如何使用Hadoop的Partitioner
Hadoop里面的MapReduce编程模型,非常灵活,大部分环节我们都可以重写它的API,来灵活定制我们自己的一些特殊需求。
今天散仙要说的这个分区函数Partitioner,也是一样如此,下面我们先来看下Partitioner的作用:
对map端输出的数据key作一个散列,使数据能够均匀分布在各个reduce上进行后续操作,避免产生热点区。
Hadoop默认使用的分区函数是Hash Partitioner,源码如下:
/** Partition keys by their {@link Object#hashCode()}. */
public class HashPartitioner<K, V> extends Partitioner<K, V> {
/** Use {@link Object#hashCode()} to partition. */
public int getPartition(K key, V value,
int numReduceTasks) {
//默认使用key的hash值与上int的最大值,避免出现数据溢出 的情况
return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
}
}
大部分情况下,我们都会使用默认的分区函数,但有时我们又有一些,特殊的需求,而需要定制Partition来完成我们的业务,案例如下:
对如下数据,按字符串的长度分区,长度为1的放在一个,2的一个,3的各一个。
河南省;1
河南;2
中国;3
中国人;4
大;1
小;3
中;11
这时候,我们使用默认的分区函数,就不行了,所以需要我们定制自己的Partition,首先分析下,我们需要3个分区输出,所以在设置reduce的个数时,一定要设置为3,其次在partition里,进行分区时,要根据长度具体分区,而不是根据字符串的hash码来分区。
核心代码如下:
/**
* Partitioner
*
*
* */
public static class PPartition extends Partitioner<Text, Text>{
@Override
public int getPartition(Text arg0, Text arg1, int arg2) {
/**
* 自定义分区,实现长度不同的字符串,分到不同的reduce里面
*
* 现在只有3个长度的字符串,所以可以把reduce的个数设置为3
* 有几个分区,就设置为几
* */
String key=arg0.toString();
if(key.length()==1){
return 1%arg2;
}else if(key.length()==2){
return 2%arg2;
}else if(key.length()==3){
return 3%arg2;
}
return 0;
}
}
全部代码如下:
.partition.test;
import java.io.IOException;
.apache.hadoop.fs.FileSystem;
.apache.hadoop.fs.Path;
.apache.hadoop.io.LongWritable;
.apache.hadoop.io.Text;
.apache.hadoop.mapred.JobConf;
.apache.hadoop.mapreduce.Job;
.apache.hadoop.mapreduce.Mapper;
.apache.hadoop.mapreduce.Partitioner;
.apache.hadoop.mapreduce.Reducer;
.apache.hadoop.mapreduce.lib.db.DBConfiguration;
.apache.hadoop.mapreduce.lib.db.DBInputFormat;
.apache.hadoop.mapreduce.lib.input.FileInputFormat;
.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
.qin.operadb.PersonRecoder;
.qin.operadb.ReadMapDB;
/**
* @author qindongliang
*
* 大数据交流群:376932160
*
*
* **/
public class MyTestPartition {
/**
* map任务
*
* */
public static class PMapper extends Mapper<LongWritable, Text, Text, Text>{
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
// System.out.println("进map了");
//mos.write(namedOutput, key, value);
String ss[]=value.toString().split(";");
context.write(new Text(ss[0]), new Text(ss[1]));
}
}
/**
* Partitioner
*
*
* */
public static class PPartition extends Partitioner<Text, Text>{
@Override
public int getPartition(Text arg0, Text arg1, int arg2) {
/**
* 自定义分区,实现长度不同的字符串,分到不同的reduce里面
*
* 现在只有3个长度的字符串,所以可以把reduce的个数设置为3
* 有几个分区,就设置为几
* */
String key=arg0.toString();
if(key.length()==1){
return 1%arg2;
}else if(key.length()==2){
return 2%arg2;
}else if(key.length()==3){
return 3%arg2;
}
return 0;
}
}
/***
* Reduce任务
*
* **/
public static class PReduce extends Reducer<Text, Text, Text, Text>{
@Override
protected void reduce(Text arg0, Iterable<Text> arg1, Context arg2)
throws IOException, InterruptedException {
String key=arg0.toString().split(",")[0];
System.out.println("key==> "+key);
for(Text t:arg1){
//System.out.println("Reduce: "+arg0.toString()+" "+t.toString());
arg2.write(arg0, t);
}
}
}
public static void main(String[] args) throws Exception{
JobConf conf=new JobConf(ReadMapDB.class);
//Configuration conf=new Configuration();
conf.set("mapred.job.tracker","192.168.75.130:9001");
//读取person中的数据字段
conf.setJar("tt.jar");
//注意这行代码放在最前面,进行初始化,否则会报
/**Job任务**/
Job job=new Job(conf, "testpartion");
job.setJarByClass(MyTestPartition.class);
System.out.println("模式: "+conf.get("mapred.job.tracker"));;
// job.setCombinerClass(PCombine.class);
job.setPartitionerClass(PPartition.class);
job.setNumReduceTasks(3);//设置为3
job.setMapperClass(PMapper.class);
// MultipleOutputs.addNamedOutput(job, "hebei", TextOutputFormat.class, Text.class, Text.class);
// MultipleOutputs.addNamedOutput(job, "henan", TextOutputFormat.class, Text.class, Text.class);
job.setReducerClass(PReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
String path="hdfs://192.168.75.130:9000/root/outputdb";
FileSystem fs=FileSystem.get(conf);
Path p=new Path(path);
if(fs.exists(p)){
fs.delete(p, true);
System.out.println("输出路径存在,已删除!");
}
FileInputFormat.setInputPaths(job, "hdfs://192.168.75.130:9000/root/input");
FileOutputFormat.setOutputPath(job,p );
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}如何使用eclipse调试Hadoop作业
将hadoop开发包里面的相关jar导进工程就行,
至于想调试,就看hadoop计数器返回到eclipse里的内容就可以了.
不过有一点,
如果调试的是MapReduce,速度可能不快.Hadoop,Combiner有什么用?
Combiner,Combiner号称本地的Reduce,Reduce最终的输入,是Combiner的输出。
Combiner是用reducer来定义的,多数的情况下Combiner和reduce处理的是同一种逻辑,所以job.setCombinerClass()的参数可以直接使用定义的reduce。
当然也可以单独去定义一个有别于reduce的Combiner,继承Reducer,写法基本上定义reduce一样。
香港服务器多少钱一个月?香港服务器租用配置价格一个月多少,现在很多中小型企业在建站时都会租用香港服务器,租用香港服务器可以使网站访问更流畅、稳定性更好,安全性会更高等等。香港服务器的租用和其他地区的服务器租用配置元素都是一样的,那么为什么香港服务器那么受欢迎呢,香港云服务器最便宜价格多少钱一个月呢?阿里云轻量应用服务器最便宜的是1核1G峰值带宽30Mbps,24元/月,288元/年。不过我们一般选...
PQ.hosting怎么样?PQ.hosting是一家俄罗斯商家,正规公司,主要提供KVM VPS和独立服务器,VPS数据中心有香港HE、俄罗斯莫斯科DataPro、乌克兰VOLIA、拉脱维亚、荷兰Serverius、摩尔多瓦Alexhost、德国等。部分配置有变化,同时开通Paypal付款。香港、乌克兰、德国、斯洛伐克、捷克等为NVMe硬盘。香港为HE线路,三网绕美(不太建议香港)。免费支持wi...
ucloud6.18推出全球大促活动,针对新老用户(个人/企业)提供云服务器促销产品,其中最低配快杰云服务器月付5元起,中国香港快杰型云服务器月付13元起,最高可购3年,有AMD/Intel系列。当然这都是针对新用户的优惠。注意,UCloud全球有31个数据中心,29条专线,覆盖五大洲,基本上你想要的都能找到。注意:以上ucloud 618优惠都是新用户专享,老用户就随便看看!点击进入:uclou...
fileinputformat为你推荐
jmh6.13 泗洪事件是怎么个情况、?林俊杰怎么了?企鹅医生共享体检真的方便吗csonline2看新闻 csol2 马上就要发布了 我有个问题问大神们 拜托了12种颜色水粉颜料调色过程十二种颜色qq网络硬盘如何使用QQ网络硬盘腾讯技术腾讯QQ是谁研发的?在那一年上市的?assemblyinfocsgo很跟cs有什么区别币众筹收益权众筹为什么有吸引力什么是生态系统什么是生态环境?电子邮件软件邮件客户端软件
虚拟主机服务商 台湾服务器租用 php主机租用 中国万网虚拟主机 greengeeks 国外永久服务器 kdata 表单样式 typecho debian7 免费全能空间 台湾谷歌网址 北京双线 什么是服务器托管 免费phpmysql空间 吉林铁通 跟踪路由命令 空间登陆首页 我的世界服务器ip 石家庄服务器托管 更多