Type3vpsmm

vpsmm  时间:2021-01-17  阅读:()
Proceedingsof20thInternationalCongressonAcoustics,ICA201023-27August2010,Sydney,AustraliaICA20101AStudyonAcousticTheoreticalFormulaeforCompactAcousticReproductionSystemsMasashiNakamura(1),YoshinobuKajikawa(1),YasuoNomura(1)andTakashiMiyakura(2)(1)FacultyofEngineeringScience,KansaiUniversity,3-3-35,yamatecho,Suita-shi,Osaka,Japan(2)HosidenCorporation,1-4-33Kitakyuhoji,Yao-shi,Osaka,JapanPACS:43.
38.
-pTransduction;acousticaldevicesforthegenerationandreproductionofsoundABSTRACTInthispaper,weproposeamethodforanalyzingcompactacousticreproductionsystems(e.
g.
mobilephones)throughacousticequivalentcircuits.
Measuredresponsesofcompactacousticreproductionsystemscannotberepresentedaccuratelybytheanalysisbasedontheconventionalacoustictheory.
Acousticengineersconsequentlyareobligedtodesigncompactacousticreproductionsystemsbytrialanderror.
Moreover,thesoundqualityofthosesystemsislikelytodeteriorateduetothedifficultyofsuchanacousticdesign.
Wethereforeclarifythecauseofthedifferencebetweenthemeasuredresponseandtheanalysisonecalculatedbythefiniteelementmethod(FEM)analysisandconsiderthepossibilityofobtainingnewacoustictheoricalformulaebasedontheanalysisresultsinordertomakeiteasierforacousticengineerstodesigncompactacousticreproductionsystems.
INTRODUCTIONRecently,thedemandforsmall,thinacousticreproductionsystems(e.
g.
mobilephones)hasbeenincreasing.
Theacousticstructuredesignformobilephonesisbecomingmoreandmoredifficultbecausethemobilephonesaremadesmallerandmorecomplicated.
Asaresult,evenexperiencedengineersdesigncompactacousticreproductionsystemsbythetrialanderror.
Thetrialanderrordesignincreasescost,wastestime,anddeterioratesthesoundquality.
Tosolvethisproblem,weproposedanautomaticdesigntechniqueusinggeneticalgorithm(GA)fortheacousticcomponentsofmobilephones[1].
Thissystemisbasedontheacousticequivalentcircuitanalysisusingtheconventionalacousticformulae.
However,thissystemisimpracticalbecauseitcannotdescribethevariationofacousticparametersrelatedtothespatialrelationshipofacousticholes.
Tosolvethisproblem,wehavealreadyexaminedtheinfluenceofthespatialrelationshipbetweenacousticholesusingtwodimensionalFEManalysis[2],[3].
However,thephysicalmechanismhasnotbeenclarifiedenough.
WethereforeanalyzeanactualacousticphenomenonusingthreedimensionalFEManalysis,andclarifythecausethroughtheanalysisresults.
Moreover,wediscussthepossibilityofnewacoustictheoricalformulaebasedontheanalysisresults.
CF2CF1ZCBPout(s)L1R1L3R3L5R5C5L7R7Ein(s)ReceiverholeFrontcoverholeDiaphragmBackcavityBackholeCoupler2ndFrontcavityInputOutput1stFrontcavityType1Type2Type3ReceiverholeFrontcoverhole(Fixed)(Changed)Figure1.
Structureofamobilephone.
Pin(s)Pout(s)ZL5R5C5R7L7L3R3L1R1CF1CF2CBReceiverFrontcoverDiaphragmBackcavityBackhole1stFrontcavity2ndFrontcavityCouplerholeholeCONVENTIONALACOUSTICFORMULAEFORACOUSTICHOLEANDTHEIRPROBLEMFigure2.
EquivalentcircuitmodelofFig.
1.
Thegeneralacousticformulaeforacousticholearegivendependinguponthefrequencyrangeasfollows[4]:23-27August2010,Sydney,AustraliaProceedingsof20thInternationalCongressonAcoustics,ICA20102ICA2010-10010203040501000Response[dB]Frequency[Hz]5005000Type1Type3Type2(a)MeasuredcharacteristicThe1stresonanceThe2ndresonanceThe3rdresonanceTable1.
SizesandacousticparametersofFig.
1.
Parameter5R71076.
2*Diaphragm5L31056.
3*(,,)5R5L5C5C121067.
4*Length1.
6ReceiverholeRadius1.
0(,)1R1LNumber12ndfrontcavity()1FCCapacity3.
30Length0.
3FrontcoverholeRadius1.
35(,)3R3LNumber11stfrontcavity()2FCCapacity0.
43Backcavity()BCCapacity0.
56Length1.
0BackholeRadius0.
9(,)7R7LNumber1-10010203040501000Response[dB]Frequency[Hz]5005000(b)SimulatedcharacteristicFigure3.
ComparisonofmeasuredfrequenyresponsesofFig.
1andthecorrespondingsimulatedfrequencyonescalculatedbytheconventionalacoustictheory.
Length[mm],Radius[mm],Capacity[cc]acousticholeinmetersaradiusofholesinmeters,llengthofopen-endcorrectioninmeters,0,ρairdensityinkilogrampercubicmeter,Nnumberofacousticholes,fa/002.
0<μviscositycoefficientofairinpascalsecond,andScrosssectionalareaofacousticholesinsquaremeter.
NShLNShR012134,8ρμπ==(1)faf/10/01.
0<1showstheacousticstructureofamobilephone,whosesizesandacousticalequivalentcircuitareshowninTable1andFig.
2,respectively.
Fig.
3showsmeasuredresponsesandthecorrespondingcalculatedonesobtainedbytheconventionalacousticformulaeincasewherethepositionofthereceiverholechangesasshowninFig.
1.
FromFig.
3(a),wecanseethattheleveloftheresponsebecomeshighasthepositionofthereceiverholemovesoutwardlyfromthecenterofthereceiverplane.
Ontheotherhand,thecalculatedresponseshowninFig.
3(b)cannotexplainthechangeofmeasuredresponsesat2ndand3rdresonantfrequencies.
Hence,theconventionalacousticformulaeareuselesstopracticaldesign.
Inthenextsection,weclarifythecausesthroughsomeanalysesbyFEManalysis.
+=2202ahNSRωμρ(2)[lhNSL202+=ρ](3)faf/01.
0/002.
0<0/002.
0/008.
0/01.
0213+=(4)ACOUSTICALPHENOMENONANALYSISUSINGFINITEELEMENTMETHOD222111,LjRZLjRZωω+=+=(5)Fig.
4showsthestructureofamobilephone,whosesizesandacousticalequivalentcircuitareshowninTable2andFig.
5,respectively.
Weanalyzetheacousticphenomenonofthisstructurebythefiniteelementmothod(FEM),especially,includingacousticimpedanceanalysis.
where,andisacousticimpedanceofacousticholeinpascalsecondpercubicmeter,1Z2Z3ZRacousticresistanceofacousticholeinpascalsecondpercubicmeter,Lacousticmassinpascalsquaresecondpercubicmeter.
lengthofh23-27August2010,Sydney,AustraliaProceedingsof20thInternationalCongressonAcoustics,ICA2010ICA20103Diaphragm1stFrontcavity2ndFrontcavityReceiverholeFrontcoverholeReceiverholeFrontcoverhole(Fixed)(Changed)CenterShiftedby5mm(a)External(b)StractureFigure4.
Prototypeofamobilephone.
1stFrontcavity1C2L1L1R2RFrontcoverholeααZcs1Receiverhole2ndFrontcavity2CβDiaphragmdLdRdCαβ,:Open-endcorrectionCrosssection1cav1Rcav2RZcs2Crosssection2Figure5.
EquivalentcircuitemodelofFig.
4.
Inthissimulation,themodelshowninFig.
6isused.
Theboundaryconditionontheinsidewallissetastheparticlevelocityisequalto0.
Additionally,theboundaryconditionontheoutputedgeissetasthesoundpressureisequalto0.
ThesimulationconditionsareshowninTable3.
InputsignalInthissimulation,thevirtualplanesoundsourceinFig.
6isdrivenbyaninputsignal(particlevelocity)whichisagaussianpulseasfollows[5]:)(tuvps(){229.
0/0)(TTtnvpseAtuΔ=}Fig.
7showsthedynamicsofgaussianpulseusedfortheanalysis,whoseparametersandelectricpowerspectrumareshowninTable4andFig.
8,respectively.
Parameter(6)Table2.
SizesandacousticparametersofFig.
4.
dR61014.
8*Diaphragm(HDR9310)dL31091.
8*(dR,dL,dC)dC11002.
4*2Length1.
0ReirhoeecvelRadi1.
0us(2R,2L)Number11stfrontcavity(C1)Capacity0.
18Length1.
0FrontcoverholeRadius1.
0(3R,3L)Number12ndfrontcavity(2C)Capacity364π10*hLength[mm],Radius[mm]y[cc]imuitions.
TypeoffluidAir(incompressible),CapacitTable3.
SlationcondSpeTempVcificheatratio1.
4erature20℃ityofair18.
2E-6Piscosas(a)Model1(Theentirestructure)2ndcavityHoleReceiverholeCrosssection11stFrontcavity2ndFrontcavityFrontcoverholeh[mm]5[mm](Virtualplanesoundsource)Crosssection2(Virtualplanesoundsource)(b)Model2(Onlythehole)Figure6.
ModelofsimulationwithFEManalysis.
AcousticimpedanceanalysisThesoundpressureinthestructureiscausedbytheparticlevelocityatthevirtualplanesoundsourceinFig.
6.
atthevirtualplanesoAtthattime,thesoundpressurevpsplculaundsourceiscalculatedbytheFEManalysisandtheacousticimpedancevpsZoftheoutputedgesidetothevirtualplanesoundsourcecanbecatedbywhereΔtissamplingperiod,ninteger,t(t=Δtn)time,A0amplitude,andTisdeterminedaccordingtothefrequencyf0atwhichtheelectricpowerspectrumofthegaussianpulsedecreasesby3dBasfollows:0/646.
0fT=(7))()()ωωvpsvpsvpUSPZ=,(8)(ωswhereistheareaofthevirtualplanesoundsource.
S23-27August2010,Sydney,AustraliaProceedingsof20thInternationalCongressonAcoustics,ICA20104ICA2010Table4.
Parametersofgaussianpulse.
A01.
0E-51stFrontcavityZcs12ndFrontcavityCrosssection11M1R2M2R2C1C1cavR2cavRΔt1.
0E-5secf010.
0kHz00.
10.
20.
30.
40.
50.
60.
70.
80.
91.
000.
00050.
0010.
00150.
002Time[sec]Perticlevelocity]m/s10[5*Figure9.
EquivalentcircuitmodelofModel1.
60708090100110120130100100010000Solidlines:CenterDashedlines:Shiftedby5mmFrequency[Hz]Soundpressurelevel[dB]h=3mmh=6mmh=1mmFigure7.
Dynamicsofgaussianpulse.
-180-170-160-150-140-130-120-110-100-90-8005.
010.
015.
020.
025.
030.
035.
040.
045.
050.
0Frequency[kHz]Amplitude[dB]Figure10.
Measuredfrequencycharacteristicsincasewherethepositionofthereceiverholechanges(SPL).
Therefore,canbeestimatefromrealpartandcanbeestimatedfromthegradientofthereactancetotheangularfrequency.
endasfollows:TheparametersshowninFig.
9aredeterminedbrelationshipbetweentheacousticimbasedontheequivalentcircuitanalysisandtheFEManalysis.
Specifically,theseparametersaredeterminedtobecomeFigure8.
Amplitude-Frequencycharacteristicofgaussianpulse.
Procedureforestimatingacousticparametersissimulation,acousticimpedanceanalysesaredoneofstructuresshowninFig.
6.
Toclarifyhowtheacousticparameteroftheriverholechangesaccordingtotheposition,theacousticparametersshowninFig.
5arecimpedanceatlowfrequenciescanbeapproximatedasfollows:thereactancetotheangularfrequencyshowsthesumtotaloftheacousticmass.
Hence,thesumtotaloes(11)2Rd2LTofinallystimateotherparameters,theequivaletcircuitshowninFig.
9toModel1isemployed.
1Mand2MinFig.
9aredefineInthonthetwokindseceestimated.
)212MM+=(211MLMLMt+=++=αβα(10)Firstofall,Model1showninFig.
6isconsidered.
FromFig.
5,wecanseethattheacousticcomplianceofthecavityisconsideredtobeopenatlowfrequenciesbecausetheacousticimpedanceofthecavitygrowsverymuch.
Therefore,theacoustiythepedancecharacteristicssmallmostthesumtotalofsquareerrorofcharacteristicsbasedontheequivalentcircuitanalysisandtheFEManalysisbyMaximumLikelihoodEstimation(MLE).
Inaddition,sincethereceiverholeandthefrontcoverholearethesamesizes,21RR=and21LL=.
Therefore,allparametersofModel1aredetermined.
However,itisdifficulttoestimatethoseparametersaccuratelybecausetherearealotofthecombinationsoftheparameterstomatchbothcharacteristics.
ANALYSISRESULTSFig.
10showsthemeasuredfrequencycharacteristicsofamobilephoneshowninFig.
4.
FromFig.
10,wecanseethat)2()(21211βαω+++++≈LLjRRZcs(9)(Lowfrequencyband)Inaword,thegradientoftMfthe)2(21βα+++=LLMtacousticmasstMcanbetimated.
Next,theanalysisofModel2isdescribed.
Theacousticimpedance2csZinModel2isshownasfollows:222csLjRZω+=thefrequencycharacteristicsthereceiverhole.
Inthissvaryaccordingtothepositionofection,suchaphenomenonisclarifiedbasedonsomeanalysisresults.
23-27August2010,Sydney,AustraliaProceedingsof20thInternationalCongressonAcoustics,ICA2010ICA201050200040006000800010000810710610510410Acousticimpedance2csZFrequency[Hz]}Re{2csZ}Im{2csZ2csZ02000400060008000100001010910810710610510Frequency[Hz]Acousticimpedance1csZ]s/mPa[3Solidlines:CenterDashedlines:Shiftedby5mmh=3mmh=6mmh=1mmFigure13.
Acousticimpedancecharasteristics(Model2).
Figure11.
Acousticimpedancecharasteristicsincasewherethepositionofthereceiverholechanges(Model1).
00.
51.
01.
52.
02.
51002003004005006007008009001000)10(7*Frequency[Hz]Reactanceof1csZSolidlines:CenterDashedlines:Shiftedby5mmh=3mmh=6mmh=1mm02000400060008000100001010910810710610510Frequency[Hz]Acousticimpedance1csZ]s/mPa[3Solidlines:CenterDashedlines:Shiftedby5mmh=3mmh=6mmh=1mmFigure12.
Reactancecharacteristicsincasewherethepositionofthereceiverholechanges(Model1).
AcousticimpedanceanalysisModel1Fig.
11showstheacousticimpedancecharacteristicsofel1bytheFEManalysis.
FromFig.
11,itcanbefrontFig.
13showstheacousticimpedancecharacteristicsofel3bytheFEManalysis.
FromFig.
13,wecanFig.
14showsacousticimpedancecharacteristicsthatusetheestimatedparameters.
FromFig.
14,wecanseethatthesecharacteristicsareconsistentwiththecharacteristicsobtainedFigure14.
Acousticimpedancecharacteristicthatusesestimatedparameters.
fromtheFEManalysis.
Hence,itcanbeseenthattheparameterscanbeestimatedaccurately.
Next,Figs.
15-17showparametersestimatedbyMLE.
romFig.
15,itcanbeseenthatthesumtotaloftheacousticmassincreasesasthepositionoftheacousticholeshiftscauseavirtualtubeisastheeofttothepositionoftheacoustichole.
1csZinModseacthehenthatthepositionofthereceiverholeinfluencestheousticalcharacteristics.
Moreover,theinfluencegrowsaseightofthe2ndfrontcavitybecomesshort.
ThemeasuredcharacteristicsshowninFig.
10alsohavethesametendency.
Next,Fig.
12showsthereactancecharacteristicsof1csZ.
Fig.
12showsthattheresonantfrequencychangesaccordingtothesumtotaloftheacousticmass,andinfluencestheacousticcharacteristics.
Thegapbetweenthecoverholeandthereceiverholerelatestotheincreaseoftheacousticmassinthetightspace.
Thecauseisexaminedindetailinthenextsection.
Model2Ftfromcentertoedge.
Furthermore,theincreaseisremarkableasthe2ndfrontcavitynarrows.
ThisisbeMformedbytheopen-endcorrectioninthe2ndfrontcavityandtheinterferencebecomesintenseasthethe2ndfrontcavitynarrows.
FromFig.
16,wecanseethatthereislittleinfluenceofthepositionoftheacousticholeandtheseparametersarealmostthesamevalueasthetheoryones.
Hence,wecanseethatthevariationoftheacousticcharacteristicsaccordingtothepositionofthereceiverholeisrelatedtothechangeintheacousticmass.
Next,1cavRand2cavRshowninTheparametersshowninFig.
17cannotbecalculatedbytheconventionalacoustictheory.
Thisisbecausetheviscosityofairbecomeslargeasthespaceofthecavitynarrows.
Therefore,theresistanceofthe1stcavitywhosecapacitydoesnotchangeisaconstantandtheresistanceofthe2ndcavitywhosecapacitychangesgrowsspachecavitynarrows.
Fromtheanalysisresults,theformulaethataccuratelycalculatetheopen-endcorrectionandtherelatedresistanceshouldbeestablishedforthecompactacousticreproductionsystemssuchasmobilephonesbecausetheacousticcharacteristicschangeaccording3csZinModseethHoreactattheresistanceisafunctionofthefrequency.
wever,thechangeissmallcomparedwiththatoftheance,sothattheresistanceistreatedasaparameterthatdoesnotdependonthefrequency.
Therefore,theacousticresistance1Risregardedasameanvalue.
Estimatedresultofacousticparameters23-27August2010,Sydney,AustraliaProceedingsof20thInternationalCongressonAcoustics,ICA20106ICA2010Certhechangeintheopen-endcorrectionandthatintheacousticresistanceofthenarrowcavitydependingtheacousticholeincasewherecompactacousticreproductionsystemsaredesigned.
1Y.
Nomura,T.
Nakatani,Y.
Kajikawa,"AnAutomaticAcoustics,Rome,Italy,Sep.
Y.
Kajikawa,Y.
Nomura,"AMethodforAnalyzingCompactAcousticReproduction3theRelativePositionofAcousticHolesin45shimoto,T.
Abe,Finite-differencetime-domainONCLUSIONSInthispaper,wehaveexaminedtheinfluenceofthepositionoftheacousticholetotheacousticcharacteristicsbasedonthreedimensionalFEManalysis.
Asaresult,weneedtoconsid18002000220024002600280030003200123456Theory)(tMCenterShiftedby5mmLengthof2ndcavityh[mm]Acousticmass]m/sPa[32onthepositionofInthefuture,wewillobtaintheacoustictheoricalformulaethatcanexplainthemeasurementcharacteristicaccuratelyfromvariousanalysisresults.
REFERENCESFigure15.
EstimatedparametertM.
123456Theory)(2CTheory)(1C1C2CCenterShiftedby5mm1C2C{{121011101310Lengthof2ndcavityh[mm]Acousticcompliance]Pa/m[3DesignTechniqueUsingGeneticAlgorithmfortheAcousticComponentofMobilePhones",17thInternationalCongresson2001.
2Y.
Nagase,S.
Tsujikawa,SystemsthroughAcousticEquivalentCircuit",19thInternationalCongressonAcoustics,Madrid,Spain,Sep.
2007.
Y.
Nagase,Y.
Kajikawa,Y.
Nomura,"AStudyonEffectsAcousticEquivalentCircuitAnalysis",IEICETechnicalReportEA,vol.
107,no.
470,pp.
13-17,Osaka,Japan,Jan.
2008.
LeoL.
Beranek,Acoustics,McGraw-HillBookCompany,1954.
O.
HaFigure16.
Estimatedparametersand.
1C2C123456710610510CenterShiftedby5mm{{1cavR1cavR2cavR2cavRLengthof2ndcavityh[mm]Acousticresistance]m/sPa[3method,MorikitaPublishingCo.
,Ltd.
,Japan,2006.
,InJapanese.
Figure17.
Estimatedparametersand1cavR2cavR.

随风云25元/月 ,德阳高防云服务器 2核2G 10M 75元/月 内蒙古三线BGP服务器 2核2G 5M

公司介绍成都随风云科技有限公司成立于2021年,是国内领先的互联网业务平台服务提供商。公司专注为用户提供低价高性能云计算产品,致力于云计算应用的易用性开发,并引导云计算在国内普及。目前公司研发以及运营云服务基础设施服务平台(IaaS),面向全球客户提供基于云计算的IT解决方案与客户服务,拥有丰富的国内BGP、双线高防、香港等优质的IDC资源。公司一直秉承”以人为本、客户为尊、永续创新&...

BuyVM商家4个机房的官方测试IP地址和测速文件

BuyVM 商家算是有一些年头,从早年提供低价便宜VPS主机深受广大网友抢购且也遭到吐槽的是因为审核账户太过于严格。毕竟我们国内的个人注册账户喜欢账户资料乱写,毕竟我们看英文信息有些还是比较难以识别的,于是就注册信息的时候随便打一些字符,这些是不能通过的。前几天,我们可以看到BUYVM商家有新增加迈阿密机房,而且商家有提供大硬盘且不限制流量的VPS主机,深受有一些网友的喜欢。目前,BUYVM商家有...

A400:36元/季,16.8/月kvm架构,线路优质,延迟低

A400互联是一家成立于2020年的商家,主要推行洛杉矶服务器采用kvm架构,线路优质,延迟低,稳定性高!全场产品对标腾讯云轻量,服务器线路有有美国洛杉矶cn2_gia、香港cn2+cmi,目前推行的vps服务器均为精心挑选的优质线路机房,A400互联推出了夏季优惠洛杉矶5折、香港7折促销活动,质量可靠,价格实惠!二:优惠码洛杉矶五折优惠码:20210620香港cn2七折优惠码:0710三、优惠方...

vpsmm为你推荐
电信主机租用租用电信服务器要注意什么?海外主机如何选择优质的海外主机?英文域名中文域名和英文域名的区别? 越详细越好免费vps服务器免费服务器有哪些网站空间租用公司网站租用什么样的网站空间合适云南虚拟主机大家觉得云南天成科技服务器租用给力吗?河南虚拟主机新乡在哪个网站买虚拟主机好?西安虚拟主机西部数码虚拟主机怎么样,西部数码云主机怎么样www二级域名两个不同的网站一个用主域名,一个用www二级域名,这样做对SEO有没有影响二级域名一级域名与二级域名有啥区别
香港vps 过期域名抢注 highfrequency BWH 美国便宜货网站 特价空间 ixwebhosting 全能主机 qingyun 建立邮箱 卡巴斯基免费试用版 双线机房 服务器维护 我的世界服务器ip 可外链的相册 中国联通宽带测试 腾讯网盘 大化网 聚惠网 cdn加速技术 更多