策梅洛定理解释一下 策梅洛公理 (选择公理)

策梅洛定理  时间:2021-09-17  阅读:()

世界上最难得题是什么

数学之最:世界上最难的

23

道数学题





1


连续统假设

1874

年,

康托猜测在可列集基数和实数基数之间没有别的基数,

这就是

著名的连续统假设。


1938

年,哥德尔证明了连续统假设和世界公认的策梅洛


弗伦克尔集合

论公理系统的无矛盾性。


1963

年,美国数学家科亨证明连续假设和策梅洛


伦克尔集合论公

理是彼此独立的。


因此,

连续统假设不能在策梅洛


弗伦克尔公理体系内证明其正确性与否。


希尔伯特第

1

问题在这个意义上已获解决。





2

.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。

希尔伯特曾

提出用形式主义计划的证明论方法加以证明。


1931

年,

哥德尔发表的不完备性定理否定了这

种看法。


1936

年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。


198

8

年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。





3


两个等底等高四面体的体积相等问题。


问题的意思是,

存在两个等边等高的四面体,

它们不可分解为有限个小四面体,使这两组四面体彼此全等。


M.W.

德恩

1900

年即对此问题

给出了肯定解答。





4


两点间以直线为距离最短线问题。


此问题提得过于一般。


满足此性质的几何学很多,

因而需增加某些限制条件。


1973

年,

苏联数学家波格列洛夫宣布,

在对称距离情况下,

问题

获得解决。


《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面

有许多进展,但问题并未解决。





5

.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的这个问题简称连续

群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯

·

诺伊曼(

1933

,对紧

群情形)

、庞德里亚金(

1939

,对交换群情形)

、谢瓦荚(

1941

,对可解群情形)的努力,

1

952

年由格利森、蒙哥马利、齐宾共同解决,得到了完全肯定的结果。





6

.物理学的公理化希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和

力学。


1933

年,

苏联数学家柯尔莫哥洛夫实现了将概率论公理化。


后来在量子力学、量子场

论方面取得了很大成功。

但是物理学是否能全盘公理化,很多人表示怀疑。





7.

某些数的无理性与超越性

1934

年,

A.O.

盖尔方德和

T.

施奈德各自独立地解决了问题的

后半部分,即对于任意代数数

α≠0


1

,和任意代数无理数

β

证明了

αβ

的超越性。





8

.素数问题。

包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。

一般情况下的黎曼猜

想仍待解决。

哥德巴赫猜想的最佳结果属于陈景润(

1966


,但离最解决尚有距离。

目前孪

生素数问题的最佳结果也属于陈景润。





9

.在任意数域中证明最一般的互反律。

该问题已由日本数学家高木贞治(

1921

)和德

国数学家

E.

阿廷(

1927

)解决。





10

.丢番图方程的可解性。


能求出一个整系数方程的整数根,

称为丢番图方程可解。


尔伯特问,

能否用一种由有限步构成的一般算法判断一个丢番图方程的可解性?

1970

年,


联的

IO.B.

马季亚谢维奇证明了希尔伯特所期望的算法不存在

我感觉那个墨菲定律就是句废话呀

墨菲定律确实是句废话,而且自相矛盾,从逻辑上说完全不通 首先他设定前提 无论一件事最坏结果有多小概率。





然后自己打脸,坏结果会发生。





这不废话么,既然有坏的概率 那无论坏的概率是多小 它肯定会发生啊,不发生坏的概率应该是0啊。





这都能成为一个定律。





只能说 很多人和墨菲的脑子 都是坏的

解释一下 策梅洛公理 (选择公理)

择公理 开放分类: 科学、哲学、数学、集合论、公理 「选择公理」(Axiom of Choice)对一般人来说,也许从来没有听过;即使是对念数理科的学生来说也可能从来未接触过,多是听多於用。

但这条「选择公理」却是一条困扰整个数学界多年的公理,而它的合理性方面,至今也没有一个定论。

有些人认为它是明显之至,简单得很。

但当细味其内容及其用途时,不单发现它妙用无穷,而且会开始质疑自己对这条公理的理解程度,甚至开始怀疑这条公理的真确性。

「选择公理」便是如此的一条令人迷惑的公理,现在我们一同看看它究竟是甚么。

「选择公理」有很多等价的形式(equivalent form),以下用一个较简单的描述: 选择公理 设C为一个由非空集合所组成的集合。

那么,我们可以从每一个在C中的集合中,都选择一个元素来组成一个新的集合。

Puaex:香港vds,wtt套餐,G口带宽不限流量;可解流媒体,限量补货

puaex怎么样?puaex是一家去年成立的国人商家,本站也分享过几次,他家主要销售香港商宽的套餐,给的全部为G口带宽,而且是不限流量的,目前有WTT和HKBN两种线路的方面,虽然商家的价格比较贵,但是每次补一些货,就会被抢空,之前一直都是断货的状态,目前商家进行了补货,有需要这种类型机器的朋友可以入手。点击进入:puaex商家官方网站Puaex香港vds套餐:全部为KVM虚拟架构,G口的带宽,可...

.asia域名是否适合做个人网站及.asia域名注册和续费成本

今天看到群里的老秦同学在布局自己的网站项目,这个同学还是比较奇怪的,他就喜欢用这些奇怪的域名。比如前几天看到有用.in域名,个人网站他用的.me域名不奇怪,这个还是常见的。今天看到他在做的一个范文网站的域名,居然用的是 .asia 后缀。问到其理由,是有不错好记的前缀。这里简单的搜索到.ASIA域名的新注册价格是有促销的,大约35元首年左右,续费大约是80元左右,这个成本算的话,比COM域名还贵。...

蓝竹云挂机宝25元/年,美国西雅图 1核1G 100M 20元

蓝竹云怎么样 蓝竹云好不好蓝竹云是新商家这次给我们带来的 挂机宝25元/年 美国西雅图云服务器 下面是套餐和评测,废话不说直接开干~~蓝竹云官网链接点击打开官网江西上饶挂机宝宿主机配置 2*E5 2696V2 384G 8*1500G SAS RAID10阵列支持Windows sever 2008,Windows sever 2012,Centos 7.6,Debian 10.3,Ubuntu1...

策梅洛定理为你推荐
java队列怎样用java代码实现一个队列php文件什么是php文件容灾备份容灾备份的容灾备份建设模式防护个人防护措施有哪些?0x800ccc0f您的服务器意外终止了连接。其可能原因包括服务器出错、网络出错或长时间处于非活动状态。 0x800CCC0F购物网站设计Jsp+Sql电子商城&网上购物网站设计官方网店淘宝的官方网和旗舰店有什么区别?科学计算器说明书求科学计算器怎么用gps简介GPS是什么安全工程师待遇安全工程就业的待遇怎么样,
免费域名注册网站 狗爹 win8.1企业版升级win10 好看的桌面背景图片 一点优惠网 嘉洲服务器 免费网站申请 宁波服务器 北京双线 服务器监测 新世界服务器 免费mysql数据库 厦门电信 外贸空间 linode支付宝 游戏服务器出租 谷歌台湾 香港博客 magento主机 reboot 更多