www.dell.com/powersolutions

sqlserver2000挂起  时间:2021-04-23  阅读:()
POWERSOLUTIONS65ENTERPRISECLUSTERENVIRONMENTRecommendationsandTechniquesforScalingMicrosoftSQLServerTosupportmanymoreusers,adatabasemusteasilyscaleoutaswellasup.
ThisarticledescribestechniquesandstrategiesforscalingouttheMicrosoftSQLServerrelationaldatabasemanagementsystem(RDBMS)andprovidesscenariosillustratingscale-outdeployments.
MostenterpriseapplicationstodayrunonaMicrosoftWindows,UNIX,orLinuxoperatingsystem–basedrelationaldatabasemanagementsystem(RDBMS),suchasMicrosoftSQLServer2000.
Scalabilityhasbecomeacriticalfactorinthesuccessoftheseapplicationsasthenumberofusersrelyingonthemhasgrown.
TheInternetalsohasprofoundlyaffectedtheneedforscalability.
Onceexposedtojustafewthousandusers,thedatainmanycorporatedatabasesnowmustbeaccessedbytensofthousandsofconcurrentusersthroughe-commercesites,Webservices,andotherInternet-basedapplications.
Scalingdatabasestosupporttheseusersisamajorcon-cernforbothdatabasesoftwaredevelopersanddatabaseadministrators.
DifferencesbetweenscalingupandscalingoutWhendatabaseperformanceworsens,administratorstypicallyaddresstheproblemfirstbyscalingup—thatis,bytryingtooptimizeperformanceinthecurrentenvi-ronment.
Becausemanydatabaseapplicationshaveinefficientdesignsorbecomeinefficientastheirusagepatternschange,findingandimprovingtheareasofinefficiencycanyieldsignificantperformancebenefits.
Fine-tuningthedatabaseservercanhelpperformmorequeries,handlemoreusers,andrunmoreefficiently.
SQLServerscalesupfairlywell—toapoint.
Inonereal-worldscenario,forexample,acompany'sdatabaserequiredanine-tablejointolookupasinglecustomeraddress.
Selectivelydenormalizingthetablesandapply-ingstrategicindexesallowedSQLServertoexecuteaddressqueriesmuchfaster.
Becauseaddresslookupswereacommontaskforthiscompany,evenaminorper-queryimprovementsignificantlyenhancedoverallserverperformance.
Unfortunately,scalingupislimitedinhowmuchitcanimproveanapplication'sperformanceandabilitytosupportmoreusers.
Forexample,takeadatabasewhosesolefunctionistoperformasingle,simplequery—nojoins,noneedforindexes.
Ahigh-performanceSQLServercomputer—forexample,aquad-processorserverwith4GBofRAMandBYDONJONESWhendatabaseperformanceworsens,administratorstypicallyaddresstheproblemfirstbyscalingup.
severalfastharddrives—couldprobablysupporttensofthou-sandsofuserswhomustconcurrentlyexecutethatonequery.
However,thisservermightnotbeabletosupportamillionusers.
Inthissituation,scalingup—fine-tuning—wouldbeinsuf-ficient,becausesuchasimplequeryleaveslittleroomforimprovement.
Tobeginsupportingmanymoreusers,scalingoutisabettersolution.
Scale-outstrategiesredistributeworkloadsScalingoutSQLServer,amorecomplicatedprocessthanscalingup,requiressplittingadatabaseintovariouspieces,thenmovingthepiecestodifferent,independentSQLServercomputers.
Thegrocery-storecheckoutlinepresentsagoodanalogyforcompar-ingthetwoprocesses.
Inabusygrocerystorewithonlyonecheckoutlaneopen,alonglineofunhappycustomerswouldquicklymaterialize.
Ascale-upapproach—installingfasterbarcodescanners,requir-ingeveryonetouseacreditcardinsteadofwritingacheck,orhiringafastercashier—canmakethecheckoutprocessitselfmoreefficient.
Thesemeasuresmightimprovethesituation,butnotsolvetheproblem;customerswouldmovethroughthelinemorequickly,buttheystillwouldhaveonlyonecheckoutlane.
Abettersolutionwouldbetoscaleout—inthisanalogy,byopen-ingadditionalcheckoutlanes.
Customerscouldnowbeprocessedinparallelbycompletelyindependentlanes.
Tomaketheanalogyclosertoadatabasescale-outscenario,thegrocerystorecouldhavespe-cializedlanes:onethatexpeditesprocessing(customerspurchasing15itemsorfewer),andanotherthatfocusesonproduce,whichoftentakeslongerbecauseitmustbeweighedandnotsimplyscanned.
Anideal,ifunrealistic,solutionmightbetoretainasinglelaneforeachcustomer,buttodivideeachcustomer'spurchasesintocategoriestobehandledbyspecialists:produce,meat,boxeditems,andsoforth.
Specializedcashierscouldminimizetheirinteractionswitheachother,keepingtheprocessmovingspeedilyalong.
Althoughunworkableinarealgrocerystore,thissolutionillus-tratesareal-worldmodelforscalingoutdatabases.
GeneralstrategiesforscalingoutdatabasesDatabasemanagerscanconsidertwobasicscale-outstrategiesfordistributingtheworkloadofadatabaseacrossmultipleservers.
MostmajorRDBMSplatforms,includingSQLServer,providethemeanstomakethesestrategiespossible.
SQLServerfarmsreplicatethedatabaseThefirstapproachsimplyaddsmoreservers.
ConsiderascenarioinwhichacompanyhasanofficeinNewYorkandoneinLosAngeles.
Bothofficeshaveseveralthousanduserswhofrequentlyquerydatafromacorporateapplication,suchasanorder-processingdatabase.
Usersrarelychangedatainthesystem,buttheyfrequentlyaddnewdata.
Inthisscenario,usersinbothofficesareoverloadingthedatabase.
Evenifthedatabaseisawell-writtenmultitierapplication,pro-cessingalltheinformationononlyonedatabaseserveratthebackendcancreateabottleneck.
Figure1illustratesonewaytoaddresstheproblem:aSQLServerfarm.
Inthistechnique,twodata-baseserverseachcontainacom-pletecopyofthedatabase.
Eachofficehousesoneserver,andtheusersineachofficeconnectonlytotheirlocalserver.
ChangesandnewrecordsarereplicatedbetweentheserversbyusingSQLServerreplication.
Toavoidconflictswhenaddingnewrecords,eachofficemight,forexample,beassignedauniquerangeoforderIDnum-bers,ensuringthatnewrecordscreatedineitherofficecanbeuniquelyidentifiedacrossbothcopiesofthedatabase.
ThisstrategyisperhapsthesimplestmeansofscalingoutSQLServer.
AlthoughreplicationisnoteasytosetupandmaintainonSQLServer,neitherisitextremelydifficult.
Thestrategyworkswellevenwithmanyserversandcopiesofthedatabase.
However,thedatareplicationstrategydoesincursomedraw-backs,especiallylatency.
Neithercopyofthedatabasewillevermatchtheotherexactly.
Asnewrecordsareaddedtoeachcopy,timeelapsesbeforereplicationbegins.
Withonlytwoserversinthecompany,eachservermightbeasmuchasanhouroutofsyncwiththeother,dependinguponhowadministratorssetupreplication.
Addingmoreservers,however,involvesdifficultreplicationdecisions.
Foranotherscenario,considerthesix-officesetupdepictedinFigure2.
EachofthesixofficeshasitsownindependentSQLServersystem—anexcellentdesignforscalability.
However,latencycouldbeveryhigh.
IfeachSQLServerreplicateswithitspartnersjustonceeveryhour,thentotalsystemlatencycouldbethreehoursormore.
AchangemadeintheLosAngelesofficewouldreplicateENTERPRISECLUSTERENVIRONMENTPOWERSOLUTIONSNovember200366WorkstationsServerServerWorkstationsReplicationLosAngelesofficeNewYorkofficeFigure1.
SQLServerfarmScalingoutSQLServer,amorecomplicatedprocessthanscalingup,requiressplittingadatabaseintovariouspieces,thenmovingthepiecestodifferent,independentSQLServercomputers.
toNewYorkandLasVegasinaboutanhour.
Anhourlater,thechangewouldreachLondonandDenver.
Anhourlater,itwouldarriveinOrlando.
Givensuchhighlatency,theentiresystemwouldprobablyneverbesynchronizedcompletely.
Administratorscanreducelatency,butataperformancecost.
Ifeachofthesixserversreplicatedwitheachoftheotherfiveservers,thesystemcouldconverge,orbeuniversallyinsync,aboutonceanhour(assumingagainthatreplicationoccurredeveryhour).
Figure3showssuchafullyenmesheddesign.
Inthisfullyenmesheddesign,eachservermustmaintainrepli-cationagreementswithfiveotherservers,andmustreplicatewitheachservereveryhour.
Thismuchreplication,particularlyinabusydatabaseapplication,wouldlikelyslowresponsesomuchthattheperformancegainachievedbycreatingaserverfarmwouldbelost.
Eachofficemightrequiretwoserversjusttomaintainrepli-cationandmeetusers'needs.
Althoughfairlyeasytoimplement,theserverfarmtechniquehasapointofdiminishingreturns.
DistributedpartitioneddatabasesmovetaskstodifferentserversAmoresophisticatedstrategy—butonethatisalsomoredifficulttoimplement—involvespartitioningthedatabaseandmovingthepiecestodifferentservers.
Unlikethesimplifiedorder-processingdatabaseexamplepreviouslydiscussedin"SQLServerfarmsrepli-catethedatabase,"mostreal-worlddatabaseapplicationstendtorelyonanequalmixofdatareadinganddatawriting.
Forexample,anorder-processingapplicationmightincludeaproductcatalogthatislargelyreadonly,acustomer-orderdatabasethatiswriteheavy,andtablescontainingsupplierinformationthatareequallyread-write.
Thesethreecloselyrelateddata-basesegments—catalog,orders,andsuppliertables—arefairlytask-independent:diverseuserswithintheorganizationtendtouseeachdatabasedifferently.
Mer-chandisersmightwritetothecat-alogbutdolittleelse.
Customerservicerepresentativesmightreadthecatalogandwritetotheorderstablesbutneveraccessthesup-pliertables.
Thewarehousestaffmightreadthecatalogandreadfromandwritetothesuppliertables.
Thisdivisionoflaborindicateswherethedatabaseitselfcanbesplit,asFigure4illustrates.
Administratorscanusetwobasicapproachestoimplementingthedistributedpartitioneddatabasestrategy.
Thefirstistomodifytheclientapplicationsothatitunderstandsthedivisionofthedatabaseacrossmultipleservers.
Straightforwardyetsomewhattime-consuming,thissolutiondoesnotworkwellforthelongterm.
Futurechangestotheapplicationcouldresultinadditionaldivisions,whichwouldinturnrequireadditionalreprogramming.
Abetterapproachistoprogramtheclientapplicationtousestoredprocedures,views,andotherserver-sideobjects—anordi-narybestpracticeforaclient-serverapplication—sothattheclientapplicationneednotbeawareofthephysicallocationofthedata.
SQLServeroffersdifferenttechniques,suchasdistributedpartitionedviews,tohandlethissetup.
ENTERPRISECLUSTERENVIRONMENTwww.
dell.
com/powersolutionsPOWERSOLUTIONS67NewYorkLosAngelesLasVegasDenverOrlandoLondonFigure3.
Fullyenmeshedsix-serverfarmReplicationReplicationReplicationReplicationReplicationReplicationNewYorkLosAngelesLasVegasDenverOrlandoLondonFigure2.
Six-serverfarmScalingoutSQLServercanofferbenefitsnotonlyinimprovedapplicationperformance,butalsoingreaterredun-dancyandavailability.
Scale-outtechniquesusingSQLServerandWindowsSQLServerandWindowsofferseveraltechniquestoenablescalingout,includingSQLServer–specificfeaturessuchasdis-tributeddatabasesandviewsandWindows-specificfunctionssuchasWindowsClustering.
DistributedpartitionedviewshelpcreatevirtualtablesSQLServerdistributedpartitionedviewsallowdeveloperstocreateviewsthatcombinetablesfrommultipleSQLServercomputersintoasinglevirtualtable.
ThismethodlogicallydividesadatabaseacrossmultipleSQLServercomputers.
Ratherthanreprogrammingclientapplicationstounderstandthedivisionofthedatabases,develop-erscancreatedistributedviewsthatpresentavirtualizedversionofthem.
Thesetablesappeartoclientapplicationsasiftheywereonasingleserver.
Meanwhile,SQLServercombinesthetables,whicharespreadacrossmultipleservers,intoasingleview.
Distributedviewsareapowerfultoolinscalingout.
Theyallowdeveloperstoredistributedatabasestransparentlytotheendusersandtheirbusinessappli-cations.
Aslongasclientapplica-tionsaredesignedtousetheviewsratherthanthedirecttables,thetablesthemselvescanberearrangedandscaledoutasnec-essarywithouttheclientapplica-tionbeingawareofanychange.
Theworkloadrequiredtocreateandpresenttheviewtoclientcomputersissharedbyallserversparticipatingintheview—orbyallserversinthefederation.
SQLServer2000isthefirstversionofSQLServertomakeasignificantimprovementtothisapproach,becausethedatawithintheviewscanbeupdatedbyclientapplicationsasifthedatawereinaregulartable.
Theupdatesarecascadedbacktothenecessaryparticipantservers.
ReplicationofdistributedpartitioneddatabasesreduceslatencyAnotherscale-outapproachinvolvespartitioningadatabaseacrossmultipleserversandthenreplicatingthedatabasecopies.
Likethesix-serverorder-processingfarmdescribedearlier,eachservercontainsacompletedatabase.
Inthismethod,eachserverisresponsibleforadifferentsetofrows.
SQLServerreplicationisusedtokeepeachcopyofthedatabaseupdated.
Thismethodallowseachservertoimme-diatelyaccessitsownrowsandprovidesreasonablylowlatencyforaccesstorowscreatedonotherservers.
Clientapplicationsoftenmustbemodifiedtounderstandthisstructure.
Inmanypartitioneddatabaseschemes,datarowsmaybemodifiedonlyontheserverthatownsthem,withthechangesthenbeingmovedtotheotherserversthroughreplication.
Clientapplicationsmustknowhowtodeterminewhichserverownsarowbeforemakingmodifications.
WindowsClusteringfacilitateshighavailabilityandscalabilityBesidesimprovingperformance,WindowsClusteringcanhelpavoidtheriskofserverfailurewhenscalingout.
Forexample,atwo-nodeactive/activeclusterhastwoindependentSQLServerservers.
Thesenodescanbeconfiguredasaserverfarm,inwhicheachservercon-tainsacompletecopyofthedatabaseandusersaredistributedbetweenthem.
Analternativeisadistributeddatabasearchitecture,inwhicheachservercontainsonelogicalhalfoftheentiredatabase.
Ineitherarchitecture,afailureofoneserverisnotcatastrophicbecauseWindowsClusteringenablestheotherservertotranspar-entlytakeoverandactastwoservers.
Over-engineeringisthekeytoasuccessfulactive/activecluster.
Eachnodeshouldbedesignedtooperateatamaximumof60percentcapacity.
Ifonenodefails,theothernodecanbeginrun-ningat100percentcapacity,incurringonlyabouta20percentlossofefficiency.
Still,performanceisgenerallywellwithinanaccept-ablerangeconsideringthat,afterfailover,applicationsmustrunonhalfasmuchhardware.
Settingupclusterscanbeextremelycomplex.
InWindowsClustering,thesoftwareisnotdifficulttouse,buttheunderlyinghard-waremustbeabsolutelycompatiblewithWindowsClustering—andmosthardwarevendorshaveexactingrequirementsforclustersetups.
Purchasingpreconfiguredclustersfromamajorservervendor,suchasDell,canhelpsimplifyclustersetup.
Theclusterisdesignedtobereadytorunondelivery,andboththevendorandMicrosoftcanpro-videcluster-specifictechnicalsupportifnecessary.
High-performancestoragetoboostSQLServerresponseHigh-performancestorageisanoften-overlookedperformancebenefitforSQLServer—particularlyexternalstorageareanetworksENTERPRISECLUSTERENVIRONMENTPOWERSOLUTIONSNovember200368ServerServerServerCatalogOrdersSuppliersMerchandisingCustomerserviceWarehouseWriteWriteRead/writeReadReadFigure4.
Identifyingtask-baseddivisionsinthedatabasedesignSQLServerandWindowsofferseveraltechniquestoenablescalingout,includingSQLServer–specificfeaturessuchasdistributeddatabasesandviewsandWindows-specificfunctionssuchasclustering.
(SANs)thatrelyonFibreChanneltechnologyratherthantraditionalSCSIdisksubsystems.
Becausehigh-performancestorageenablesanexistingservertohandleagreaterworkload,itconstitutesanexam-pleofscalingupratherthanout.
SQLServerisahighlydisk-intensiveapplication.
AlthoughSQLServerincludeseffectivememory-basedcachingtechniquestoreducediskreadsandwrites,databaseoperationsrequiresignificantdatatrafficbetweenaserver'sdisksanditsmemory.
Themorequicklythedisksubsystemcanmovedata,thefasterSQLServerwillper-form.
Someindustryestimatessuggestthat75percentofidletimeinSQLServerresultsfromwaitingforthedisksubsystemtodeliverdata.
ImprovingthespeedofthedisksubsystemcanmarkedlyimproveoverallSQLServerperformance.
MovingtoadditionalRAID-5arraysontraditionalcopperSCSIconnectionsisasimplewaytoimprovediskspace.
However,high-speedFibreChannelSANsofferthebestspeed,aswellasmyriadinnovativerecoveryandredundancyoptions—makingthemasaferplacetostoreenterprisedata.
Scale-outstrategyforimprovingSQLServerperformance,redundancy,andavailabilityAsapplicationsgrowtosupporttensandhundredsofthousandsofusers,scalingisbecomingamission-criticalactivity.
Scalingup—improvingefficiencybyfine-tuningqueries,indexes,andsoforth—helpsITorganizationsdomorewithless.
However,scalingupcanrequirehighadministrativeoverheadandmayhavelimitedeffect.
Administratorsmightspendtwoweekstoachievea1per-centperformancegain,animprovementthatcannotcomparetothemuchhighergainspromisedbyawell-plannedscale-outdesign.
Althoughseldomconsideredasatargetforscalingout,SQLServeriswellsuitedtothisstrategy,inbothserverfarmandmoresophisticateddistributeddatabaseapproaches.
ScalingoutSQLServercanofferbenefitsnotonlyinimprovedapplicationperfor-mance,butalsoingreaterredundancyandavailability.
DonJonesisafoundingpartnerofBrainCore.
Net,andhasmorethanadecadeofexperi-enceintheITindustry.
Don'scurrentfocusisonhigh-endenterpriseplanning,includingdataavailabilityandsecuritydesign.
ENTERPRISECLUSTERENVIRONMENTwww.
dell.
com/powersolutionsPOWERSOLUTIONS69Databasescanbeinefficientforseveralreasons:Poordesign:Manyapplicationdevelopersdonotexcelatdatabasedesign.
Some,forexample,havebeentaughttofullynormalizethedatabaseatallcosts,whichcanleadtosignificantlydegradedperformance.
Sometimesprojectschedulesdonotpermitenoughdesigniterationsbeforethedatabasemustbelockeddownandsoft-waredevelopmentbegins.
Insomecases,theapplicationitselfisnotdesignedwell,resultinginanincompletedatabasedesignthatmustbepatchedandexpandedastheapplicationiscreated.
Change:Anapplicationusedinawayunintendedbyitsdesignerscanreduceefficiency.
Theapplicationmayhaveexpandedandbegunsufferingfrom"scopecreep"—thegrowthorchangeofprojectrequirements.
Inthiscase,redesigningtheapplicationfromthebeginningtomeetcurrentbusinessneedsmaybethebestsolutiontodatabaseinefficiency.
Growth:Databasesaredesignedforaspecificdatavolume;oncethatvolumeisexceeded,queriesmaynotworkastheywereintended.
Indexesmightneedtoberedesignedoratleastrebuilt.
Queriesthatwereintendedtoreturnafewdozenrowsmaynowreturnthousands,affectingtheunderlyingdesignoftheapplicationandthewaydataishandled.
Theseproblemsaredifficulttoaddressinalive,productionappli-cation.
Scalinguptendstohavealimitedeffect.
Althoughdevelopersmayagreethattheapplication'sdesignisinefficient,companiesarereluctanttodestroyaserviceableapplicationandstartoverwithoutseriousconsideration.
Scalingoutcanofferalessdrasticsolution.
Althoughscalingoutrequiresconsiderableworkontheserverside,itmaynotrequiremuchmorethanminorrevisionstoclient-sidecode,makingtheprojectapproachablewithoutcompletelyre-architectingtheapplication.
Scalingoutmightnotbethemostelegantorefficientwaytoimproveperformance,butitdoeshelpalleviatemanydatabaseandapplicationdesignflaws.
Italsocanallowcompaniestogrowtheirdatabaseapplicationswithoutneedingtoredesignthemfromthebeginning.
FORMOREINFORMATIONThisarticleisbasedonanexcerptfromthefreeeBookTheDefinitiveGuidetoScalingOutSQLServer(Realtimepublishers.
com)byDonJones,availableathttp://www.
dell.
com/sql/ebookDell|MicrosoftSQLServer2000:http://www.
dell.
com/us/en/esg/topics/products_software_pedge_001_database.
htmMicrosoftSQLServer:http://www.
microsoft.
com/sqlUNDERSTANDINGDATABASEINEFFICIENCY

美国G口/香港CTG/美国T级超防云/湖北高防云服务器物理机促销活动 六一云

六一云 成立于2018年,归属于西安六一网络科技有限公司,是一家国内正规持有IDC ISP CDN IRCS电信经营许可证书的老牌商家。大陆持证公司受大陆各部门监管不好用支持退款退现,再也不怕被割韭菜了!主要业务有:国内高防云,美国高防云,美国cera大带宽,香港CTG,香港沙田CN2,海外站群服务,物理机,宿母鸡等,另外也诚招代理欢迎咨询。官网www.61cloud.net最新直销劲爆...

DiyVM独立服务器:香港沙田服务器,5M带宽CN2线路,L5630*2/16G内存/120G SSD硬盘,499元/月

diyvm怎么样?diyvm商家VPS主机均2GB内存起步,三个地区机房可选,使用优惠码后每月69元起;DiyVM独立服务器开设在香港沙田电信机房,CN2线路,5M带宽,自动化开通上架,最低499元/月,配置是L5630*2/16G内存/120G SSD硬盘。DiyVM是一家成立于2009年的国人主机商,提供的产品包括VPS主机、独立服务器租用等,产品数据中心包括中国香港、日本大阪和美国洛杉矶等,...

Spinservers:美国独立服务器(圣何塞),$111/月

spinservers是Majestic Hosting Solutions,LLC旗下站点,主营美国独立服务器租用和Hybrid Dedicated等,spinservers这次提供的大硬盘、大内存服务器很多人很喜欢。TheServerStore自1994年以来,它是一家成熟的企业 IT 设备供应商,专门从事二手服务器和工作站业务,在德克萨斯州拥有40,000 平方英尺的仓库,库存中始终有数千台...

sqlserver2000挂起为你推荐
dell服务器bios设置戴尔服务器720bios设置硬盘启动平阴县教育和体育局下属锦东小学教学设备采购项目竞争性磋商文件什么是seo学习SEO的好处是什么?metinfoMetInfo跟织梦那个比较好?各自的优点跟缺点是什么,长沙电话号码升位0731_88602360电话是哪的超级用户隐藏超级用户.netcms芜湖市教育局网快钱网上支付快钱支付客服电话是多少退货单药品退货单需要盖章吗tuangou团购的概念是什么?
域名拍卖 私服服务器租用 国外vps 企业主机 wavecom godaddy支付宝 国外php空间 免费网络电视 商家促销 魔兽世界台湾服务器 铁通流量查询 云全民 福建天翼加速 阿里云浏览器 最好的免费空间 91vps 国外代理服务器地址 华为云服务登录 四川电信商城 空间登录首页 更多