POWERSOLUTIONS65ENTERPRISECLUSTERENVIRONMENTRecommendationsandTechniquesforScalingMicrosoftSQLServerTosupportmanymoreusers,adatabasemusteasilyscaleoutaswellasup.
ThisarticledescribestechniquesandstrategiesforscalingouttheMicrosoftSQLServerrelationaldatabasemanagementsystem(RDBMS)andprovidesscenariosillustratingscale-outdeployments.
MostenterpriseapplicationstodayrunonaMicrosoftWindows,UNIX,orLinuxoperatingsystem–basedrelationaldatabasemanagementsystem(RDBMS),suchasMicrosoftSQLServer2000.
Scalabilityhasbecomeacriticalfactorinthesuccessoftheseapplicationsasthenumberofusersrelyingonthemhasgrown.
TheInternetalsohasprofoundlyaffectedtheneedforscalability.
Onceexposedtojustafewthousandusers,thedatainmanycorporatedatabasesnowmustbeaccessedbytensofthousandsofconcurrentusersthroughe-commercesites,Webservices,andotherInternet-basedapplications.
Scalingdatabasestosupporttheseusersisamajorcon-cernforbothdatabasesoftwaredevelopersanddatabaseadministrators.
DifferencesbetweenscalingupandscalingoutWhendatabaseperformanceworsens,administratorstypicallyaddresstheproblemfirstbyscalingup—thatis,bytryingtooptimizeperformanceinthecurrentenvi-ronment.
Becausemanydatabaseapplicationshaveinefficientdesignsorbecomeinefficientastheirusagepatternschange,findingandimprovingtheareasofinefficiencycanyieldsignificantperformancebenefits.
Fine-tuningthedatabaseservercanhelpperformmorequeries,handlemoreusers,andrunmoreefficiently.
SQLServerscalesupfairlywell—toapoint.
Inonereal-worldscenario,forexample,acompany'sdatabaserequiredanine-tablejointolookupasinglecustomeraddress.
Selectivelydenormalizingthetablesandapply-ingstrategicindexesallowedSQLServertoexecuteaddressqueriesmuchfaster.
Becauseaddresslookupswereacommontaskforthiscompany,evenaminorper-queryimprovementsignificantlyenhancedoverallserverperformance.
Unfortunately,scalingupislimitedinhowmuchitcanimproveanapplication'sperformanceandabilitytosupportmoreusers.
Forexample,takeadatabasewhosesolefunctionistoperformasingle,simplequery—nojoins,noneedforindexes.
Ahigh-performanceSQLServercomputer—forexample,aquad-processorserverwith4GBofRAMandBYDONJONESWhendatabaseperformanceworsens,administratorstypicallyaddresstheproblemfirstbyscalingup.
severalfastharddrives—couldprobablysupporttensofthou-sandsofuserswhomustconcurrentlyexecutethatonequery.
However,thisservermightnotbeabletosupportamillionusers.
Inthissituation,scalingup—fine-tuning—wouldbeinsuf-ficient,becausesuchasimplequeryleaveslittleroomforimprovement.
Tobeginsupportingmanymoreusers,scalingoutisabettersolution.
Scale-outstrategiesredistributeworkloadsScalingoutSQLServer,amorecomplicatedprocessthanscalingup,requiressplittingadatabaseintovariouspieces,thenmovingthepiecestodifferent,independentSQLServercomputers.
Thegrocery-storecheckoutlinepresentsagoodanalogyforcompar-ingthetwoprocesses.
Inabusygrocerystorewithonlyonecheckoutlaneopen,alonglineofunhappycustomerswouldquicklymaterialize.
Ascale-upapproach—installingfasterbarcodescanners,requir-ingeveryonetouseacreditcardinsteadofwritingacheck,orhiringafastercashier—canmakethecheckoutprocessitselfmoreefficient.
Thesemeasuresmightimprovethesituation,butnotsolvetheproblem;customerswouldmovethroughthelinemorequickly,buttheystillwouldhaveonlyonecheckoutlane.
Abettersolutionwouldbetoscaleout—inthisanalogy,byopen-ingadditionalcheckoutlanes.
Customerscouldnowbeprocessedinparallelbycompletelyindependentlanes.
Tomaketheanalogyclosertoadatabasescale-outscenario,thegrocerystorecouldhavespe-cializedlanes:onethatexpeditesprocessing(customerspurchasing15itemsorfewer),andanotherthatfocusesonproduce,whichoftentakeslongerbecauseitmustbeweighedandnotsimplyscanned.
Anideal,ifunrealistic,solutionmightbetoretainasinglelaneforeachcustomer,buttodivideeachcustomer'spurchasesintocategoriestobehandledbyspecialists:produce,meat,boxeditems,andsoforth.
Specializedcashierscouldminimizetheirinteractionswitheachother,keepingtheprocessmovingspeedilyalong.
Althoughunworkableinarealgrocerystore,thissolutionillus-tratesareal-worldmodelforscalingoutdatabases.
GeneralstrategiesforscalingoutdatabasesDatabasemanagerscanconsidertwobasicscale-outstrategiesfordistributingtheworkloadofadatabaseacrossmultipleservers.
MostmajorRDBMSplatforms,includingSQLServer,providethemeanstomakethesestrategiespossible.
SQLServerfarmsreplicatethedatabaseThefirstapproachsimplyaddsmoreservers.
ConsiderascenarioinwhichacompanyhasanofficeinNewYorkandoneinLosAngeles.
Bothofficeshaveseveralthousanduserswhofrequentlyquerydatafromacorporateapplication,suchasanorder-processingdatabase.
Usersrarelychangedatainthesystem,buttheyfrequentlyaddnewdata.
Inthisscenario,usersinbothofficesareoverloadingthedatabase.
Evenifthedatabaseisawell-writtenmultitierapplication,pro-cessingalltheinformationononlyonedatabaseserveratthebackendcancreateabottleneck.
Figure1illustratesonewaytoaddresstheproblem:aSQLServerfarm.
Inthistechnique,twodata-baseserverseachcontainacom-pletecopyofthedatabase.
Eachofficehousesoneserver,andtheusersineachofficeconnectonlytotheirlocalserver.
ChangesandnewrecordsarereplicatedbetweentheserversbyusingSQLServerreplication.
Toavoidconflictswhenaddingnewrecords,eachofficemight,forexample,beassignedauniquerangeoforderIDnum-bers,ensuringthatnewrecordscreatedineitherofficecanbeuniquelyidentifiedacrossbothcopiesofthedatabase.
ThisstrategyisperhapsthesimplestmeansofscalingoutSQLServer.
AlthoughreplicationisnoteasytosetupandmaintainonSQLServer,neitherisitextremelydifficult.
Thestrategyworkswellevenwithmanyserversandcopiesofthedatabase.
However,thedatareplicationstrategydoesincursomedraw-backs,especiallylatency.
Neithercopyofthedatabasewillevermatchtheotherexactly.
Asnewrecordsareaddedtoeachcopy,timeelapsesbeforereplicationbegins.
Withonlytwoserversinthecompany,eachservermightbeasmuchasanhouroutofsyncwiththeother,dependinguponhowadministratorssetupreplication.
Addingmoreservers,however,involvesdifficultreplicationdecisions.
Foranotherscenario,considerthesix-officesetupdepictedinFigure2.
EachofthesixofficeshasitsownindependentSQLServersystem—anexcellentdesignforscalability.
However,latencycouldbeveryhigh.
IfeachSQLServerreplicateswithitspartnersjustonceeveryhour,thentotalsystemlatencycouldbethreehoursormore.
AchangemadeintheLosAngelesofficewouldreplicateENTERPRISECLUSTERENVIRONMENTPOWERSOLUTIONSNovember200366WorkstationsServerServerWorkstationsReplicationLosAngelesofficeNewYorkofficeFigure1.
SQLServerfarmScalingoutSQLServer,amorecomplicatedprocessthanscalingup,requiressplittingadatabaseintovariouspieces,thenmovingthepiecestodifferent,independentSQLServercomputers.
toNewYorkandLasVegasinaboutanhour.
Anhourlater,thechangewouldreachLondonandDenver.
Anhourlater,itwouldarriveinOrlando.
Givensuchhighlatency,theentiresystemwouldprobablyneverbesynchronizedcompletely.
Administratorscanreducelatency,butataperformancecost.
Ifeachofthesixserversreplicatedwitheachoftheotherfiveservers,thesystemcouldconverge,orbeuniversallyinsync,aboutonceanhour(assumingagainthatreplicationoccurredeveryhour).
Figure3showssuchafullyenmesheddesign.
Inthisfullyenmesheddesign,eachservermustmaintainrepli-cationagreementswithfiveotherservers,andmustreplicatewitheachservereveryhour.
Thismuchreplication,particularlyinabusydatabaseapplication,wouldlikelyslowresponsesomuchthattheperformancegainachievedbycreatingaserverfarmwouldbelost.
Eachofficemightrequiretwoserversjusttomaintainrepli-cationandmeetusers'needs.
Althoughfairlyeasytoimplement,theserverfarmtechniquehasapointofdiminishingreturns.
DistributedpartitioneddatabasesmovetaskstodifferentserversAmoresophisticatedstrategy—butonethatisalsomoredifficulttoimplement—involvespartitioningthedatabaseandmovingthepiecestodifferentservers.
Unlikethesimplifiedorder-processingdatabaseexamplepreviouslydiscussedin"SQLServerfarmsrepli-catethedatabase,"mostreal-worlddatabaseapplicationstendtorelyonanequalmixofdatareadinganddatawriting.
Forexample,anorder-processingapplicationmightincludeaproductcatalogthatislargelyreadonly,acustomer-orderdatabasethatiswriteheavy,andtablescontainingsupplierinformationthatareequallyread-write.
Thesethreecloselyrelateddata-basesegments—catalog,orders,andsuppliertables—arefairlytask-independent:diverseuserswithintheorganizationtendtouseeachdatabasedifferently.
Mer-chandisersmightwritetothecat-alogbutdolittleelse.
Customerservicerepresentativesmightreadthecatalogandwritetotheorderstablesbutneveraccessthesup-pliertables.
Thewarehousestaffmightreadthecatalogandreadfromandwritetothesuppliertables.
Thisdivisionoflaborindicateswherethedatabaseitselfcanbesplit,asFigure4illustrates.
Administratorscanusetwobasicapproachestoimplementingthedistributedpartitioneddatabasestrategy.
Thefirstistomodifytheclientapplicationsothatitunderstandsthedivisionofthedatabaseacrossmultipleservers.
Straightforwardyetsomewhattime-consuming,thissolutiondoesnotworkwellforthelongterm.
Futurechangestotheapplicationcouldresultinadditionaldivisions,whichwouldinturnrequireadditionalreprogramming.
Abetterapproachistoprogramtheclientapplicationtousestoredprocedures,views,andotherserver-sideobjects—anordi-narybestpracticeforaclient-serverapplication—sothattheclientapplicationneednotbeawareofthephysicallocationofthedata.
SQLServeroffersdifferenttechniques,suchasdistributedpartitionedviews,tohandlethissetup.
ENTERPRISECLUSTERENVIRONMENTwww.
dell.
com/powersolutionsPOWERSOLUTIONS67NewYorkLosAngelesLasVegasDenverOrlandoLondonFigure3.
Fullyenmeshedsix-serverfarmReplicationReplicationReplicationReplicationReplicationReplicationNewYorkLosAngelesLasVegasDenverOrlandoLondonFigure2.
Six-serverfarmScalingoutSQLServercanofferbenefitsnotonlyinimprovedapplicationperformance,butalsoingreaterredun-dancyandavailability.
Scale-outtechniquesusingSQLServerandWindowsSQLServerandWindowsofferseveraltechniquestoenablescalingout,includingSQLServer–specificfeaturessuchasdis-tributeddatabasesandviewsandWindows-specificfunctionssuchasWindowsClustering.
DistributedpartitionedviewshelpcreatevirtualtablesSQLServerdistributedpartitionedviewsallowdeveloperstocreateviewsthatcombinetablesfrommultipleSQLServercomputersintoasinglevirtualtable.
ThismethodlogicallydividesadatabaseacrossmultipleSQLServercomputers.
Ratherthanreprogrammingclientapplicationstounderstandthedivisionofthedatabases,develop-erscancreatedistributedviewsthatpresentavirtualizedversionofthem.
Thesetablesappeartoclientapplicationsasiftheywereonasingleserver.
Meanwhile,SQLServercombinesthetables,whicharespreadacrossmultipleservers,intoasingleview.
Distributedviewsareapowerfultoolinscalingout.
Theyallowdeveloperstoredistributedatabasestransparentlytotheendusersandtheirbusinessappli-cations.
Aslongasclientapplica-tionsaredesignedtousetheviewsratherthanthedirecttables,thetablesthemselvescanberearrangedandscaledoutasnec-essarywithouttheclientapplica-tionbeingawareofanychange.
Theworkloadrequiredtocreateandpresenttheviewtoclientcomputersissharedbyallserversparticipatingintheview—orbyallserversinthefederation.
SQLServer2000isthefirstversionofSQLServertomakeasignificantimprovementtothisapproach,becausethedatawithintheviewscanbeupdatedbyclientapplicationsasifthedatawereinaregulartable.
Theupdatesarecascadedbacktothenecessaryparticipantservers.
ReplicationofdistributedpartitioneddatabasesreduceslatencyAnotherscale-outapproachinvolvespartitioningadatabaseacrossmultipleserversandthenreplicatingthedatabasecopies.
Likethesix-serverorder-processingfarmdescribedearlier,eachservercontainsacompletedatabase.
Inthismethod,eachserverisresponsibleforadifferentsetofrows.
SQLServerreplicationisusedtokeepeachcopyofthedatabaseupdated.
Thismethodallowseachservertoimme-diatelyaccessitsownrowsandprovidesreasonablylowlatencyforaccesstorowscreatedonotherservers.
Clientapplicationsoftenmustbemodifiedtounderstandthisstructure.
Inmanypartitioneddatabaseschemes,datarowsmaybemodifiedonlyontheserverthatownsthem,withthechangesthenbeingmovedtotheotherserversthroughreplication.
Clientapplicationsmustknowhowtodeterminewhichserverownsarowbeforemakingmodifications.
WindowsClusteringfacilitateshighavailabilityandscalabilityBesidesimprovingperformance,WindowsClusteringcanhelpavoidtheriskofserverfailurewhenscalingout.
Forexample,atwo-nodeactive/activeclusterhastwoindependentSQLServerservers.
Thesenodescanbeconfiguredasaserverfarm,inwhicheachservercon-tainsacompletecopyofthedatabaseandusersaredistributedbetweenthem.
Analternativeisadistributeddatabasearchitecture,inwhicheachservercontainsonelogicalhalfoftheentiredatabase.
Ineitherarchitecture,afailureofoneserverisnotcatastrophicbecauseWindowsClusteringenablestheotherservertotranspar-entlytakeoverandactastwoservers.
Over-engineeringisthekeytoasuccessfulactive/activecluster.
Eachnodeshouldbedesignedtooperateatamaximumof60percentcapacity.
Ifonenodefails,theothernodecanbeginrun-ningat100percentcapacity,incurringonlyabouta20percentlossofefficiency.
Still,performanceisgenerallywellwithinanaccept-ablerangeconsideringthat,afterfailover,applicationsmustrunonhalfasmuchhardware.
Settingupclusterscanbeextremelycomplex.
InWindowsClustering,thesoftwareisnotdifficulttouse,buttheunderlyinghard-waremustbeabsolutelycompatiblewithWindowsClustering—andmosthardwarevendorshaveexactingrequirementsforclustersetups.
Purchasingpreconfiguredclustersfromamajorservervendor,suchasDell,canhelpsimplifyclustersetup.
Theclusterisdesignedtobereadytorunondelivery,andboththevendorandMicrosoftcanpro-videcluster-specifictechnicalsupportifnecessary.
High-performancestoragetoboostSQLServerresponseHigh-performancestorageisanoften-overlookedperformancebenefitforSQLServer—particularlyexternalstorageareanetworksENTERPRISECLUSTERENVIRONMENTPOWERSOLUTIONSNovember200368ServerServerServerCatalogOrdersSuppliersMerchandisingCustomerserviceWarehouseWriteWriteRead/writeReadReadFigure4.
Identifyingtask-baseddivisionsinthedatabasedesignSQLServerandWindowsofferseveraltechniquestoenablescalingout,includingSQLServer–specificfeaturessuchasdistributeddatabasesandviewsandWindows-specificfunctionssuchasclustering.
(SANs)thatrelyonFibreChanneltechnologyratherthantraditionalSCSIdisksubsystems.
Becausehigh-performancestorageenablesanexistingservertohandleagreaterworkload,itconstitutesanexam-pleofscalingupratherthanout.
SQLServerisahighlydisk-intensiveapplication.
AlthoughSQLServerincludeseffectivememory-basedcachingtechniquestoreducediskreadsandwrites,databaseoperationsrequiresignificantdatatrafficbetweenaserver'sdisksanditsmemory.
Themorequicklythedisksubsystemcanmovedata,thefasterSQLServerwillper-form.
Someindustryestimatessuggestthat75percentofidletimeinSQLServerresultsfromwaitingforthedisksubsystemtodeliverdata.
ImprovingthespeedofthedisksubsystemcanmarkedlyimproveoverallSQLServerperformance.
MovingtoadditionalRAID-5arraysontraditionalcopperSCSIconnectionsisasimplewaytoimprovediskspace.
However,high-speedFibreChannelSANsofferthebestspeed,aswellasmyriadinnovativerecoveryandredundancyoptions—makingthemasaferplacetostoreenterprisedata.
Scale-outstrategyforimprovingSQLServerperformance,redundancy,andavailabilityAsapplicationsgrowtosupporttensandhundredsofthousandsofusers,scalingisbecomingamission-criticalactivity.
Scalingup—improvingefficiencybyfine-tuningqueries,indexes,andsoforth—helpsITorganizationsdomorewithless.
However,scalingupcanrequirehighadministrativeoverheadandmayhavelimitedeffect.
Administratorsmightspendtwoweekstoachievea1per-centperformancegain,animprovementthatcannotcomparetothemuchhighergainspromisedbyawell-plannedscale-outdesign.
Althoughseldomconsideredasatargetforscalingout,SQLServeriswellsuitedtothisstrategy,inbothserverfarmandmoresophisticateddistributeddatabaseapproaches.
ScalingoutSQLServercanofferbenefitsnotonlyinimprovedapplicationperfor-mance,butalsoingreaterredundancyandavailability.
DonJonesisafoundingpartnerofBrainCore.
Net,andhasmorethanadecadeofexperi-enceintheITindustry.
Don'scurrentfocusisonhigh-endenterpriseplanning,includingdataavailabilityandsecuritydesign.
ENTERPRISECLUSTERENVIRONMENTwww.
dell.
com/powersolutionsPOWERSOLUTIONS69Databasescanbeinefficientforseveralreasons:Poordesign:Manyapplicationdevelopersdonotexcelatdatabasedesign.
Some,forexample,havebeentaughttofullynormalizethedatabaseatallcosts,whichcanleadtosignificantlydegradedperformance.
Sometimesprojectschedulesdonotpermitenoughdesigniterationsbeforethedatabasemustbelockeddownandsoft-waredevelopmentbegins.
Insomecases,theapplicationitselfisnotdesignedwell,resultinginanincompletedatabasedesignthatmustbepatchedandexpandedastheapplicationiscreated.
Change:Anapplicationusedinawayunintendedbyitsdesignerscanreduceefficiency.
Theapplicationmayhaveexpandedandbegunsufferingfrom"scopecreep"—thegrowthorchangeofprojectrequirements.
Inthiscase,redesigningtheapplicationfromthebeginningtomeetcurrentbusinessneedsmaybethebestsolutiontodatabaseinefficiency.
Growth:Databasesaredesignedforaspecificdatavolume;oncethatvolumeisexceeded,queriesmaynotworkastheywereintended.
Indexesmightneedtoberedesignedoratleastrebuilt.
Queriesthatwereintendedtoreturnafewdozenrowsmaynowreturnthousands,affectingtheunderlyingdesignoftheapplicationandthewaydataishandled.
Theseproblemsaredifficulttoaddressinalive,productionappli-cation.
Scalinguptendstohavealimitedeffect.
Althoughdevelopersmayagreethattheapplication'sdesignisinefficient,companiesarereluctanttodestroyaserviceableapplicationandstartoverwithoutseriousconsideration.
Scalingoutcanofferalessdrasticsolution.
Althoughscalingoutrequiresconsiderableworkontheserverside,itmaynotrequiremuchmorethanminorrevisionstoclient-sidecode,makingtheprojectapproachablewithoutcompletelyre-architectingtheapplication.
Scalingoutmightnotbethemostelegantorefficientwaytoimproveperformance,butitdoeshelpalleviatemanydatabaseandapplicationdesignflaws.
Italsocanallowcompaniestogrowtheirdatabaseapplicationswithoutneedingtoredesignthemfromthebeginning.
FORMOREINFORMATIONThisarticleisbasedonanexcerptfromthefreeeBookTheDefinitiveGuidetoScalingOutSQLServer(Realtimepublishers.
com)byDonJones,availableathttp://www.
dell.
com/sql/ebookDell|MicrosoftSQLServer2000:http://www.
dell.
com/us/en/esg/topics/products_software_pedge_001_database.
htmMicrosoftSQLServer:http://www.
microsoft.
com/sqlUNDERSTANDINGDATABASEINEFFICIENCY
atcloud主要提供常规cloud(VPS)和storage(大硬盘存储)系列VPS,其数据中心分布在美国(俄勒冈、弗吉尼亚)、加拿大、英国、法国、德国、新加坡,所有VPS默认提供480Gbps的超高DDoS防御+不限流量,杜绝DDoS攻击骚扰,比较适合海外建站等相关业务。ATCLOUD.NET是一家成立于2020年的海外主机商,主要提供KVM架构的VPS产品、LXC容器化产品、权威DNS智能解...
RackNerd 商家我们应该是比较熟悉的商家,速度一般,但是人家便宜且可选机房也是比较多的,较多集中在美国机房。包括前面的新年元旦促销的时候有提供年付10美元左右的方案,实际上RackNerd商家的营销策略也是如此,每逢节日都有活动,配置简单变化,价格基本差不多,所以我们网友看到没有必要囤货,有需要就选择。RackNerd 商家这次2022农历新年也是有几款年付套餐。低至RackNerd VPS...
Megalayer 商家算是新晋的服务商,商家才开始的时候主要是以香港、美国独立服务器。后来有新增菲律宾机房,包括有VPS云服务器、独立服务器、站群服务器等产品。线路上有CN2优化带宽、全向带宽和国际带宽,这里有看到商家的特价方案有增加至9个,之前是四个的。在这篇文章中,我来整理看看。第一、香港服务器系列这里香港服务器会根据带宽的不同区别。我这里将香港机房的都整理到一个系列里。核心内存硬盘IP带宽...
sqlserver2000挂起为你推荐
操作http企业cms我想给一个企业做个网站需要用到CMS 不知道什么CMS比较适合企业主要是产品模块强大重庆杨家坪猪肉摊主杀人在毫无预兆的情况下,对方激情杀人(持械偷袭)——作为习武者,你该怎么办?360免费建站聚企360建站是免费的?verticalflash加多宝和王老吉王老吉和加多宝的关系?加多宝与王老吉王老吉和加多宝什么关系?瞄准的拼音瞄怎么读,瞄的组词,瞄的读音,瞄的笔顺,瞄的意思即时通如何使用即时通啊qq头像上传失败昨天和今天QQ头像上传失败,是怎么回事?
山东虚拟主机 免费域名注册 美国vps 工信部域名备案系统 域名备案中心 美国主机排名 bluehost webhostingpad 163网 美国便宜货网站 宕机监控 12u机柜尺寸 中国智能物流骨干网 百度云1t 东莞服务器 实惠 国外网页代理 江苏徐州移动 石家庄服务器 phpwind论坛 更多