fileinputformatHadoop,Combiner有什么用?

fileinputformat  时间:2021-06-08  阅读:()

如何使用Hadoop的Partitioner

Hadoop里面的MapReduce编程模型,非常灵活,大部分环节我们都可以重写它的API,来灵活定制我们自己的一些特殊需求。

今天散仙要说的这个分区函数Partitioner,也是一样如此,下面我们先来看下Partitioner的作用: 对map端输出的数据key作一个散列,使数据能够均匀分布在各个reduce上进行后续操作,避免产生热点区。

Hadoop默认使用的分区函数是Hash Partitioner,源码如下: /** Partition keys by their {@link Object#hashCode()}. */ public class HashPartitioner<K, V> extends Partitioner<K, V> { /** Use {@link Object#hashCode()} to partition. */ public int getPartition(K key, V value, int numReduceTasks) { //默认使用key的hash值与上int的最大值,避免出现数据溢出 的情况 return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks; } } 大部分情况下,我们都会使用默认的分区函数,但有时我们又有一些,特殊的需求,而需要定制Partition来完成我们的业务,案例如下: 对如下数据,按字符串的长度分区,长度为1的放在一个,2的一个,3的各一个。

河南省;1 河南;2 中国;3 中国人;4 大;1 小;3 中;11 这时候,我们使用默认的分区函数,就不行了,所以需要我们定制自己的Partition,首先分析下,我们需要3个分区输出,所以在设置reduce的个数时,一定要设置为3,其次在partition里,进行分区时,要根据长度具体分区,而不是根据字符串的hash码来分区。

核心代码如下: /** * Partitioner * * * */ public static class PPartition extends Partitioner<Text, Text>{ @Override public int getPartition(Text arg0, Text arg1, int arg2) { /** * 自定义分区,实现长度不同的字符串,分到不同的reduce里面 * * 现在只有3个长度的字符串,所以可以把reduce的个数设置为3 * 有几个分区,就设置为几 * */ String key=arg0.toString(); if(key.length()==1){ return 1%arg2; }else if(key.length()==2){ return 2%arg2; }else if(key.length()==3){ return 3%arg2; } return 0; } } 全部代码如下: .partition.test; import java.io.IOException; .apache.hadoop.fs.FileSystem; .apache.hadoop.fs.Path; .apache.hadoop.io.LongWritable; .apache.hadoop.io.Text; .apache.hadoop.mapred.JobConf; .apache.hadoop.mapreduce.Job; .apache.hadoop.mapreduce.Mapper; .apache.hadoop.mapreduce.Partitioner; .apache.hadoop.mapreduce.Reducer; .apache.hadoop.mapreduce.lib.db.DBConfiguration; .apache.hadoop.mapreduce.lib.db.DBInputFormat; .apache.hadoop.mapreduce.lib.input.FileInputFormat; .apache.hadoop.mapreduce.lib.output.FileOutputFormat; .apache.hadoop.mapreduce.lib.output.MultipleOutputs; .apache.hadoop.mapreduce.lib.output.TextOutputFormat; .qin.operadb.PersonRecoder; .qin.operadb.ReadMapDB; /** * @author qindongliang * * 大数据交流群:376932160 * * * **/ public class MyTestPartition { /** * map任务 * * */ public static class PMapper extends Mapper<LongWritable, Text, Text, Text>{ @Override protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException { // System.out.println("进map了"); //mos.write(namedOutput, key, value); String ss[]=value.toString().split(";"); context.write(new Text(ss[0]), new Text(ss[1])); } } /** * Partitioner * * * */ public static class PPartition extends Partitioner<Text, Text>{ @Override public int getPartition(Text arg0, Text arg1, int arg2) { /** * 自定义分区,实现长度不同的字符串,分到不同的reduce里面 * * 现在只有3个长度的字符串,所以可以把reduce的个数设置为3 * 有几个分区,就设置为几 * */ String key=arg0.toString(); if(key.length()==1){ return 1%arg2; }else if(key.length()==2){ return 2%arg2; }else if(key.length()==3){ return 3%arg2; } return 0; } } /*** * Reduce任务 * * **/ public static class PReduce extends Reducer<Text, Text, Text, Text>{ @Override protected void reduce(Text arg0, Iterable<Text> arg1, Context arg2) throws IOException, InterruptedException { String key=arg0.toString().split(",")[0]; System.out.println("key==> "+key); for(Text t:arg1){ //System.out.println("Reduce: "+arg0.toString()+" "+t.toString()); arg2.write(arg0, t); } } } public static void main(String[] args) throws Exception{ JobConf conf=new JobConf(ReadMapDB.class); //Configuration conf=new Configuration(); conf.set("mapred.job.tracker","192.168.75.130:9001"); //读取person中的数据字段 conf.setJar("tt.jar"); //注意这行代码放在最前面,进行初始化,否则会报 /**Job任务**/ Job job=new Job(conf, "testpartion"); job.setJarByClass(MyTestPartition.class); System.out.println("模式: "+conf.get("mapred.job.tracker"));; // job.setCombinerClass(PCombine.class); job.setPartitionerClass(PPartition.class); job.setNumReduceTasks(3);//设置为3 job.setMapperClass(PMapper.class); // MultipleOutputs.addNamedOutput(job, "hebei", TextOutputFormat.class, Text.class, Text.class); // MultipleOutputs.addNamedOutput(job, "henan", TextOutputFormat.class, Text.class, Text.class); job.setReducerClass(PReduce.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); String path="hdfs://192.168.75.130:9000/root/outputdb"; FileSystem fs=FileSystem.get(conf); Path p=new Path(path); if(fs.exists(p)){ fs.delete(p, true); System.out.println("输出路径存在,已删除!"); } FileInputFormat.setInputPaths(job, "hdfs://192.168.75.130:9000/root/input"); FileOutputFormat.setOutputPath(job,p ); System.exit(job.waitForCompletion(true) ? 0 : 1); } }

如何使用eclipse调试Hadoop作业

将hadoop开发包里面的相关jar导进工程就行, 至于想调试,就看hadoop计数器返回到eclipse里的内容就可以了. 不过有一点, 如果调试的是MapReduce,速度可能不快.

Hadoop,Combiner有什么用?

Combiner,Combiner号称本地的Reduce,Reduce最终的输入,是Combiner的输出。

Combiner是用reducer来定义的,多数的情况下Combiner和reduce处理的是同一种逻辑,所以job.setCombinerClass()的参数可以直接使用定义的reduce。

当然也可以单独去定义一个有别于reduce的Combiner,继承Reducer,写法基本上定义reduce一样。

iON Cloud:新加坡cn2 gia vps/1核/2G内存/25G SSD/250G流量/10M带宽,$35/月

iON Cloud怎么样?iON Cloud升级了新加坡CN2 VPS的带宽和流量最低配的原先带宽5M现在升级为10M,流量也从原先的150G升级为250G。注意,流量也仅计算出站方向。iON Cloud是Krypt旗下的云服务器品牌,成立于2019年,是美国老牌机房(1998~)krypt旗下的VPS云服务器品牌,主打国外VPS云服务器业务,均采用KVM架构,整体性能配置较高,云服务器产品质量靠...

美国200G美国高防服务器16G,800元

美国高防服务器提速啦专业提供美国高防服务器,美国高防服务器租用,美国抗攻击服务器,高防御美国服务器租用等。我们的海外高防服务器带给您坚不可摧的DDoS防护,保障您的业务不受攻击影响。HostEase美国高防服务器位于加州和洛杉矶数据中心,均为国内访问速度最快最稳定的美国抗攻击机房,带给您快速的访问体验。我们的高防服务器配有最高层级的DDoS防护系统,每款抗攻击服务器均拥有免费DDoS防护额度,让您...

昔日数据:香港云服务器(2G防御)、湖北云服务器(100G防御),首月5折,低至12元/月

昔日数据,国内商家,成立于2020年,主要销售湖北十堰和香港HKBN的云服务器,采用KVM虚拟化技术构架,不限制流量。当前夏季促销活动,全部首月5折促销,活动截止于8月11日。官方网站:https://www.xrapi.cn/5折优惠码:XR2021湖北十堰云服务器托管于湖北十堰市IDC数据中心,母鸡采用e5 2651v2,SSD MLC企业硬盘、 rdid5阵列为数据护航,100G高防,超出防...

fileinputformat为你推荐
tde如何区别动作数据与模型的种类。tde tda lat 啊? mmd匹配函数excel中vlookup函数的用法水晶易表如何在win7环境和office2010环境下成功安装水晶易表应用雷达雷达在各方面的用途at89s52单片机有谁知道单片机如AT89c52,AT89s52具体是指什么含义啊?搜索引擎的概念搜索引擎的工作原理是什么及发展历史jstz江苏泰州市地税如何申报?数据挖掘项目什么是数据挖掘?从事相关的工作有什么要求?asp大马一句话木马中的大马和小马的作用各是什么?审计平台什么是审计工具
汉邦高科域名注册 过期域名抢注 星星海 加勒比群岛 正版win8.1升级win10 服务器cpu性能排行 三拼域名 免费高速空间 网游服务器 空间购买 宏讯 架设邮件服务器 smtp服务器地址 美国迈阿密 中国联通宽带测试 闪讯网 googlevoice windowssever2008 vim命令 ddos攻击工具 更多