java,我有一个数据库表userid,bookid,score,用这个表用协同过滤算法找到爱好相似的用户?
//?皮尔逊相关系数分析
//?介于?-1?到?1?之间。
相关系数越接近与1,说明两个人越相似。
//你先参考下这个虽然里面只有Python的代码:?
//我用java去做一下试试
import?java.util.*;
public?class?Test?{
????public?static?void?main(String[]?args)?{
????????Map>?cri?=?new?HashMap>();
????????//模拟数据库中的数据,实际运用时请灵活变动
????????getData(cri);
????????System.out.println(cri.get("Gene").get("Lady?in?the?Water"));
????????//获得评价值
????????System.out.println(getSim(cri,"Gene","Lisa"));
????}
????//模拟数据库中的数据
????public?static?void?getData(Map>?cri){
????????HashMap?temp?=?new?HashMap();
????????temp.put("Lady?in?the?Water",2.5);
????????temp.put("Snakes?on?a?Plane",3.5);
????????temp.put("Just?My?Luck",3.0);
????????temp.put("Superman?Returns",3.5);
????????temp.put("You,Me?and?Dupree",2.5);
????????temp.put("The?Night?Listener",3.0);
????????cri.put("Lisa",temp);
????????HashMap?temp1?=?new?HashMap();
????????temp1.put("Lady?in?the?Water",3.0);
????????temp1.put("Snakes?on?a?Plane",3.5);
????????temp1.put("Just?My?Luck",1.5);
????????temp1.put("Superman?Returns",5.0);
????????temp1.put("You,Me?and?Dupree",3.5);
????????temp1.put("The?Night?Listener",3.0);
????????cri.put("Gene",temp1);
????}
????public?static?double?getSim(Map>?cri,?String?p1,?String?p2){
????????HashMap?p1m?=?cri.get(p1);
????????HashMap?p2m?=?cri.get(p2);
????????List?simBook?=?new?ArrayList();
????????for?(Map.Entry?entry?:?p1m.entrySet())?{
????????????if?(p2m.containsKey(entry.getKey())){
????????????????simBook.add(entry.getKey());
????????????}
????????}
????????//判断相同元素的个数
????????if?(simBook.size()?==?0){
????????????return?1;
????????}
????????//对所有偏好求和
????????double?sum1?=?0d,sum2?=?0d;
????????//求平方和
????????double?sum1Sq?=?0d,sum2Sq?=?0d;
????????//求乘积和
????????double?pSum?=?0d;
????????for?(String?s?:?simBook)?{
????????????sum1?+=?p1m.get(s);
????????????sum2?+=?p2m.get(s);
????????????sum1Sq?+=?Math.pow(p1m.get(s),2);
????????????sum2Sq?+=?Math.pow(p2m.get(s),2);
????????????pSum?+=?p1m.get(s)*p2m.get(s);
????????}
????????//计算皮尔逊评价值
????????double?num?=?pSum?-?(sum1*sum2/simBook.size());
????????double?den?=?Math.sqrt((sum1Sq-Math.pow(sum1,2)/simBook.size())*(sum2Sq-Math.pow(sum2,2)/simBook.size()));
????????if?(den?==?0){
????????????return?0;
????????}
????????return?num/den;
????}
}协同过滤java用什么实现
众所周知,java在处理数据量比较大的时候,加载到内存必然会导致内存溢出,而在一些数据处理中我们不得不去处理海量数据,在做数据处理中,我们常见的手段是分解,压缩,并行,临时文件等方法;例如,我们要将数据库(不论是什么数据库)的数据导出到一个文件,一般是Excel或文本格式的CSV;对于Excel来讲,对于POI和JXL的接口,你很多时候没有法去控制内存什么时候向磁盘写入,很恶心,而且这些API在内存构造的对象大小将比数据原有的大小要大很多倍数32313133353236313431303231363533e4b893e5b19e31333365633839,所以你不得不去拆分Excel,还好,POI开始意识到这个问题,在3.8.4的版本后,开始提供cache的行数,提供了SXSSFWorkbook的接口,可以设置在内存中的行数,不过可惜的是,他当你超过这个行数,每添加一行,它就将相对行数前面的一行写入磁盘(如你设置2000行的话,当你写第20001行的时候,他会将第一行写入磁盘),其实这个时候他些的临时文件,以至于不消耗内存,不过这样你会发现,刷磁盘的频率会非常高,我们的确不想这样,因为我们想让他达到一个范围一次性将数据刷如磁盘,比如一次刷1M之类的做法,可惜现在还没有这种API,很痛苦,我自己做过测试,通过写小的Excel比使用目前提供刷磁盘的API来写大文件,效率要高一些,而且这样如果访问的人稍微多一些磁盘IO可能会扛不住,因为IO资源是非常有限的,所以还是拆文件才是上策;而当我们写CSV,也就是文本类型的文件,我们很多时候是可以自己控制的,不过你不要用CSV自己提供的API,也是不太可控的,CSV本身就是文本文件,你按照文本格式写入即可被CSV识别出来;如何写入呢?下面来说说。
。
。
在处理数据层面,如从数据库中读取数据,生成本地文件,写代码为了方便,我们未必要1M怎么来处理,这个交给底层的驱动程序去拆分,对于我们的程序来讲我们认为它是连续写即可;我们比如想将一个1000W数据的数据库表,导出到文件;此时,你要么进行分页,oracle当然用三层包装即可,mysql用limit,不过分页每次都会新的查询,而且随着翻页,会越来越慢,其实我们想拿到一个句柄,然后向下游动,编译一部分数据(如10000行)将写文件一次(写文件细节不多说了,这个是最基本的),需要注意的时候每次buffer的数据,在用outputstream写入的时候,最好flush一下,将缓冲区清空下;接下来,执行一个没有where条件的SQL,会不会将内存撑爆?是的,这个问题我们值得去思考下,通过API发现可以对SQL进行一些操作,例如,通过:PreparedStatementstatement=connection.prepareStatement(sql),这是默认得到的预编译,还可以通过设置:PreparedStatementstatement=connection.prepareStatement(sql,ResultSet.TYPE_FORWARD_ONLY,ResultSet.CONCUR_READ_ONLY);来设置游标的方式,以至于游标不是将数据直接cache到本地内存,然后通过设置statement.setFetchSize(200);设置游标每次遍历的大小;OK,这个其实我用过,oracle用了和没用没区别,因为oracle的jdbcAPI默认就是不会将数据cache到java的内存中的,而mysql里头设置根本无效,我上面说了一堆废话,呵呵,我只是想说,java提供的标准API也未必有效,很多时候要看厂商的实现机制,还有这个设置是很多网上说有效的,但是这纯属抄袭;对于oracle上面说了不用关心,他本身就不是cache到内存,所以java内存不会导致什么问题,如果是mysql,首先必须使用5以上的版本,然后在连接参数上加上useCursorFetch=true这个参数,至于游标大小可以通过连接参数上加上:defaultFetchSize=1000来设置,例如:jdbc:mysql://xxx.xxx.xxx.xxx:3306/abc?zeroDateTimeconvertToNull&useCursorFetch=true&defaultFetchSize=1000上次被这个问题纠结了很久(mysql的数据老导致程序内存膨胀,并行2个直接系统就宕了),还去看了很多源码才发现奇迹竟然在这里,最后经过mysql文档的确认,然后进行测试,并行多个,而且数据量都是500W以上的,都不会导致内存膨胀,GC一切正常,这个问题终于完结了。
我们再聊聊其他的,数据拆分和合并,当数据文件多的时候我们想合并,当文件太大想要拆分,合并和拆分的过程也会遇到类似的问题,还好,这个在我们可控制的范围内,如果文件中的数据最终是可以组织的,那么在拆分和合并的时候,此时就不要按照数据逻辑行数来做了,因为行数最终你需要解释数据本身来判定,但是只是做拆分是没有必要的,你需要的是做二进制处理,在这个二进制处理过程,你要注意了,和平时read文件不要使用一样的方式,平时大多对一个文件读取只是用一次read操作,如果对于大文件内存肯定直接挂掉了,不用多说,你此时因该每次读取一个可控范围的数据,read方法提供了重载的offset和length的范围,这个在循环过程中自己可以计算出来,写入大文件和上面一样,不要读取到一定程序就要通过写入流flush到磁盘;其实对于小数据量的处理在现代的NIO技术的中也有用到,例如多个终端同时请求一个大文件下载,例如视频下载吧,在常规的情况下,如果用java的容器来处理,一般会发生两种情况:其一为内存溢出,因为每个请求都要加载一个文件大小的内存甚至于,因为java包装的时候会产生很多其他的内存开销,如果使用二进制会产生得少一些,而且在经过输入输出流的过程中还会经历几次内存拷贝,当然如果有你类似nginx之类的中间件,那么你可以通过send_file模式发送出去,但是如果你要用程序来处理的时候,内存除非你足够大,但是java内存再大也会有GC的时候,如果你内存真的很大,GC的时候死定了,当然这个地方也可以考虑自己通过直接内存的调用和释放来实现,不过要求剩余的物理内存也足够大才行,那么足够大是多大呢?这个不好说,要看文件本身的大小和访问的频率;其二为假如内存足够大,无限制大,那么此时的限制就是线程,传统的IO模型是线程是一个请求一个线程,这个线程从主线程从线程池中分配后,就开始工作,经过你的Context包装、Filter、拦截器、业务代码各个层次和业务逻辑、访问数据库、访问文件、渲染结果等等,其实整个过程线程都是被挂住的,所以这部分资源非常有限,而且如果是大文件操作是属于IO密集型的操作,大量的CPU时间是空余的,方法最直接当然是增加线程数来控制,当然内存足够大也有足够的空间来申请线程池,不过一般来讲一个进程的线程池一般会受到限制也不建议太多的,而在有限的系统资源下,要提高性能,我们开始有了newIO技术,也就是NIO技术,新版的里面又有了AIO技术,NIO只能算是异步IO,但是在中间读写过程仍然是阻塞的(也就是在真正的读写过程,但是不会去关心中途的响应),还未做到真正的异步IO,在监听connect的时候他是不需要很多线程参与的,有单独的线程去处理,连接也又传统的socket变成了selector,对于不需要进行数据处理的是无需分配线程处理的;而AIO通过了一种所谓的回调注册来完成,当然还需要OS的支持,当会掉的时候会去分配线程,目前还不是很成熟,性能最多和NIO吃平,不过随着技术发展,AIO必然会超越NIO,目前谷歌V8虚拟机引擎所驱动的node.js就是类似的模式,有关这种技术不是本文的说明重点;将上面两者结合起来就是要解决大文件,还要并行度,最土的方法是将文件每次请求的大小降低到一定程度,如8K(这个大小是经过测试后网络传输较为适宜的大小,本地读取文件并不需要这么小),如果再做深入一些,可以做一定程度的cache,将多个请求的一样的文件,cache在内存或分布式缓存中,你不用将整个文件cache在内存中,将近期使用的cache几秒左右即可,或你可以采用一些热点的算法来配合;类似迅雷下载的断点传送中(不过迅雷的网络协议不太一样),它在处理下载数据的时候未必是连续的,只要最终能合并即可,在服务器端可以反过来,谁正好需要这块的数据,就给它就可以;才用NIO后,可以支持很大的连接和并发,本地通过NIO做socket连接测试,100个终端同时请求一个线程的服务器,正常的WEB应用是第一个文件没有发送完成,第二个请求要么等待,要么超时,要么直接拒绝得不到连接,改成NIO后此时100个请求都能连接上服务器端,服务端只需要1个线程来处理数据就可以,将很多数据传递给这些连接请求资源,每次读取一部分数据传递出去,不过可以计算的是,在总体长连接传输过程中总体效率并不会提升,只是相对相应和所开销的内存得到量化控制,这就是技术的魅力,也许不要太多的算法,不过你得懂他。
类似的数据处理还有很多,有些时候还会将就效率问题,比如在HBase的文件拆分和合并过程中,要不影响线上业务是比较难的事情,很多问题值得我们去研究场景,因为不同的场景有不同的方法去解决,但是大同小异,明白思想和方法,明白内存和体系架构,明白你所面临的是沈阳的场景,只是细节上改变可以带来惊人的效果。
聚类和协同过滤是什么关系
自邀自答,不用谢。
这是两种完全不同的算法思想。
以二维空间为例,聚类是各个样本往若干个共同中心聚合的过程,计算的是样本点到聚类中心的二维空间距离;而协同过滤是尽量在样本中构造平行相似性,以弥合缺失的样本信息维度。
聚类和协同过滤是可以而且应当在解决实际问题中混合使用的。
但应该是在解决问题的不同阶段。
比如微博用户兴趣推荐,首先使用聚类方法对人群进行若干大类的划分,然后在一类人群中进行协同过滤推荐。
前些天赵容分享过DogYun(狗云)香港BGP线路AMD 5950X经典低价云服务器的信息(点击查看),刚好账户还有点余额够开个最低配,所以手贱尝试下,这些贴上简单测试信息,方便大家参考。官方网站:www.dogyun.com主机配置我搞的是最低款优惠后14.4元/月的,配置单核,512MB内存,10GB硬盘,300GB/50Mbps月流量。基本信息DogYun的VPS主机管理集成在会员中心,包括...
炭云怎么样?炭云(之前的碳云),国人商家,正规公司(哈尔滨桓林信息技术有限公司),主机之家测评介绍过多次。现在上海CN2共享IP的VPS有一款特价,上海cn2 vps,2核/384MB内存/8GB空间/800GB流量/77Mbps端口/共享IP/Hyper-v,188元/年,特别适合电信网络。有需要的可以关注一下。点击进入:炭云官方网站地址炭云vps套餐:套餐cpu内存硬盘流量/带宽ip价格购买上...
易探云服务器怎么样?易探云是国内一家云计算服务商家,致力香港云服务器、美国云服务器、国内外服务器租用及托管等互联网业务,目前主要地区为运作香港BGP、香港CN2、广东、北京、深圳等地区。目前,易探云推出的国内云服务器优惠活动,国内云服务器2核2G5M云服务器低至330元/年起;成都4核8G/200G硬盘/15M带宽,仅1888元/3年起!易探云便宜vps服务器配置推荐:易探云vps云主机,入门型云...
协同过滤为你推荐
手游代理手游代理前期得投资多少钱?有了解的吗?图像识别算法图像识别算法都有哪些sap是什么SAP是用来做什么的?aftereffectafter effect (AE)有哪几层,层有哪些属性?作用是什么?色温图色温是什么意思?色温图表小蓝条AU多轨怎么调出每个音轨下面一个小蓝条调整音量数据管理制度网络管理制度.邮件服务器软件Windows邮件服务器软件那个好第五人格抄袭第五人格逃生模式与猫和老鼠如出一辙,这是否存在抄袭?好用的手机杀毒软件好用的手机杀毒软件
北京网站空间 国内最好的虚拟主机 x3220 godaddy主机 私服服务器 suspended 监控宝 贵州电信宽带测速 论坛空间 中国特价网 hnyd 网站挂马检测工具 qq数据库下载 hostloc 腾讯实名认证中心 东莞服务器 银盘服务是什么 彩虹云 linode支付宝 中国linux 更多