apriori如何实现apriori算法

apriori  时间:2021-06-22  阅读:()

Clementine关联规则Apriori算法事务模式怎么使用

算法: Apriori算法,使用逐层迭代找出频繁项集。

输入:事务数据库D;最小支持度阈值min_sup。

输出:D 中的频繁项集L。

1) L1 = find_frequent_1_itemsets(D); 2) for (k = 2; Lk-1 ≠ ; k++) { 3) Ck = aproiri_gen(Lk-1,min_sup); 4) for each transaction t D{ //scan D for count 5) Ct = subset(Ck,t); //get subsets of t that are candidates 6) for each candidate c Ct 7) c.count++; 8) } 9) Lk={c Ck | c.count ≥ min_sup} 10) } 11) return L = ∪kLk;

问读音:null,Apriori,FP-Growth的读法

汉语标出可真不准确,不方便啊 servlet /s?:vlit/--/se wu li te/ HTML 就是一个一个字母的读,它是hyper text markup language简写 null /n?l/--/na ou/ apriori 英文发音为:/?pri?ri/--/e pe rui ao rui/ FP-Growth 英文发音为:/aif pi: gr?uθ/--/F P-ge rou si/ 前面一个词一般读中文 普瑞奥瑞 后面的一个词 直接读英文

如何实现apriori算法

import?java.util.HashMap; import?java.util.HashSet; import?java.util.Iterator; import?java.util.Map; import?java.util.Set; import?java.util.TreeMap; /** *?<B>关联规则挖掘:Apriori算法</B> *? *?<P>按照Apriori算法的基本思想来实现 *? *?@author?king *?@since?2013/06/27 *? */ public?class?Apriori?{ private?Map<Integer,?Set<String>>?txDatabase;?//?事务数据库 private?Float?minSup;?//?最小支持度 private?Float?minConf;?//?最小置信度 private?Integer?txDatabaseCount;?//?事务数据库中的事务数 private?Map<Integer,?Set<Set<String>>>?freqItemSet;?//?频繁项集集合 private?Map<Set<String>,?Set<Set<String>>>?assiciationRules;?//?频繁关联规则集合 public?Apriori( ????Map<Integer,?Set<String>>?txDatabase,? ????Float?minSup,? ????Float?minConf)?{ ???this.txDatabase?=?txDatabase; ???this.minSup?=?minSup; ???this.minConf?=?minConf; ???this.txDatabaseCount?=?this.txDatabase.size(); ???freqItemSet?=?new?TreeMap<Integer,?Set<Set<String>>>(); ???assiciationRules?=?new?HashMap<Set<String>,?Set<Set<String>>>(); } /** *?扫描事务数据库,计算频繁1-项集 *?@return */ public?Map<Set<String>,?Float>?getFreq1ItemSet()?{ ???Map<Set<String>,?Float>?freq1ItemSetMap?=?new?HashMap<Set<String>,?Float>(); ???Map<Set<String>,?Integer>?candFreq1ItemSet?=?this.getCandFreq1ItemSet(); ???Iterator<Map.Entry<Set<String>,?Integer>>?it?=?candFreq1ItemSet.entrySet().iterator(); ???while(it.hasNext())?{ ????Map.Entry<Set<String>,?Integer>?entry?=?it.next(); ????//?计算支持度 ????Float?supported?=?new?Float(entry.getValue().toString())/new?Float(txDatabaseCount); ????if(supported>=minSup)?{ ?????freq1ItemSetMap.put(entry.getKey(),?supported); ????} ???} ???return?freq1ItemSetMap; } /** *?计算候选频繁1-项集 *?@return */ public?Map<Set<String>,?Integer>?getCandFreq1ItemSet()?{ ???Map<Set<String>,?Integer>?candFreq1ItemSetMap?=?new?HashMap<Set<String>,?Integer>(); ???Iterator<Map.Entry<Integer,?Set<String>>>?it?=?txDatabase.entrySet().iterator(); ???//?统计支持数,生成候选频繁1-项集 ???while(it.hasNext())?{ ????Map.Entry<Integer,?Set<String>>?entry?=?it.next(); ????Set<String>?itemSet?=?entry.getValue(); ????for(String?item?:?itemSet)?{ ?????Set<String>?key?=?new?HashSet<String>(); ?????key.add(item.trim()); ?????if(!candFreq1ItemSetMap.containsKey(key))?{ ??????Integer?value?=?1; ??????candFreq1ItemSetMap.put(key,?value); ?????} ?????else?{ ??????Integer?value?=?1+candFreq1ItemSetMap.get(key); ??????candFreq1ItemSetMap.put(key,?value); ?????} ????} ???} ???return?candFreq1ItemSetMap; } /** *?根据频繁(k-1)-项集计算候选频繁k-项集 *? *?@param?m?其中m=k-1 *?@param?freqMItemSet?频繁(k-1)-项集 *?@return */ public?Set<Set<String>>?aprioriGen(int?m,?Set<Set<String>>?freqMItemSet)?{ ???Set<Set<String>>?candFreqKItemSet?=?new?HashSet<Set<String>>(); ???Iterator<Set<String>>?it?=?freqMItemSet.iterator(); ???Set<String>?originalItemSet?=?null; ???while(it.hasNext())?{ ????originalItemSet?=?it.next(); ????Iterator<Set<String>>?itr?=?this.getIterator(originalItemSet,?freqMItemSet); ????while(itr.hasNext())?{ ?????Set<String>?identicalSet?=?new?HashSet<String>();?//?两个项集相同元素的集合(集合的交运算)???? ?????identicalSet.addAll(originalItemSet);? ?????Set<String>?set?=?itr.next();? ?????identicalSet.retainAll(set);?//?identicalSet中剩下的元素是identicalSet与set集合中公有的元素 ?????if(identicalSet.size()?==?m-1)?{?//?(k-1)-项集中k-2个相同 ??????Set<String>?differentSet?=?new?HashSet<String>();?//?两个项集不同元素的集合(集合的差运算) ??????differentSet.addAll(originalItemSet); ??????differentSet.removeAll(set);?//?因为有k-2个相同,则differentSet中一定剩下一个元素,即differentSet大小为1 ??????differentSet.addAll(set);?//?构造候选k-项集的一个元素(set大小为k-1,differentSet大小为k) ??????if(!this.has_infrequent_subset(differentSet,?freqMItemSet)) ??????????candFreqKItemSet.add(differentSet);?//?加入候选k-项集集合 ?????} ????} ???} ???return?candFreqKItemSet; } /** ?*?使用先验知识,剪枝。

若候选k项集中存在k-1项子集不是频繁k-1项集,则删除该候选k项集 ?*?@param?candKItemSet ?*?@param?freqMItemSet ?*?@return ?*/ private?boolean?has_infrequent_subset(Set<String>?candKItemSet,?Set<Set<String>>?freqMItemSet)?{ Set<String>?tempSet?=?new?HashSet<String>(); tempSet.addAll(candKItemSet); Iterator<String>?itItem?=?candKItemSet.iterator(); while(itItem.hasNext())?{ String?item?=?itItem.next(); tempSet.remove(item);//?该候选去掉一项后变为k-1项集 if(!freqMItemSet.contains(tempSet))//?判断k-1项集是否是频繁项集 return?true; tempSet.add(item);//?恢复 } return?false; } /** *?根据一个频繁k-项集的元素(集合),获取到频繁k-项集的从该元素开始的迭代器实例 *?@param?itemSet *?@param?freqKItemSet?频繁k-项集 *?@return */ private?Iterator<Set<String>>?getIterator(Set<String>?itemSet,?Set<Set<String>>?freqKItemSet)?{ ???Iterator<Set<String>>?it?=?freqKItemSet.iterator(); ???while(it.hasNext())?{ ????if(itemSet.equals(it.next()))?{ ?????break; ????} ???} ???return?it; } /** *?根据频繁(k-1)-项集,调用aprioriGen方法,计算频繁k-项集 *? *?@param?k? *?@param?freqMItemSet?频繁(k-1)-项集 *?@return */ public?Map<Set<String>,?Float>?getFreqKItemSet(int?k,?Set<Set<String>>?freqMItemSet)?{ ???Map<Set<String>,?Integer>?candFreqKItemSetMap?=?new?HashMap<Set<String>,?Integer>(); ???//?调用aprioriGen方法,得到候选频繁k-项集 ???Set<Set<String>>?candFreqKItemSet?=?this.aprioriGen(k-1,?freqMItemSet); ???//?扫描事务数据库 ???Iterator<Map.Entry<Integer,?Set<String>>>?it?=?txDatabase.entrySet().iterator(); ???//?统计支持数 ???while(it.hasNext())?{ ????Map.Entry<Integer,?Set<String>>?entry?=?it.next(); ????Iterator<Set<String>>?kit?=?candFreqKItemSet.iterator(); ????while(kit.hasNext())?{ ?????Set<String>?kSet?=?kit.next(); ?????Set<String>?set?=?new?HashSet<String>(); ?????set.addAll(kSet); ?????set.removeAll(entry.getValue());?//?候选频繁k-项集与事务数据库中元素做差运算 ?????if(set.isEmpty())?{?//?如果拷贝set为空,支持数加1 ??????if(candFreqKItemSetMap.get(kSet)?==?null)?{ ???????Integer?value?=?1; ???????candFreqKItemSetMap.put(kSet,?value); ??????} ??????else?{ ???????Integer?value?=?1+candFreqKItemSetMap.get(kSet); ???????candFreqKItemSetMap.put(kSet,?value); ??????} ?????} ????} ???}

企鹅小屋6折年付240元起,美国CN2 GIA VPS促销,独享CPU,三网回程CN2 GIA

企鹅小屋怎么样?企鹅小屋最近针对自己的美国cn2 gia套餐推出了2个优惠码:月付7折和年付6折,独享CPU,100%性能,三网回程CN2 GIA网络,100Mbps峰值带宽,用完优惠码1G内存套餐是年付240元,线路方面三网回程CN2 GIA。如果新购IP不能正常使用,请在开通时间60分钟内工单VPS技术部门更换正常IP;特价主机不支持退款。点击进入:企鹅小屋官网地址企鹅小屋优惠码:年付6折优惠...

10gbiz七月活动首月半价$2.36/月: 香港/洛杉矶CN2 GIA VPS

10gbiz怎么样?10gbiz 美国万兆带宽供应商,主打美国直连大带宽,真实硬防。除美国外还提供线路非常优质的香港、日本等数据中心可供选择,全部机房均支持增加独立硬防。洛杉矶特色线路去程三网直连(电信、联通、移动)回程CN2 GIA优化,全天低延迟。中国大陆访问质量优秀,最多可增加至600G硬防。香港七星级网络,去程回程均为电信CN2 GIA+联通+移动,大陆访问相较其他香港GIA线路平均速度更...

HostKvm - 夏季云服务器七折优惠 香港和韩国机房月付5.95美元起

HostKvm,我们很多人都算是比较熟悉的国人服务商,旗下也有多个品牌,差异化多占位策略营销的,商家是一个创建于2013年的品牌,有提供中国香港、美国、日本、新加坡区域虚拟化服务器业务,所有业务均对中国大陆地区线路优化,已经如果做海外线路的话,竞争力不够。今天有看到HostKvm夏季优惠发布,主要针对香港国际和韩国VPS提供7折优惠,折后最低月付5.95美元,其他机房VPS依然是全场8折。第一、夏...

apriori为你推荐
存储区域网络网络存储技术的SAN(存储区域网络)的优点oledbdatareader无法将带 [] 的索引应用于“OleDbDataReader”类型的表达式,求大神解答pps官网pps软件下载中心 pps影视软件下载公众号付费阅读怎么利用公众号做知识付费?特斯拉model3降价特斯拉官网为何会被挤崩?东兴证券网站东兴证券超强版下载云家政网腾讯网的网址是多少?particular教程如何用AE做出花瓣从身体变出来的特效aviconverter谁有好得AVI转换器?可以全部转换得!ibooks支持什么格式iPhone手机支持什么格式的电子书?
台湾vps 哈尔滨服务器租用 西安电信测速 国外主机 sugarsync 网络星期一 patcha 国外空间 百兆独享 admit的用法 昆明蜗牛家 天翼云盘 国外ip加速器 drupal安装 工信部网站备案查询 免费蓝钻 阿里云邮箱怎么注册 葫芦机 SmartAXMT800 月付空间 更多