitethisarticle:Mazaki,T.
etal.
Anovel,visiblelight-induced,rapidlycross-linkablegelatinscaffoldforosteochondraltissueengineering.
Sci.
Rep.
4,4457;DOI:10.
1038/srep04457(2014).
ThisworkislicensedunderaCreativeCommonsAttribution-NonCommercial-ShareAlike3.
0Unportedlicense.
Toviewacopyofthislicense,visithttp://creativecommons.
org/licenses/by-nc-sa/3.
0www.
nature.
com/scientificreportsSCIENTIFICREPORTS|4:4457|DOI:10.
1038/srep0445710

RAKsmart美国洛杉矶独立服务器 E3-1230 16GB内存 限时促销月$76

RAKsmart 商家我们应该较多的熟悉的,主营独立服务器和站群服务器业务。从去年开始有陆续的新增多个机房,包含韩国、日本、中国香港等。虽然他们家也有VPS主机,但是好像不是特别的重视,价格上特价的时候也是比较便宜的1.99美元月付(年中活动有促销)。不过他们的重点还是独立服务器,毕竟在这个产业中利润率较大。正如上面的Megalayer商家的美国服务器活动,这个同学有需要独立服务器,这里我一并整理...

TMThosting夏季促销:VPS月付7折,年付65折,独立服务器95折,西雅图机房

TMThosting发布了一个2021 Summer Sale活动,针对西雅图VPS主机提供月付7折优惠码,年付65折优惠码,独立服务器提供95折优惠码,本轮促销活动到7月25日。这是一家成立于2018年的国外主机商,主要提供VPS和独立服务器租用业务,数据中心包括美国西雅图和达拉斯,其中VPS基于KVM架构,都有提供免费的DDoS保护,支持选择Windows或者Linux操作系统。Budget ...

HostKvm开年促销:香港国际/美国洛杉矶VPS七折,其他机房八折

HostKvm也发布了开年促销方案,针对香港国际和美国洛杉矶两个机房的VPS主机提供7折优惠码,其他机房业务提供8折优惠码。商家成立于2013年,提供基于KVM架构的VPS主机,可选数据中心包括日本、新加坡、韩国、美国、中国香港等多个地区机房,均为国内直连或优化线路,延迟较低,适合建站或者远程办公等。下面列出几款主机配置信息。美国洛杉矶套餐:美国 US-Plan1CPU:1core内存:2GB硬盘...

田中丽奈为你推荐
在线代理网站最好的免费在线代理网站有哪些~急!镜像文件是什么什么是镜像文件啊申请证书求高手教下怎么申请证书畅想中国20年后中国会变成什么样?--畅想一下未来的中国!!迅雷云点播账号求一个迅雷云点播vip的账号,只是看的,绝不动任何手脚。ejb开发什么是ejb?mate8价格华为mate8手机参数配置如何,多少元rewritebasehttp怎么做自动跳转https声母是什么哪些是声母,哪些是韵母,网站排名靠前怎样才能做好一个网站?让网站排名靠前?新手求解
域名代理 虚拟主机系统 justhost 香港机房 godaddy优惠券 web服务器架设软件 服务器架设 52测评网 anylink 免费全能主机 南通服务器 ftp免费空间 Updog 闪讯官网 360云服务 上海电信测速网站 新加坡空间 贵阳电信 qq金券 lamp架构 更多