.
生 物 化 学 笔 记
针对王镜岩等《生物化学》第三版适合以王镜岩《生物化学》第三版为考研指导教材的各高校的生物类考生备考
目 录
第一章 概 述------------------------------01
第二章 糖 类------------------------------06
第三章 脂 类------------------------------14
第四章 蛋白质注1-------------------------21
第五章 酶 类注2-------------------------38
第六章 核 酸注3--------------------------------------48
第七章 维生素注4-------------------------56
第八章 抗生素------------------------------60
第九章 激 素------------------------------63
第十章 代谢总论------------------------------68
第十一章 糖类代谢注5--------------------------------------70
第十二章 生物氧化------------------------------78
第十三章 脂类代谢注6--------------------------------------80
第十四章 蛋白质代谢注7-----------------------------------85
第十五章 核苷酸的降解和核苷酸代谢--------------91
整理版
.
第十六章 DNA的复制与修复注8---------------------------93
第十七章 RNA的合成与加工注9---------------------------98
第十八章 蛋白质的合成与运转-------------------101
第十九章 代谢调空-----------------------------103
第二十章 生物膜补充部分---------------------108
1对应生物化学课本上册第3、 4、 5、 6、 7章。
2对应生物化学课本上册第8、 9、 10章。
3对应生物化学课本上册第12、 13、 14、 15章。
4对应生物化学课本上册第11章。
5对应生物化学课本下册第22、 23、 25、 26、 27章。
6对应生物化学课本下册第28、 29章。
7对应生物化学课本下册第30、 31、 32章。
8对应生物化学课本下册第34、 35章
9对应生物化学课本下册第36、 37章。
* 10第二十章是应使用本笔记的同学要求而添加的对应课本18、 21章。
笔记概要
本笔记来源于本人一些学长及自己整理的考研笔记其中部分内容还来源于网上的一些资料 内容较为充实适合以王镜岩《生物化学》第三版为考研参考教材的各高校的复习考研备考之用。
王镜岩《生物化学》第三版分上、 下册共计40章。上册为静态生物化学要求记忆的知识点较多 下册为动态生物化学 除记忆的知识点外更侧重于生命大分子在生命过程中的化学变化。
本笔记将可以归为一章的内容尽量归结为一章 以便于大家复习的条理性。具体归结方式见目录。
为了大家能够更舒服的阅读本笔记我花了大量时间进行排版希望大家能够喜欢。
本笔记中所插图片与笔记无关 只为观赏性。
本笔记在整理过程中参阅许多他人资料版权归原作者所有。
整理版
.
第一章 概 述
第一节概 述
一、 生物分子是生物特有的有机化合物
生物分子泛指生物体特有的各类分子 它们都是有机物。典型的细胞含有一万到十万种生物分子其中近半数是小分子分子量一般在500以下。其余都是生物小分子的聚合物分子量很大一般在一万以上有的高达1012 因而称为生物大分子。构成生物大分子的小分子单元称为构件。氨基酸、核苷酸和单糖分别是组成蛋白质、核酸和多糖的构件。
二、 生物分子具有复杂有序的结构
生物分子都有自己特有的结构。生物大分子的分子量大构件种类多数量大排列顺序千变万化 因而其结构十分复杂。估计仅蛋白质就有1010-1012种。生物分子又是有序的每种生物分子都有自己的结构特点所有的生物分子都以一定的有序性(组织性)存在于生命体系中。
三、 生物结构具有特殊的层次
生物用少数几种生物元素(C、H、 O、N、 S、 P)构成小分子构件如氨基酸、核苷酸、单糖等;再用简单的构件构成复杂的生物大分子;由生物大分子构成超分子集合体;进而形成细胞器细胞组织器官 系统和生物体。生物的不同结构层次有着质的区别:低层次结构简单没有种属专一性结合力强;高层次结构复杂有种属专一性结合力弱。生物大分子是生命的物质基础 生命是生物大分子的存在形式。生物大分子的特殊运动体现着生命现象。
四、 生物分子都行使专一的功能
每种生物分子都具有专一的生物功能。核酸能储存和携带遗传信息酶能催化化学反应糖能提供能量。任何生物分子的存在都有其特殊的生物学意义。人们研究某种生物分子就是为了了解和利用它的功能。
五、代谢是生物分子存在的条件
代谢不仅产生了生物分子 而且使生物分子以一定的有序性处于稳定的状态中并不断得到自我更新。一旦代谢停止稳定的生物分子体系就要向无序发展在变化中解体进入非生命世界。
六、 生物分子体系有自我复制的能力
遗传物质DNA能自我复制其他生物分子在DNA的直接或间接指导下合成。生物分子的复制合成是生物体繁殖的基础。
七、 生物分子能够人工合成和改造
生物分子是通过漫长的进化产生的。随着生命科学的发展人们已能在体外人工合成各类生物分子 以合成和改造生物大分子为目标的生物技术方兴未艾。
第二节 生物元素
在已知的百余种元素中生命过程所必需的有27种称为生物元素。生物体所采用的构成自身的元素是经过长期的选择确定的。生物元素都是在自然界丰度较高容易得到又能满足生命过程需要的元素。
一、主要生物元素都是轻元素
主要生物元素C、H、 O、N占生物元素总量的95%以上其原子序数均在8以内。 它们和S、 P、K、Na、 Ca、Mg、 Cl共11种元素构成生物体全部质量的 99%以上 称为常量元素 原子序数均在20 以内。 另外 16 种元素称为微量元素 包括B,F,Si,Se,As,I,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Sn,Mo原子序数在53以内。
二、碳氢氧氮硫磷是生物分子的基本素材
(一)碳氢是生物分子的主体元素
碳原子既难得到电子又难失去电子最适于形成共价键。碳原子非凡的成键能力和它的四面体构型使它可以自相结合形成结构各异的生物分子骨架。碳原子又可通过共价键与其它元素结合形成化学性质活泼的官能团。
氢原子能以稳定的共价键于碳原子结合构成生物分子的骨架。生物分子的某些氢原子被称为还原能力 它们被氧化时可放出能量。生物分子含氢量的多少(以H/C表示)与它们的供能价值直接相关。氢原子还参与许多官能团的构成。 与电负性强的氧氮等原子结合的氢原子还参与氢键的构成。氢键是维持生物大分子的高级结构的重要作用力。
(二)氧氮硫磷构成官能团
它们是除碳以外仅有的能形成多价共价键的元素可形成各种官能团和杂环结构对决定生物分子的性质和功能具有重要意义。此外硫磷还与能量交换直接相关。生物体内重要的能量转换反应常与硫磷的某些化学键的形成及断裂有关。一些高能分子中的磷酸苷键和硫酯键是高能键。
三、无机生物元素
(一)、利用过渡元素的配位能力
整理版
.
过渡元素具有空轨道 能与具有孤对电子的原子以配位键结合。不同过渡元素有不同的配位数可形成各种配位结构如三角形 四面体六面体等。过渡元素的络和效应在形成并稳定生物分子的构象中具有特别重要的意义。
过渡元素对电子的吸引作用还可导致配体分子的共价键发生极化这对酶的催化很有用。 已发现三分之一以上的酶含有金属元素其中仅含锌酶就有百余种。
铁和铜等多价金属离子还可作为氧化还原载体担负传递电子的作用。在光系统II中 四个锰原子构成一个电荷累积器可以累积失去四个电子从而一次氧化两分子水释放出一分子氧避免有害中间产物的形成。细胞色素氧化酶中的铁-铜中心也有类似功能。
(二)、利用常量离子的电化学效应
K等常量离子在生物体的体液中含量较高具有电化学效应。 它们在保持体液的渗透压酸碱平衡形成膜电位及稳定生物大分子的胶体状态等方面有重要意义。
各种生物元素对生命过程都有不可替代的作用必需保持其代谢平衡。
氟是骨骼和牙釉的成分 以氟磷灰石的形式存在可使骨晶体变大坚硬并抗酸腐蚀。所以在饮食中添加氟可以预防龋齿。氟还可以治疗骨质疏松症。但当水中氟含量达到每升2毫克时会引起斑齿牙釉无光粉白色严重时可产生洞穴。氟是烯醇化酶的抑制剂又是腺苷酸环化酶的激活剂。
硒缺乏是克山病的病因之一 而硒过多也可引起疾病如亚硒酸盐可引起白内障。
糖耐受因子GTF可以促使胰岛素与受体结合 而铬可以使烟酸、甘氨酸、谷氨酸、半胱氨酸等与GTF络合。
某些非生物元素进入体内 能干扰生物元素的正常功能从而表现出毒性作用。如镉能臵换锌使含锌酶失活从而使人中毒。某些非生物元素对人体有益如有机锗可激活小鼠腹腔巨嗜细胞后者介导肿瘤细胞毒和抗原提呈作用从而发挥免疫监视、 防御和抗肿瘤作用。
第三节 生物分子中的作用力
一、两类不同水平的作用力
生物体系有两类不同的作用力一类是生物元素借以结合称为生物分子的强作用力--共价键另一类是决定生物分子高层次结构和生物分子之间借以相互识别结合作用的弱作用力--非共价相互作用。
二、共价键是生物分子的基本形成力
共价键(covalent bond)的属性由键能键长键角和极性等参数来描述 它们决定分子的基本结构和性质。
(一)键能
键能等于破坏某一共价键所需的能量。键能越大键越稳定。生物分子中常见的共价键的键能一般在300--800k j/m o l之间。
(二)键长
键长越长键能越弱容易受外界电场的影响发生极化稳定性也越差。生物分子中键长多在01到018 nm之间。
(三)键角
共价键具有方向性一个原子和另外两个原子所形成的键之间的夹角即为键角。根据键长和键角可了解分子中各个原子的排列情况和分子的极性。
(四)键的极性
共价键的极性是指两原子间电子云的不对称分布。极性大小取决于成键原子电负性的差。 多原子分子的极性状态是各原子电负性的矢量和。在外界电场的影响下共价键的极性会发生改变。这种由于外界电场作用引起共价键极性改变的现象称为键的极化。键的极性与极化 同化学键的反应性有密切关系。
(五)配位键对生物分子有特殊意义
配位键(coordinate bond)是特殊的共价键 它的共用电子对是由一个原子提供的。在生物分子中常以过渡元素为电子受体 以化学基团中的O、N、 S、 P等为电子供体形成多配位络和物。过渡元素都有固定的配位数和配位结构。
在生物体系中形成的多配位体对稳定生物大分子的构象形成特定的生物分子复合物具有重要意义。 由多配位体所产生的立体异构现象甚至比手性碳所引起的立体异构现象更为复杂。金属元素的络和效应 因能导致配体生物分子内键发生极化增强其反应性而与酶的催化作用有关。
三、 非共价相互作用
(一)、 非共价作用力对生物体系意义重大
非共价相互作用是生物高层次结构的主要作用力。
非共价作用力包括氢键静电作用力 范德华力和疏水作用力。这些力属于弱作用力其强度比共价键低一两个数量级。这些力单独作用时 的确很弱极不稳定但在生物高层次结构中许多弱作用力协同作用往往起到决定生物大分子构象的作用。可以毫不夸
整理版
.
张地说没有对非共价相互作用的理解就不可能对生命现象有深刻的认识。
各种非共价相互作用结合能的大小也有差别在不同级别生物结构中的地位也有不同。结合能较大的氢键在较低的结构级别(如蛋白质的二级结构) 较小的尺度间把氢受体基团与氢供体基团结合起来。结合能较小的范德华力则主要在更高的结构级别较大的尺度间把分子的局部结构或不同分子结合起来。
(二)、氢键
氢键(hydrogen bond)是一种弱作用力键能只相当于共价键的1/30-1/20(12-30 kj/mol) 容易被破坏并具有一定的柔性容易弯曲。氢原子与两侧的电负性强的原子呈直线排列时键能最大 当键角发生20度偏转时键能降低20%。氢键的键长比共价键长 比范德华距离短 约为026-031 nm。
氢键对生物体系有重大意义特别是在稳定生物大分子的二级结构中起主导作用。
(三)、 范德华力
范德华力是普遍存在于原子和分子间的弱作用力是范德华引力与范德华斥力的统一。 引力和斥力分别和原子间距离的6次方和12次方成反比。二者达到平衡时两原子或原子团间保持一定的距离 即范德华距离 它等于两原子范德华半径的和。每个原子或基团都有各自的范德华半径。
范德华力的本质是偶极子之间的作用力包括定向力、诱导力和色散力。极性基团或分子是永久偶极 它们之间的作用力称为定向力。非极性基团或分子在永久偶极子的诱导下可以形成诱导偶极子这两种偶极子之间的作用力称为诱导力。非极性基团或分子 由于电子相对于原子核的波动 而形成的瞬间偶极子之间的作用力称为色散力。
范德华力比氢键弱得多。两个原子相距范德华距离时的结合能约为4kj/mol仅略高于室温时平均热运动能(25kj/mol) 。如果两个分子表面几何形态互补 由于许多原子协同作用 范德华力就能成为分子间有效引力。 范德华力对生物多层次结构的形成和分子的相互识别与结合有重要意义。
(四)、荷电基团相互作用
荷电基团相互作用包括正负荷电基团间的引力常称为盐键(salt bond)和同性荷电基团间的斥力。力的大小与荷电量成正比 与荷电基团间的距离平方成反比还与介质的极性有关。介质的极性对荷电基团相互作用有屏蔽效应介质的极性越小荷电基团相互作用越强。例如 -COO-与-NH3+间在极性介质水中的相互作用力仅为在蛋白质分子内部非极性环境中的1/20在真空中的1/80。
(五)、疏水相互作用
疏水相互作用(hydrophobic interaction)比范德华力强得多。例如一个苯丙氨酸侧链由水相转入疏水相时体系的能量降低约40kj/mol。生物分子有许多结构部分具有疏水性质如蛋白质的疏水氨基酸侧链核酸的碱基脂肪酸的烃链等。 它们之间的疏水相互作用在稳定蛋白质核酸的高层次结构和形成生物膜中发挥着主导作用。 top
第四节生物分子低层次结构的同一性
一、碳架是生物分子结构的基础
碳架是生物分子的基本骨架 由碳氢构成。生物分子碳架的大小组成不一几何形状结构各异具有丰富的多样性。生物小分子的分子量一般在500以下包括2-30个碳原子。碳架结构有线形的有分支形的也有环形的;有饱和的也有不饱和的。变化多端的碳架与种类有限的官能团共同组成形形色色的生物分子的低层次结构--生物小分子。
二、 官能团限定分子的性质
(一)官能团是易反应基团
官能团是生物分子中化学性质比较活泼容易发生化学反应的原子或基团。含有相同官能团的分子具有类似的性质。官能团限定生物分子的主要性质。然而在整个分子中某一官能团的性质总要受到分子其它部分电荷效应和立体效应的影响。任何一种分子的具体性质都是其整体结构的反应。
(二)主要的官能团
生物分子中的主要官能团和有关的化学键有:
羟基(hydroxyl group)有极性一般不解离 能与酸生成酯可作为氢键供体。
羰基(carbonyl group)有极性可作为氢键受体。
羧基(carboxyl group)有极性 能解离一般显弱酸性。
氨基(amino group)有极性可结合质子生成铵阳离子。
酰胺基(amido group) 由羧基与氨基缩合而成有极性其中的氧和氮都可作为氢键供体。肽链中联接氨基酸的酰胺键称为肽键。巯基(sulfhydryl group)有极性在中性条件下不解离。 易氧化成二硫键-S-S。
胍基(guanidino group)强碱性基团可结合质子。胍基磷酸键是高能键。
整理版
.
双键(double bond) 由一个σ键和一个π键构成其中π键键能小 电子流动性很大 易发生极化断裂而产生反应。双键不能旋转有顺反异构现象。规定用"顺"(cis)表示两个相同或相近的原子或基团在双键同侧的异构体 用"反"(trans)表示相同原子位于双键两侧的异构体。焦磷酸键(pyrophosphate bond) 由磷酸缩合而成是高能键。一摩尔ATP水解成ADP可放出73千卡能量而葡萄糖-6-磷酸只有33千卡。
氧酯键(ester bond)和硫酯键(thioester bond)分别由羧基与羟基和巯基缩水而成。硫酯键是高能键。
磷酸酯键(phosphoester bond) 由磷酸与羟基缩水而成。磷酸与两个羟基结合时称为磷酸二酯键。这两种键中的磷酸羟基可解离成阴离子。
生物小分子大多是双官能团或多官能团分子如糖是多羟基醛(酮) 氨基酸是含有氨基的羧酸。官能团在碳链中的位臵和在碳原子四周的空间排布的不同进一步丰富了生物分子的异构现象。
三、杂环集碳架和官能团于一体
(一)大部分生物分子含有杂环
杂环(heterocycle)是碳环中有一个或多个碳原子被氮氧硫等杂原子取代所形成的结构。 由于杂原子的存在杂环体系有了独特的性质。生物分子大多有杂环结构如氨基酸中有咪唑 吲哚;核苷酸中有嘧啶 嘌呤糖结构中有吡喃和呋喃。
(二)分类命名和原子标位
1分类根据成环原子数目分为五元杂环和六元杂环等。根据环的数目分为单杂环和稠杂环。
2命名 杂环的命名法有两种 即俗名与系统名。我国常用外文俗名译音用带"口"旁的汉字表示。
(三)常见杂环
五元杂环:呋喃 吡咯 噻吩咪唑等
六元杂环:吡喃 吡啶 嘧啶等
稠杂环:吲哚 嘌呤等
四、异构现象丰富了分子结构的多样性
(一)生物分子有复杂的异构现象
异构体(isomer)是原子组成相同而结构或构型不同的分子。异构现象分类如下:
1结构异构由于原子之间连接方式不同所引起的异构现象称为结构异构。结构异构包括:(1)由碳架不同产生的碳架异构;(2)由官能团位臵不同产生的位臵异构;(3)由官能团不同而产生的官能团异构。如丙基和异丙基互为碳架异构体 a-丙氨酸和b-丙氨酸互为位臵异构体丙醛糖和丙酮糖互为官能团异构体。
2立体异构同一结构异构体 由于原子或基团在三维空间的排布方式不同所引起的异构现象称为立体异构现象。立体异构可分为构型异构和构象异构。通常将分子中原子或原子团在空间位臵上一定的排布方式称为构型。构型异构是结构相同而构型不同的异构现象。构型异构又包括顺反异构和光学异构。构型相同的分子可由于单键旋转产生很多不同立体异构体这种现象称为构象异构。互变异构指两种异构体互相转变并可达到平衡的异构现象。
各种异构现象丰富了生物分子的多样性扩充了生命过程对分子结构的选择范围。
(二)手性碳原子引起的光学异构
左手与右手互为实物与镜像的关系不能相互重合。分子与其镜像不能相互重合的特性称为手性(chirali ty) 生物分子大多具有手性。结合4个不同原子或基团的碳原子 与其镜像不能重合称为手性碳原子又称不对称碳原子。手性碳原子具有左手与右手两种构型。具有手性碳原子的分子称为手性分子。具有n个手性碳原子的分子有2n个立体异构体。两两互有实物与镜像关系的异构体称为对映体(enantiomer) 。彼此没有实物与镜像关系的称为非对映体。对映体不论有几个手性碳原子每个手性碳原子的构型都对应相反。非对映体有两个或两个以上手性碳原子其中只有部分手性碳原子构型相反。其中只有一个手性碳原子构型相反的又称为差向异构体(epimer) 。手性分子具有旋光性所以又称为光学异构体。
手性分子构型表示法:有L-D系统和R-S系统两种。生物化学中习惯采用前者按系统命名原则将分子的主链竖向排列氧化度高的碳原子或序号为1的碳原子放在上方氧化度低的碳原子放在下方 写出费歇尔投影式。规定:分子的手性碳处于纸面手性碳的四个价键和所结合的原子或基团两个指向纸面前方 用横线表示两个指向纸面后方 用竖线表示。例如甘油醛有以下两个构型异构体:
人为规定羟基在右侧的为D-构型在左侧是L-构型。括号中的+ -分别表示右旋和左旋。构型与旋光方向没有对应关系。具有多个手性碳原子的分子按碳链最下端手性碳的构型将它们分为D L-两种构型系列。在糖和氨基酸等的命名中普遍采用LD-构型表示法。
(三)单键旋转引起构象异构
整理版
.
结合两个多价原子的单键的旋转可使分子中的其余原子或基团的空间取向发生改变从而产生种种可能的有差别的立体形象这种现象称为构象异构。
构象异构赋予生物大分子的构象柔顺性。 与构型相比构象是对分子中各原子空间排布情况的更深入的探讨 以阐明同一构型分子在非键合原子间相互作用的影响下所发生的立体结构的变化。
四互变异构
由氢原子转移引起如酮和烯醇的互变异构。DNA中碱基的互变异构与自发突变有关酶的互变异构与催化有关在代谢过程中也常发生代谢物的互变异构。
第五节生物大分子
一、定义
生物大分子都是由小分子构件聚合而成的称为生物多聚物。其中的构件在聚合时发生脱水所以称为残基。 由相同残基构成的称为同聚物 由不同残基构成的称为杂聚物。
二、结构层次
生物大分子具有多级结构层次如一级结构、二级结构、 三级结构和四级结构。
三、组装
一级结构的组装是模板指导组装
高级结构的组装是自我组装一级结构不仅提供组装的信息 而且提供组装的能量使其自发进行。
四、互补结合
生物大分子之间的结合是互补结合。这种互补可以是几何形状上的互补也可以是疏水区之间的互补、氢键供体与氢键受体的互补、相反电荷之间的互补。互补结合可以最大限度地降低体系能量使复合物稳定。互补结合是一个诱导契合的过程
注本笔记第一章为生物分子的概述介绍了生物分子的的特征及部分有机化学的基本内容本章为提取各章节生物化学相关基础有机化学知识 主要来源于第一章内容。掌握该部分知识有助于生物化学的学习。
本章只作基础内容添加入本笔记本章考点少。
整理版
.
第二章 糖 类提要
一、定义
糖、单糖、寡糖、 多糖、结合糖、 呋喃糖、 吡喃糖、糖苷、手性
二、结构
1链式 Glc、Man、 Gal、 Fru、 Rib、 dRib
2环式顺时针编号D型末端羟甲基向下 α型半缩醛羟基与末端羟甲基在两侧。3构象椅式稳定 β稳定 因其较大基团均为平键。
三、反应
1与酸莫里斯试剂、西里万诺夫试剂。
2与碱 弱碱互变 强碱分解。
3氧化 三种产物。
4还原葡萄糖生成山梨醇。
5酯化
6成苷有α和β两种糖苷键。
7成沙可根据其形状与熔点鉴定糖。
四、衍生物
氨基糖、糖醛酸、糖苷
五、寡糖
蔗糖、乳糖、麦芽糖和纤维二糖的结构
六、 多糖
淀粉、糖原、纤维素的结构
整理版
.
粘多糖、糖蛋白、蛋白多糖一般了解
七、计算
比旋计算注意单位。
第一节 概 述
一、糖的命名
糖类是含多羟基的醛或酮类化合物 由碳氢氧三种元素组成的其分子式通常以Cn(H2 O)n表示。
由于一些糖分子中氢和氧原子数之比往往是2:1 与水相同过去误认为此类物质是碳与水的化合物所以称为"碳水化合物"(C arbohydrate) 。
实际上这一名称并不确切如脱氧核糖、 鼠李糖等糖类不符合通式 而甲醛、 乙酸等虽符合这个通式但并不是糖。只是"碳水化合物"沿用已久一些较老的书仍采用。我国将此类化合物统称为糖 而在英语中只将具有甜味的单糖和简单的寡糖称为糖(sugar) 。
二、糖的分类
根据分子的聚合度分糖可分为单糖、寡糖、 多糖。 也可分为结合糖和衍生糖。
1单糖单糖是不能水解为更小分子的糖。葡萄糖果糖都是常见单糖。根据羰基在分子中的位臵单糖可分为醛糖和酮糖。根据碳原子数目可分为丙糖 丁糖戊糖 己糖和庚糖。
杂聚多糖由两种以上单糖构成。
4结合糖糖链与蛋白质或脂类物质构成的复合分子称为结合糖。其中的糖链一般是杂聚寡糖或杂聚多糖。如糖蛋白糖脂蛋白聚糖等。
5衍生糖由单糖衍生而来如糖胺、糖醛酸等。
三、糖的分布与功能
1分布糖在生物界中分布很广几乎所有的动物植物微生物体内都含有糖。糖占植物干重的80%微生物干重的10-30%动物干重的2%。糖在植物体内起着重要的结构作用而动物则用蛋白质和脂类代替所以行动更灵活适应性强。动物中只有昆虫等少数采用多糖构成外骨胳其形体大小受到很大限制。
在人体中糖主要的存在形式:(1)以糖原形式贮藏在肝和肌肉中。糖原代谢速度很快对维持血糖浓度衡定满足机体对糖的需求有重要意义。 (2)以葡萄糖形式存在于体液中。细胞外液中的葡萄糖是糖的运输形式 它作为细胞的内环境条件之一浓度相当衡定。 (3)存在于多种含糖生物分子中。糖作为组成成分直接参与多种生物分子的构成。如:DNA分子中含脱氧核糖RNA和各种活性核苷酸(ATP、许多辅酶)含有核糖糖蛋白和糖脂中有各种复杂的糖结构。
2功能糖在生物体内的主要功能是构成细胞的结构和作为储藏物质。植物细胞壁是由纤维素半纤维素或胞壁质组成的 它们都是糖类物质。作为储藏物质的主要有植物中的淀粉和动物中的糖原。此外糖脂和糖蛋白在生物膜中占有重要位臵担负着细胞和生物分子相互识别的作用。
糖在人体中的主要作用:(1)作为能源物质。一般情况下人体所需能量的70%来自糖的氧化。 (2)作为结构成分。糖蛋白和糖脂是细胞膜的重要成分蛋白聚糖是结缔组织如软骨 骨的结构成分。 (3)参与构成生物活性物质。核酸中含有糖有运输作用的血浆蛋白有免疫作用的抗体有识别转运作用的膜蛋白等绝大多数都是糖蛋白许多酶和激素也是糖蛋白。 (4)作为合成其它生物分子的碳源。糖可用来合成脂类物质和氨基酸等物质。
第二节单 糖
一、单糖的结构
(一)单糖的链式结构
单糖的种类虽多但其结构和性质都有很多相似之处 因此我们以葡萄糖为例来阐述单糖的结构。
葡萄糖的分子式为C6H12O6具有一个醛基和5个羟基我们用费歇尔投影式表示它的链式结构:
以上结构可以简化:
(二)葡萄糖的构型
葡萄糖分子中含有4个手性碳原子根据规定单糖的D、 L构型由碳链最下端手性碳的构型决定。人体中的糖绝大多数是D-糖。
(三)葡萄糖的环式结构
葡萄糖在水溶液中只要极小部分(<1%)以链式结构存在大部分以稳定的环式结构存在。环式结构的发现是因为葡萄糖的某些性质不能用链式结构来解释。如:葡萄糖不能发生醛的NaHSO3加成反应;葡萄糖不能和醛一样与两分子醇形成缩醛 只能与一分子醇反应;葡
整理版
欧路云新上了美国洛杉矶cera机房的云服务器,具备弹性云特征(可自定义需要的资源配置:E5-2660 V3、内存、硬盘、流量、带宽),直连网络(联通CUVIP线路),KVM虚拟,自带一个IP,支持购买多个IP,10G的DDoS防御。付款方式:PayPal、支付宝、微信、数字货币(BTC USDT LTC ETH)测试IP:23.224.49.126云服务器 全场8折 优惠码:zhujiceping...
关于HostDare服务商在之前的文章中有介绍过几次,算是比较老牌的服务商,但是商家背景财力不是特别雄厚,算是比较小众的个人服务商。目前主流提供CKVM和QKVM套餐。前者是电信CN2 GIA,不过库存储备也不是很足,这不九月份发布新的补货库存活动,有提供九折优惠CN2 GIA,以及六五折优惠QKVM普通线路方案。这次活动截止到9月30日,不清楚商家这次库存补货多少。比如 QKVM基础的五个方案都...
修罗云怎么样?修罗云是一家国内老牌商家,修罗云商家以销售NAT机器起家,国内的中转机相当不错,给的带宽都非常高,此前推荐的也都是国内NAT VPS机器。今天,云服务器网(www.yuntue.com)小编主要介绍一下修罗云的香港云服务器,适合建站,香港沙田cn2云服务器,2核2G,5M带宽仅70元/月起,同时香港香港大带宽NAT VPS低至50元/月起,性价比不错,可以尝试一下!点击进入:修罗云官...