如何使用Hadoop的Partitioner
Hadoop里面的MapReduce编程模型,非常灵活,大部分环节我们都可以重写它的API,来灵活定制我们自己的一些特殊需求。
今天散仙要说的这个分区函数Partitioner,也是一样如此,下面我们先来看下Partitioner的作用:
对map端输出的数据key作一个散列,使数据能够均匀分布在各个reduce上进行后续操作,避免产生热点区。
Hadoop默认使用的分区函数是Hash Partitioner,源码如下:
/** Partition keys by their {@link Object#hashCode()}. */
public class HashPartitioner<K, V> extends Partitioner<K, V> {
/** Use {@link Object#hashCode()} to partition. */
public int getPartition(K key, V value,
int numReduceTasks) {
//默认使用key的hash值与上int的最大值,避免出现数据溢出 的情况
return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
}
}
大部分情况下,我们都会使用默认的分区函数,但有时我们又有一些,特殊的需求,而需要定制Partition来完成我们的业务,案例如下:
对如下数据,按字符串的长度分区,长度为1的放在一个,2的一个,3的各一个。
河南省;1
河南;2
中国;3
中国人;4
大;1
小;3
中;11
这时候,我们使用默认的分区函数,就不行了,所以需要我们定制自己的Partition,首先分析下,我们需要3个分区输出,所以在设置reduce的个数时,一定要设置为3,其次在partition里,进行分区时,要根据长度具体分区,而不是根据字符串的hash码来分区。
核心代码如下:
/**
* Partitioner
*
*
* */
public static class PPartition extends Partitioner<Text, Text>{
@Override
public int getPartition(Text arg0, Text arg1, int arg2) {
/**
* 自定义分区,实现长度不同的字符串,分到不同的reduce里面
*
* 现在只有3个长度的字符串,所以可以把reduce的个数设置为3
* 有几个分区,就设置为几
* */
String key=arg0.toString();
if(key.length()==1){
return 1%arg2;
}else if(key.length()==2){
return 2%arg2;
}else if(key.length()==3){
return 3%arg2;
}
return 0;
}
}
全部代码如下:
.partition.test;
import java.io.IOException;
.apache.hadoop.fs.FileSystem;
.apache.hadoop.fs.Path;
.apache.hadoop.io.LongWritable;
.apache.hadoop.io.Text;
.apache.hadoop.mapred.JobConf;
.apache.hadoop.mapreduce.Job;
.apache.hadoop.mapreduce.Mapper;
.apache.hadoop.mapreduce.Partitioner;
.apache.hadoop.mapreduce.Reducer;
.apache.hadoop.mapreduce.lib.db.DBConfiguration;
.apache.hadoop.mapreduce.lib.db.DBInputFormat;
.apache.hadoop.mapreduce.lib.input.FileInputFormat;
.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
.qin.operadb.PersonRecoder;
.qin.operadb.ReadMapDB;
/**
* @author qindongliang
*
* 大数据交流群:376932160
*
*
* **/
public class MyTestPartition {
/**
* map任务
*
* */
public static class PMapper extends Mapper<LongWritable, Text, Text, Text>{
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
// System.out.println("进map了");
//mos.write(namedOutput, key, value);
String ss[]=value.toString().split(";");
context.write(new Text(ss[0]), new Text(ss[1]));
}
}
/**
* Partitioner
*
*
* */
public static class PPartition extends Partitioner<Text, Text>{
@Override
public int getPartition(Text arg0, Text arg1, int arg2) {
/**
* 自定义分区,实现长度不同的字符串,分到不同的reduce里面
*
* 现在只有3个长度的字符串,所以可以把reduce的个数设置为3
* 有几个分区,就设置为几
* */
String key=arg0.toString();
if(key.length()==1){
return 1%arg2;
}else if(key.length()==2){
return 2%arg2;
}else if(key.length()==3){
return 3%arg2;
}
return 0;
}
}
/***
* Reduce任务
*
* **/
public static class PReduce extends Reducer<Text, Text, Text, Text>{
@Override
protected void reduce(Text arg0, Iterable<Text> arg1, Context arg2)
throws IOException, InterruptedException {
String key=arg0.toString().split(",")[0];
System.out.println("key==> "+key);
for(Text t:arg1){
//System.out.println("Reduce: "+arg0.toString()+" "+t.toString());
arg2.write(arg0, t);
}
}
}
public static void main(String[] args) throws Exception{
JobConf conf=new JobConf(ReadMapDB.class);
//Configuration conf=new Configuration();
conf.set("mapred.job.tracker","192.168.75.130:9001");
//读取person中的数据字段
conf.setJar("tt.jar");
//注意这行代码放在最前面,进行初始化,否则会报
/**Job任务**/
Job job=new Job(conf, "testpartion");
job.setJarByClass(MyTestPartition.class);
System.out.println("模式: "+conf.get("mapred.job.tracker"));;
// job.setCombinerClass(PCombine.class);
job.setPartitionerClass(PPartition.class);
job.setNumReduceTasks(3);//设置为3
job.setMapperClass(PMapper.class);
// MultipleOutputs.addNamedOutput(job, "hebei", TextOutputFormat.class, Text.class, Text.class);
// MultipleOutputs.addNamedOutput(job, "henan", TextOutputFormat.class, Text.class, Text.class);
job.setReducerClass(PReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
String path="hdfs://192.168.75.130:9000/root/outputdb";
FileSystem fs=FileSystem.get(conf);
Path p=new Path(path);
if(fs.exists(p)){
fs.delete(p, true);
System.out.println("输出路径存在,已删除!");
}
FileInputFormat.setInputPaths(job, "hdfs://192.168.75.130:9000/root/input");
FileOutputFormat.setOutputPath(job,p );
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}如何使用eclipse调试Hadoop作业
将hadoop开发包里面的相关jar导进工程就行,
至于想调试,就看hadoop计数器返回到eclipse里的内容就可以了.
不过有一点,
如果调试的是MapReduce,速度可能不快.Hadoop,Combiner有什么用?
Combiner,Combiner号称本地的Reduce,Reduce最终的输入,是Combiner的输出。
Combiner是用reducer来定义的,多数的情况下Combiner和reduce处理的是同一种逻辑,所以job.setCombinerClass()的参数可以直接使用定义的reduce。
当然也可以单独去定义一个有别于reduce的Combiner,继承Reducer,写法基本上定义reduce一样。
Virmach 商家算是比较久且一直在低价便宜VPS方案中玩的不亦乐乎的商家,有很多同时期的商家纷纷关闭转让,也有的转型到中高端用户。而前一段时间也有分享过一次Virmach商家推出所谓的一次性便宜VPS主机,比如很低的价格半年时间,时间到服务器也就关闭。这不今天又看到商家有提供这样的产品。这次的活动产品包括圣何塞和水牛城两个机房,为期六个月,一次性付费用完将会取消,就这么特别的产品,适合短期玩玩...
已经有一段时间没有分享阿里云服务商的促销活动,主要原因在于他们以前的促销都仅限新用户,而且我们大部分人都已经有过账户基本上促销活动和我们无缘。即便老用户可选新产品购买,也是比较配置较高的,所以就懒得分享。这不看到有阿里云金秋活动,有不错的促销活动可以允许产品新购。即便我们是老用户,但是比如你没有购买过他们轻量服务器,也是可以享受优惠活动的。这次轻量服务器在金秋活动中力度折扣比较大,2G5M配置年付...
点击进入亚云官方网站(www.asiayun.com)公司名:上海玥悠悠云计算有限公司成都铂金宿主机IO测试图亚洲云Asiayun怎么样?亚洲云Asiayun好不好?亚云由亚云团队运营,拥有ICP/ISP/IDC/CDN等资质,亚云团队成立于2018年,经过多次品牌升级。主要销售主VPS服务器,提供云服务器和物理服务器,机房有成都、美国CERA、中国香港安畅和电信,香港提供CN2 GIA线路,CE...
fileinputformat为你推荐
企鹅医生企鹅医生里的医生是真的么?可信么?决策树分析决策数法的名词解释视频压缩算法MP4视频压缩,比特率如何计算。腾讯汽车网可以了解汽车知识的权威网站大概有哪些人肉搜索引擎怎样使用人肉搜索引擎?labelforhtml标签中lable的for属性有什么作用?kjava通用KJava是什么意思activitygroupactivityGroup子activity跳转的问题activitygroupAndroid中如何在ActivityGroup里面监听back按钮,使得可按要求实现哪个activity可返回,哪个不需要。。数据库界面数据库怎么进入界面
加勒比群岛 42u机柜尺寸 服务器合租 网页提速 便宜空间 电信网络测速器 免费asp空间申请 免费蓝钻 免费个人网页 中国联通宽带测试 cdn服务 privatetracker 美国主机侦探 ncp是什么 paypal登陆 wordpress安装 极域网 赵 大硬盘分区 天鹰抗ddos防火墙 更多