算法网页检测

网页检测  时间:2021-05-19  阅读:()
摘要随着互联网的发展,大量近似重复的文本广泛存在于现实世界中,如何检测这些近似重复的文本成为了一个研究的热点问题,这一技术在不同领域存在着很多应用:数字图书馆中相似内容的自动链接、数字知识产权保护(剽窃检测)、近似重复网页检测(搜索引擎优化)、数据去重、垃圾邮件检测等.
采用传统的哈希算法(SHA1、MD5等)只能鉴别完全相同的文档,不适用于存在细微修改的近似文档.
当前,近似重复检测的主要方法是生成文本指纹,通过计算文本间文本指纹的距离,衡量文本的相近程度.
本文在研究该领域的三种代表性算法(shingling、I-Match、simhash)的基础上,提出了融合这些算法优点的改进算法并进行了系统实现和验证,主要工作包括三个方面:(1).
提出了基于shingle特征的simhash算法.
Shingling算法以连续词串作为特征,有利于提高检测的准确率,但生成指纹集合、计算集合基于Jaccard相似度的距离,计算量大.
Simhash算法以指纹间的汉明距离度量相似性,计算量小,且指纹占用空间小.
但simhash算法以单词为特征,不能很好的表征文档的语义.
本文将shingles作为simhash算法的输入特征,以提高simhash算法的准确率.
(2).
提出了基于随机词典的多指纹simhash算法.
I-Match算法完全依赖单词的IDF值去除近似重复文本间的不同单词,检测的召回率很低.
基于随机词典的I-Match算法提出利用原始文档集的词典随机生成多个子词典,子词典分别过滤文档,生成多个I-Match指纹,以提高I-Match方法的稳定性.
对于同样是生成单指纹比对的simhash算法,本文引入基于随机词典的I-Match算法的提高召回率的方法,以提高simhash算法的召回率.
(3).
以"中美百万册数字图书馆"中的图书数据构建了一个近似重复文本检测数据集,对上述两种改进算法在该数据集上进行了的实验验证.
在最优参数、F-measure的度量上,基于shingle特征的simhash算法的0.
7469比原simhash算法的0.
6117提高了22%;融合算法的0.
8805比基于shingle特征的simhash算法的0.
7469提高了18%,比原始的simhash算法提高了43%.
实验表明两点改进思路对相应性能的提升都得到了验证,最终的融合算法比原始simhash算法在F-值度量上有较大提升.
本文认为,取得如此性能提升的主要原因是,依据三种经典算法的特点,进行了有针对性的融合,改进了simhash算法的特征选择策略和指纹生成策略,分别有利于simhash算法准确率和召回率的提升.
关键词:近似重复文本检测、网页去重、simhash算法DocumentfingerprintanditsapplicationinnearduplicatedocumentdetectionJunFanMicroelectronicsDirectedbyTieJunhuangWiththerapiddevelopmentoftheWorldWideWeb,disseminationreproducedorplagiarismother'sliteraturewithorwithoutmodificationhasbecomeveryeasy.
Thereareahugenumberofthesekindsofduplicateddocumentsintherealworld.
Howtodetectthesenearduplicatedocumentshasbecomeahotresearchtopic.
Thereisawiderangeofapplications.
Suchas:Automaticallylinkofduplicatedocumentinthedigitallibrary,protectionofintellectualproperty(orcalledplagiarismdetection),nearduplicatewebpagedetection(onekindofsearchengineoptimizationtechnique),datadeduplication,spamdetection.
TraditionalHashalgorithmslikeSHA1,MD5canonlydetectdocumentsexactlythesameornot.
Theycan'thandledocumentswithminormodifications.
Themainmethodinnearduplicatedocumentdetectionisgeneratingdocumentfingerprints,measurethesimilarityofdocumentsthroughthedistanceofthecorrespondingdocumentfingerprints.
Inthisarticle,wedescribedthethree"stateofart"algorithm(shingling,I-Match,simhash)indetail.
Wedidsomefusionbasedonthecharactersofeachclassofalgorithmsmentionedabove,implementedasystemandsomeexperiments.
Ourworksare:1.
Shinglingbasedsimhashalgorithm:theinputfeatureofshinglingalgorithmisk-shingles(wordsequencesoflengthk),itisbenefitfortheprecisionofdetection.
ButthemeasureofdistanceoffingerprintsisJaccardsimilarityofset,haveahighcomputationalcomplexity.
Thedistanceoffingerprintsinsimhashalgorithmishammingdistance;itislowincomputationalcomplexity,andsmallinspace.
Buttheinputfeatureofthesimhashalgorithmiswordsofthedocument;itcan'trepresentthedocumentwell.
Inthisarticle,weusethek-shingles(wordsequencesoflengthk)asthefeaturesofthesimhashalgorithmtoimproveprecisionofsimhashalgorithm.
2.
Multiplerandomlexiconsbasedsimhashalgorithm:theeffectivenessoftheI-MatchalgorithmisbasedonfilteringdifferentwordsinnearduplicatedocumentsbyIDFvaluesofthewordstotally.
Ithasalowrecall.
ThemultiplerandomlexiconsbasedI-MatchalgorithmfilterdocumentsbyrandomlycreatedlexiconsandgeneratemultiplefingerprintstoimprovethestabilityoftheI-Matchalgorithm.
Thismethodisapplicabletoothersingle-signaturebasedalgorithm,suchassimhash.
Wefilterdocumentsbyrandomlycreatedlexiconsandgeneratemultiplesimhashfingerprintstoimproverecall.
3.
Weconstructanearduplicatedocumentdetectdatasetbasedonthebooksinthe"China-USMillionBookDigitalLibraryProject".
Wetestedouralgorithmsinthissyntheticdataset.
Withthebestparameters'setandintheF-measure'sview,fromtheshinglingbasedsimhashalgorithmtothesimhashalgorithm,wegeta22%improvementfrom0.
7469to0.
6117.
Fromthefusionalgorithmtotheshinglingbasedsimhashalgorithm,wegetan18%improvementfrom0.
8805to0.
7469.
Ourfusionalgorithmgetsa43%improvementcomparedwiththesimhashalgorithmintotal.
Theexperimentresultprovestheefficiencyoftheabovetwoalgorithms.
ThefusedintegratedalgorithmperformsmuchbetterthantheoriginalsimhashalgorithmintheF-measure'sview.
Withsuchanimprovement,credittothetargetedfusionbasedonthecharactersofeachalgorithms.
Weimprovedthefeatureselectionstrategyandthefingerprintgenerationstrategyofthesimhashalgorithm,whichhelptoimproveprecisionandrecallcorrespondingly.
Keywords:nearduplicatedocumentdetection、nearduplicatewebpagedetection、simhashalgorithm

Tudcloud(月付7.2美元),香港VPS,可选大带宽或不限流量

Tudcloud是一家新开的主机商,提供VPS和独立服务器租用,数据中心在中国香港(VPS和独立服务器)和美国洛杉矶(独立服务器),商家VPS基于KVM架构,开设在香港机房,可以选择限制流量大带宽或者限制带宽不限流量套餐。目前提供8折优惠码,优惠后最低每月7.2美元起。虽然主机商网站为英文界面,但是支付方式仅支付宝和Stripe,可能是国人商家。下面列出部分VPS主机套餐配置信息。CPU:1cor...

2021年全新Vultr VPS主机开通云服务器和选择机房教程(附IP不通问题)

昨天有分享到"2021年Vultr新用户福利注册账户赠送50美元"文章,居然还有网友曾经没有注册过他家的账户,薅过他们家的羊毛。通过一阵折腾居然能注册到账户,但是对于如何开通云服务器稍微有点不对劲,对于新人来说确实有点疑惑。因为Vultr采用的是预付费充值方式,会在每月的一号扣费,当然我们账户需要存留余额或者我们采用自动扣费支付模式。把笔记中以前的文章推送给网友查看,他居然告诉我界面不同,看的不对...

80VPS:香港服务器月付420元;美国CN2 GIA独服月付650元;香港/日本/韩国/美国多IP站群服务器750元/月

80vps怎么样?80vps最近新上了香港服务器、美国cn2服务器,以及香港/日本/韩国/美国多ip站群服务器。80vps之前推荐的都是VPS主机内容,其实80VPS也有独立服务器业务,分布在中国香港、欧美、韩国、日本、美国等地区,可选CN2或直连优化线路。如80VPS香港独立服务器最低月付420元,美国CN2 GIA独服月付650元起,中国香港、日本、韩国、美国洛杉矶多IP站群服务器750元/月...

网页检测为你推荐
restrictionsserver丽水市chrome中南财经政法大学知识产权研究中心支持ipad127.0.0.1为什么输入127.0.0.1无法打开页面ipad上网新买的ipad怎么用。什么装程序 怎么上网用itunes备份如何使用itunes完整备份iPhone资料x-router思科路由器有线端无法上网,而无线段却可以,用的是PPPOE拨号上网,一开始两种方法都不可以,检查宽谷歌sb为什么百度一搜SB是谷歌,谷歌一搜SB是百度?迅雷下载速度为什么 迅雷下载速度太慢
域名注册godaddy 河南vps a2hosting technetcal 海外服务器 56折 淘宝双十一2018 搜狗12306抢票助手 eq2 老左来了 双11秒杀 速度云 东莞数据中心 电信托管 安徽双线服务器 独享主机 中国linux 免费asp空间申请 lamp架构 后门 更多