如何使用Hadoop的Partitioner
Hadoop里面的MapReduce编程模型,非常灵活,大部分环节我们都可以重写它的API,来灵活定制我们自己的一些特殊需求。
今天散仙要说的这个分区函数Partitioner,也是一样如此,下面我们先来看下Partitioner的作用:
对map端输出的数据key作一个散列,使数据能够均匀分布在各个reduce上进行后续操作,避免产生热点区。
Hadoop默认使用的分区函数是Hash Partitioner,源码如下:
/** Partition keys by their {@link Object#hashCode()}. */
public class HashPartitioner<K, V> extends Partitioner<K, V> {
/** Use {@link Object#hashCode()} to partition. */
public int getPartition(K key, V value,
int numReduceTasks) {
//默认使用key的hash值与上int的最大值,避免出现数据溢出 的情况
return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
}
}
大部分情况下,我们都会使用默认的分区函数,但有时我们又有一些,特殊的需求,而需要定制Partition来完成我们的业务,案例如下:
对如下数据,按字符串的长度分区,长度为1的放在一个,2的一个,3的各一个。
河南省;1
河南;2
中国;3
中国人;4
大;1
小;3
中;11
这时候,我们使用默认的分区函数,就不行了,所以需要我们定制自己的Partition,首先分析下,我们需要3个分区输出,所以在设置reduce的个数时,一定要设置为3,其次在partition里,进行分区时,要根据长度具体分区,而不是根据字符串的hash码来分区。
核心代码如下:
/**
* Partitioner
*
*
* */
public static class PPartition extends Partitioner<Text, Text>{
@Override
public int getPartition(Text arg0, Text arg1, int arg2) {
/**
* 自定义分区,实现长度不同的字符串,分到不同的reduce里面
*
* 现在只有3个长度的字符串,所以可以把reduce的个数设置为3
* 有几个分区,就设置为几
* */
String key=arg0.toString();
if(key.length()==1){
return 1%arg2;
}else if(key.length()==2){
return 2%arg2;
}else if(key.length()==3){
return 3%arg2;
}
return 0;
}
}
全部代码如下:
.partition.test;
import java.io.IOException;
.apache.hadoop.fs.FileSystem;
.apache.hadoop.fs.Path;
.apache.hadoop.io.LongWritable;
.apache.hadoop.io.Text;
.apache.hadoop.mapred.JobConf;
.apache.hadoop.mapreduce.Job;
.apache.hadoop.mapreduce.Mapper;
.apache.hadoop.mapreduce.Partitioner;
.apache.hadoop.mapreduce.Reducer;
.apache.hadoop.mapreduce.lib.db.DBConfiguration;
.apache.hadoop.mapreduce.lib.db.DBInputFormat;
.apache.hadoop.mapreduce.lib.input.FileInputFormat;
.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
.qin.operadb.PersonRecoder;
.qin.operadb.ReadMapDB;
/**
* @author qindongliang
*
* 大数据交流群:376932160
*
*
* **/
public class MyTestPartition {
/**
* map任务
*
* */
public static class PMapper extends Mapper<LongWritable, Text, Text, Text>{
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
// System.out.println("进map了");
//mos.write(namedOutput, key, value);
String ss[]=value.toString().split(";");
context.write(new Text(ss[0]), new Text(ss[1]));
}
}
/**
* Partitioner
*
*
* */
public static class PPartition extends Partitioner<Text, Text>{
@Override
public int getPartition(Text arg0, Text arg1, int arg2) {
/**
* 自定义分区,实现长度不同的字符串,分到不同的reduce里面
*
* 现在只有3个长度的字符串,所以可以把reduce的个数设置为3
* 有几个分区,就设置为几
* */
String key=arg0.toString();
if(key.length()==1){
return 1%arg2;
}else if(key.length()==2){
return 2%arg2;
}else if(key.length()==3){
return 3%arg2;
}
return 0;
}
}
/***
* Reduce任务
*
* **/
public static class PReduce extends Reducer<Text, Text, Text, Text>{
@Override
protected void reduce(Text arg0, Iterable<Text> arg1, Context arg2)
throws IOException, InterruptedException {
String key=arg0.toString().split(",")[0];
System.out.println("key==> "+key);
for(Text t:arg1){
//System.out.println("Reduce: "+arg0.toString()+" "+t.toString());
arg2.write(arg0, t);
}
}
}
public static void main(String[] args) throws Exception{
JobConf conf=new JobConf(ReadMapDB.class);
//Configuration conf=new Configuration();
conf.set("mapred.job.tracker","192.168.75.130:9001");
//读取person中的数据字段
conf.setJar("tt.jar");
//注意这行代码放在最前面,进行初始化,否则会报
/**Job任务**/
Job job=new Job(conf, "testpartion");
job.setJarByClass(MyTestPartition.class);
System.out.println("模式: "+conf.get("mapred.job.tracker"));;
// job.setCombinerClass(PCombine.class);
job.setPartitionerClass(PPartition.class);
job.setNumReduceTasks(3);//设置为3
job.setMapperClass(PMapper.class);
// MultipleOutputs.addNamedOutput(job, "hebei", TextOutputFormat.class, Text.class, Text.class);
// MultipleOutputs.addNamedOutput(job, "henan", TextOutputFormat.class, Text.class, Text.class);
job.setReducerClass(PReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
String path="hdfs://192.168.75.130:9000/root/outputdb";
FileSystem fs=FileSystem.get(conf);
Path p=new Path(path);
if(fs.exists(p)){
fs.delete(p, true);
System.out.println("输出路径存在,已删除!");
}
FileInputFormat.setInputPaths(job, "hdfs://192.168.75.130:9000/root/input");
FileOutputFormat.setOutputPath(job,p );
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}如何使用eclipse调试Hadoop作业
将hadoop开发包里面的相关jar导进工程就行,
至于想调试,就看hadoop计数器返回到eclipse里的内容就可以了.
不过有一点,
如果调试的是MapReduce,速度可能不快.Hadoop,Combiner有什么用?
Combiner,Combiner号称本地的Reduce,Reduce最终的输入,是Combiner的输出。
Combiner是用reducer来定义的,多数的情况下Combiner和reduce处理的是同一种逻辑,所以job.setCombinerClass()的参数可以直接使用定义的reduce。
当然也可以单独去定义一个有别于reduce的Combiner,继承Reducer,写法基本上定义reduce一样。
Budgetvm(原EZ机房),2005年成立的美国老品牌机房,主打美国4个机房(洛杉矶、芝加哥、达拉斯、迈阿密)和日本东京机房的独立服务器和VPS业务,而且不限制流量,默认提供免费的1800G DDoS防御服务,支持IPv6和IPMI,多种免费中文操作系统可供选择,独立服务器主打大硬盘,多硬盘,大内存,用户可以在后台自行安装系统等管理操作!内存可定制升级到1536G,多块硬盘随时加,14TBSA...
RAKsmart机房将于7月1日~7月31日推出“年中大促”活动,多重惊喜供您选择;爆款I3-2120仅30美金秒杀、V4新品上市,活动期间5折抢购、爆款产品持续热卖、洛杉矶+硅谷+香港+日本站群恢复销售、G口不限流量产品超低价热卖。美国VPS、日本VPS及香港VPS享全场7折优惠;爆款VPS $ 1.99/月限量秒杀,10台/天,售完即止, VPS 7折优惠码:VPS-TP-disRAKsmar...
我们一般的站长或者企业服务器配置WEB环境会用到免费版本的宝塔面板。但是如果我们需要较多的付费插件扩展,或者是有需要企业功能应用的,短期来说我们可能选择按件按月付费的比较好,但是如果我们长期使用的话,有些网友认为选择宝塔面板企业版或者专业版是比较划算的。这样在年中大促618的时候,我们也可以看到宝塔面板也有发布促销活动。企业版年付899元,专业版永久授权1888元起步。对于有需要的网友来说,还是值...
fileinputformat为你推荐
Honeypotnc如何使用知识分享平台关于分享职场技能的知识付费平台,大家有什么好推荐的吗?vga接口定义vga线有几种12种颜色十二种颜色的英文怎么读?印度尼西亚国家代码谁知道世界各国的国家电话代码?数据挖掘项目什么是数据挖掘?从事相关的工作有什么要求?asp大马一句话木马中的大马和小马的作用各是什么?什么是生态系统生态系统的基础是什么?activitygroupTabHost ActivityGroup里面activity里的webview是不是不支持一些JS比如 alert?embed函数C语言中push函数的定义以及用法。
重庆域名注册 burstnet 美国主机评论 外国服务器 香港托管 512m info域名 免费ftp站点 国外在线代理 亚洲小于500m 湖南服务器托管 小米数据库 河南移动邮件系统 刀片服务器是什么 169邮箱 135邮箱 申请网页 创建邮箱 美国凤凰城 华为云建站 更多