如何使用Hadoop的Partitioner
Hadoop里面的MapReduce编程模型,非常灵活,大部分环节我们都可以重写它的API,来灵活定制我们自己的一些特殊需求。
今天散仙要说的这个分区函数Partitioner,也是一样如此,下面我们先来看下Partitioner的作用:
对map端输出的数据key作一个散列,使数据能够均匀分布在各个reduce上进行后续操作,避免产生热点区。
Hadoop默认使用的分区函数是Hash Partitioner,源码如下:
/** Partition keys by their {@link Object#hashCode()}. */
public class HashPartitioner<K, V> extends Partitioner<K, V> {
/** Use {@link Object#hashCode()} to partition. */
public int getPartition(K key, V value,
int numReduceTasks) {
//默认使用key的hash值与上int的最大值,避免出现数据溢出 的情况
return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
}
}
大部分情况下,我们都会使用默认的分区函数,但有时我们又有一些,特殊的需求,而需要定制Partition来完成我们的业务,案例如下:
对如下数据,按字符串的长度分区,长度为1的放在一个,2的一个,3的各一个。
河南省;1
河南;2
中国;3
中国人;4
大;1
小;3
中;11
这时候,我们使用默认的分区函数,就不行了,所以需要我们定制自己的Partition,首先分析下,我们需要3个分区输出,所以在设置reduce的个数时,一定要设置为3,其次在partition里,进行分区时,要根据长度具体分区,而不是根据字符串的hash码来分区。
核心代码如下:
/**
* Partitioner
*
*
* */
public static class PPartition extends Partitioner<Text, Text>{
@Override
public int getPartition(Text arg0, Text arg1, int arg2) {
/**
* 自定义分区,实现长度不同的字符串,分到不同的reduce里面
*
* 现在只有3个长度的字符串,所以可以把reduce的个数设置为3
* 有几个分区,就设置为几
* */
String key=arg0.toString();
if(key.length()==1){
return 1%arg2;
}else if(key.length()==2){
return 2%arg2;
}else if(key.length()==3){
return 3%arg2;
}
return 0;
}
}
全部代码如下:
.partition.test;
import java.io.IOException;
.apache.hadoop.fs.FileSystem;
.apache.hadoop.fs.Path;
.apache.hadoop.io.LongWritable;
.apache.hadoop.io.Text;
.apache.hadoop.mapred.JobConf;
.apache.hadoop.mapreduce.Job;
.apache.hadoop.mapreduce.Mapper;
.apache.hadoop.mapreduce.Partitioner;
.apache.hadoop.mapreduce.Reducer;
.apache.hadoop.mapreduce.lib.db.DBConfiguration;
.apache.hadoop.mapreduce.lib.db.DBInputFormat;
.apache.hadoop.mapreduce.lib.input.FileInputFormat;
.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
.qin.operadb.PersonRecoder;
.qin.operadb.ReadMapDB;
/**
* @author qindongliang
*
* 大数据交流群:376932160
*
*
* **/
public class MyTestPartition {
/**
* map任务
*
* */
public static class PMapper extends Mapper<LongWritable, Text, Text, Text>{
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
// System.out.println("进map了");
//mos.write(namedOutput, key, value);
String ss[]=value.toString().split(";");
context.write(new Text(ss[0]), new Text(ss[1]));
}
}
/**
* Partitioner
*
*
* */
public static class PPartition extends Partitioner<Text, Text>{
@Override
public int getPartition(Text arg0, Text arg1, int arg2) {
/**
* 自定义分区,实现长度不同的字符串,分到不同的reduce里面
*
* 现在只有3个长度的字符串,所以可以把reduce的个数设置为3
* 有几个分区,就设置为几
* */
String key=arg0.toString();
if(key.length()==1){
return 1%arg2;
}else if(key.length()==2){
return 2%arg2;
}else if(key.length()==3){
return 3%arg2;
}
return 0;
}
}
/***
* Reduce任务
*
* **/
public static class PReduce extends Reducer<Text, Text, Text, Text>{
@Override
protected void reduce(Text arg0, Iterable<Text> arg1, Context arg2)
throws IOException, InterruptedException {
String key=arg0.toString().split(",")[0];
System.out.println("key==> "+key);
for(Text t:arg1){
//System.out.println("Reduce: "+arg0.toString()+" "+t.toString());
arg2.write(arg0, t);
}
}
}
public static void main(String[] args) throws Exception{
JobConf conf=new JobConf(ReadMapDB.class);
//Configuration conf=new Configuration();
conf.set("mapred.job.tracker","192.168.75.130:9001");
//读取person中的数据字段
conf.setJar("tt.jar");
//注意这行代码放在最前面,进行初始化,否则会报
/**Job任务**/
Job job=new Job(conf, "testpartion");
job.setJarByClass(MyTestPartition.class);
System.out.println("模式: "+conf.get("mapred.job.tracker"));;
// job.setCombinerClass(PCombine.class);
job.setPartitionerClass(PPartition.class);
job.setNumReduceTasks(3);//设置为3
job.setMapperClass(PMapper.class);
// MultipleOutputs.addNamedOutput(job, "hebei", TextOutputFormat.class, Text.class, Text.class);
// MultipleOutputs.addNamedOutput(job, "henan", TextOutputFormat.class, Text.class, Text.class);
job.setReducerClass(PReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
String path="hdfs://192.168.75.130:9000/root/outputdb";
FileSystem fs=FileSystem.get(conf);
Path p=new Path(path);
if(fs.exists(p)){
fs.delete(p, true);
System.out.println("输出路径存在,已删除!");
}
FileInputFormat.setInputPaths(job, "hdfs://192.168.75.130:9000/root/input");
FileOutputFormat.setOutputPath(job,p );
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}如何使用eclipse调试Hadoop作业
将hadoop开发包里面的相关jar导进工程就行,
至于想调试,就看hadoop计数器返回到eclipse里的内容就可以了.
不过有一点,
如果调试的是MapReduce,速度可能不快.Hadoop,Combiner有什么用?
Combiner,Combiner号称本地的Reduce,Reduce最终的输入,是Combiner的输出。
Combiner是用reducer来定义的,多数的情况下Combiner和reduce处理的是同一种逻辑,所以job.setCombinerClass()的参数可以直接使用定义的reduce。
当然也可以单独去定义一个有别于reduce的Combiner,继承Reducer,写法基本上定义reduce一样。
今天CloudCone发布了最新的消息,推送了几款特价独立服务器/杜甫产品,美国洛杉矶MC机房,分配100Mbps带宽不限流量,可以选择G口限制流量计划方案,存储分配的比较大,选择HDD硬盘的话2TB起,MC机房到大陆地区线路还不错,有需要美国特价独立服务器的朋友可以关注一下。CloudCone怎么样?CloudCone服务器好不好?CloudCone值不值得购买?CloudCone是一家成立于2...
看到群里网友们在讨论由于不清楚的原因,有同学的网站无法访问。他的网站是没有用HTTPS的,直接访问他的HTTP是无法访问的,通过PING测试可以看到解析地址已经比较乱,应该是所谓的DNS污染。其中有网友提到采用HTTPS加密证书试试。因为HTTP和HTTPS走的不是一个端口,之前有网友这样测试过是可以缓解这样的问题。这样通过将网站绑定设置HTTPS之后,是可以打开的,看来网站的80端口出现问题,而...
美国知名管理型主机公司,2006年运作至今,虚拟主机、VPS、云服务器、独立服务器等业务全部采用“managed”,也就是人工参与度高,很多事情都可以人工帮你处理,不过一直以来价格也贵。也不知道knownhost什么时候开始运作无管理型业务的,估计是为了扩展市场吧,反正是出来较长时间了。闲来无事,那就给大家介绍下“unmanaged VPS”,也就是无管理型VPS,低至5美元/月,基于KVM虚拟,...
fileinputformat为你推荐
excel计算公式请教在excel中如何用求和公式mac地址克隆路由器的Mac地址克隆有什么作用?网络审计网络安全审计系统的背景搜索引擎的概念7 什么是搜索引擎?如何在Internet上搜索图片和文字资料的?国产操作系统下载国产操作系统要钱吗12种颜色油画的基本12种颜色是什么数据挖掘项目将来想从事统计分析和数据挖掘,需要哪些技能labelforhtml中label是什么意思啊?腾讯贴吧QQ贴吧如何发帖什么是网络地址什么是IP地址?
免费二级域名申请 中文域名交易中心 typecho 商家促销 论坛空间 免费mysql 空间出租 169邮箱 卡巴斯基试用版 福建铁通 太原网通测速平台 免费私人服务器 彩虹云 空间首页登陆 空间登录首页 上海电信测速 帽子云排名 浙江服务器 lamp架构 镇江高防 更多