算法网页检测

网页检测  时间:2021-05-19  阅读:()
摘要随着互联网的发展,大量近似重复的文本广泛存在于现实世界中,如何检测这些近似重复的文本成为了一个研究的热点问题,这一技术在不同领域存在着很多应用:数字图书馆中相似内容的自动链接、数字知识产权保护(剽窃检测)、近似重复网页检测(搜索引擎优化)、数据去重、垃圾邮件检测等.
采用传统的哈希算法(SHA1、MD5等)只能鉴别完全相同的文档,不适用于存在细微修改的近似文档.
当前,近似重复检测的主要方法是生成文本指纹,通过计算文本间文本指纹的距离,衡量文本的相近程度.
本文在研究该领域的三种代表性算法(shingling、I-Match、simhash)的基础上,提出了融合这些算法优点的改进算法并进行了系统实现和验证,主要工作包括三个方面:(1).
提出了基于shingle特征的simhash算法.
Shingling算法以连续词串作为特征,有利于提高检测的准确率,但生成指纹集合、计算集合基于Jaccard相似度的距离,计算量大.
Simhash算法以指纹间的汉明距离度量相似性,计算量小,且指纹占用空间小.
但simhash算法以单词为特征,不能很好的表征文档的语义.
本文将shingles作为simhash算法的输入特征,以提高simhash算法的准确率.
(2).
提出了基于随机词典的多指纹simhash算法.
I-Match算法完全依赖单词的IDF值去除近似重复文本间的不同单词,检测的召回率很低.
基于随机词典的I-Match算法提出利用原始文档集的词典随机生成多个子词典,子词典分别过滤文档,生成多个I-Match指纹,以提高I-Match方法的稳定性.
对于同样是生成单指纹比对的simhash算法,本文引入基于随机词典的I-Match算法的提高召回率的方法,以提高simhash算法的召回率.
(3).
以"中美百万册数字图书馆"中的图书数据构建了一个近似重复文本检测数据集,对上述两种改进算法在该数据集上进行了的实验验证.
在最优参数、F-measure的度量上,基于shingle特征的simhash算法的0.
7469比原simhash算法的0.
6117提高了22%;融合算法的0.
8805比基于shingle特征的simhash算法的0.
7469提高了18%,比原始的simhash算法提高了43%.
实验表明两点改进思路对相应性能的提升都得到了验证,最终的融合算法比原始simhash算法在F-值度量上有较大提升.
本文认为,取得如此性能提升的主要原因是,依据三种经典算法的特点,进行了有针对性的融合,改进了simhash算法的特征选择策略和指纹生成策略,分别有利于simhash算法准确率和召回率的提升.
关键词:近似重复文本检测、网页去重、simhash算法DocumentfingerprintanditsapplicationinnearduplicatedocumentdetectionJunFanMicroelectronicsDirectedbyTieJunhuangWiththerapiddevelopmentoftheWorldWideWeb,disseminationreproducedorplagiarismother'sliteraturewithorwithoutmodificationhasbecomeveryeasy.
Thereareahugenumberofthesekindsofduplicateddocumentsintherealworld.
Howtodetectthesenearduplicatedocumentshasbecomeahotresearchtopic.
Thereisawiderangeofapplications.
Suchas:Automaticallylinkofduplicatedocumentinthedigitallibrary,protectionofintellectualproperty(orcalledplagiarismdetection),nearduplicatewebpagedetection(onekindofsearchengineoptimizationtechnique),datadeduplication,spamdetection.
TraditionalHashalgorithmslikeSHA1,MD5canonlydetectdocumentsexactlythesameornot.
Theycan'thandledocumentswithminormodifications.
Themainmethodinnearduplicatedocumentdetectionisgeneratingdocumentfingerprints,measurethesimilarityofdocumentsthroughthedistanceofthecorrespondingdocumentfingerprints.
Inthisarticle,wedescribedthethree"stateofart"algorithm(shingling,I-Match,simhash)indetail.
Wedidsomefusionbasedonthecharactersofeachclassofalgorithmsmentionedabove,implementedasystemandsomeexperiments.
Ourworksare:1.
Shinglingbasedsimhashalgorithm:theinputfeatureofshinglingalgorithmisk-shingles(wordsequencesoflengthk),itisbenefitfortheprecisionofdetection.
ButthemeasureofdistanceoffingerprintsisJaccardsimilarityofset,haveahighcomputationalcomplexity.
Thedistanceoffingerprintsinsimhashalgorithmishammingdistance;itislowincomputationalcomplexity,andsmallinspace.
Buttheinputfeatureofthesimhashalgorithmiswordsofthedocument;itcan'trepresentthedocumentwell.
Inthisarticle,weusethek-shingles(wordsequencesoflengthk)asthefeaturesofthesimhashalgorithmtoimproveprecisionofsimhashalgorithm.
2.
Multiplerandomlexiconsbasedsimhashalgorithm:theeffectivenessoftheI-MatchalgorithmisbasedonfilteringdifferentwordsinnearduplicatedocumentsbyIDFvaluesofthewordstotally.
Ithasalowrecall.
ThemultiplerandomlexiconsbasedI-MatchalgorithmfilterdocumentsbyrandomlycreatedlexiconsandgeneratemultiplefingerprintstoimprovethestabilityoftheI-Matchalgorithm.
Thismethodisapplicabletoothersingle-signaturebasedalgorithm,suchassimhash.
Wefilterdocumentsbyrandomlycreatedlexiconsandgeneratemultiplesimhashfingerprintstoimproverecall.
3.
Weconstructanearduplicatedocumentdetectdatasetbasedonthebooksinthe"China-USMillionBookDigitalLibraryProject".
Wetestedouralgorithmsinthissyntheticdataset.
Withthebestparameters'setandintheF-measure'sview,fromtheshinglingbasedsimhashalgorithmtothesimhashalgorithm,wegeta22%improvementfrom0.
7469to0.
6117.
Fromthefusionalgorithmtotheshinglingbasedsimhashalgorithm,wegetan18%improvementfrom0.
8805to0.
7469.
Ourfusionalgorithmgetsa43%improvementcomparedwiththesimhashalgorithmintotal.
Theexperimentresultprovestheefficiencyoftheabovetwoalgorithms.
ThefusedintegratedalgorithmperformsmuchbetterthantheoriginalsimhashalgorithmintheF-measure'sview.
Withsuchanimprovement,credittothetargetedfusionbasedonthecharactersofeachalgorithms.
Weimprovedthefeatureselectionstrategyandthefingerprintgenerationstrategyofthesimhashalgorithm,whichhelptoimproveprecisionandrecallcorrespondingly.
Keywords:nearduplicatedocumentdetection、nearduplicatewebpagedetection、simhashalgorithm

Cloudxtiny:£1.5/月,KVM-512MB/100GB/英国机房

Cloudxtiny是一家来自英国的主机商,提供VPS和独立服务器租用,在英国肯特自营数据中心,自己的硬件和网络(AS207059)。商家VPS主机基于KVM架构,开设在英国肯特机房,为了庆祝2021年欧洲杯决赛英格兰对意大利,商家为全场VPS主机提供50%的折扣直到7月31日,优惠后最低套餐每月1.5英镑起。我们对这场比赛有点偏见,但希望这是一场史诗般的决赛!下面列出几款主机套餐配置信息。CPU...

41云,服务器8折优惠券,200G TCP防御

41云怎么样?41云是国人主机品牌,目前经营产品有国内外云服务器、CDN(高防CDN)和物理机,其中国内外云服务器又细分小类有香港限流量VPS、香港大带宽VPS、香港弹性自选VPS、香港不限流VPS、香港BGP线路VPS、香港Cera+大带宽机器、美国超防VPS、韩国原生VPS、仁川原生VPS、日本CN2 VPS、枣庄高防VPS和金华高防VPS;物理机有美国Cera服务器、香港单程CN2服务器、香...

Friendhosting,美国迈阿密机房新上线,全场45折特价优惠,100Mbps带宽不限流量,美国/荷兰/波兰/乌兰克/瑞士等可选,7.18欧元/半年

近日Friendhosting发布了最新的消息,新上线了美国迈阿密的云产品,之前的夏季优惠活动还在进行中,全场一次性45折优惠,最高可购买半年,超过半年优惠力度就不高了,Friendhosting商家的优势就是100Mbps带宽不限流量,有需要的朋友可以尝试一下。Friendhosting怎么样?Friendhosting服务器好不好?Friendhosting服务器值不值得购买?Friendho...

网页检测为你推荐
寄存器ios10《信息技术基础》复习大纲工艺美术品设计专业比赛winrar人文社科winrarmatrixnvSpecificationsappleHALLMARK_PANCREAS_BETA_CELLSios11Sicherheitsserverhostschrome机构apple
最新代理服务器ip 花生壳免费域名申请 google电话 便宜域名 服务器日志分析 php空间申请 河南移动邮件系统 有奖调查 php空间推荐 服务器是干什么的 空间合租 cdn加速是什么 免费mysql数据库 游戏服务器出租 免费蓝钻 fatcow globalsign hosts文件 超低价 香港云主机 更多