ontologiesoscommerce

oscommerce  时间:2021-04-12  阅读:()
QALM:aBenchmarkforQuestionAnsweringoverLinkedMerchantWebsitesDataAmineHallili1,ElenaCabrio2,3,andCatherineFaronZucker11Univ.
NiceSophiaAntipolis,CNRS,I3S,UMR7271,SophiaAntipolis,Franceamine.
hallili@inria.
fr;faron@unice.
fr2INRIASophiaAntipolisMediterranee,SophiaAntipolis,Franceelena.
cabrio@inria.
fr3EURECOM,SophiaAntipolis,FranceAbstract.
Thispaperpresentsabenchmarkfortrainingandevaluat-ingQuestionAnsweringSystemsaimingatmediatingbetweenauser,expressinghisorherinformationneedsinnaturallanguage,andseman-ticdatainthecommercialdomainofthemobilephonesindustry.
WerstdescribetheRDFdatasetweextractedthroughtheAPIsofmer-chantwebsites,andtheschemasonwhichitrelies.
Wethenpresentthemethodologyweappliedtocreateasetofnaturallanguagequestionsexpressingpossibleuserneedsintheabovementioneddomain.
Suchquestionsethasthenbeenfurtherannotatedbothwiththecorrespond-ingSPARQLqueries,andwiththecorrectanswersretrievedfromthedataset.
1IntroductionTheevolutionofthee-commercedomain,especiallytheBusinessToClient(B2C),hasencouragedtheimplementationandtheuseofdedicatedapplica-tions(e.
g.
QuestionAnsweringSystems)tryingtoprovideend-userswithabet-terexperience.
Atthesametime,theuser'sneedsaregettingmoreandmorecomplexandspecic,especiallywhenitcomestocommercialproductswhosequestionsconcernmoreoftentheirtechnicalaspects(e.
g.
price,color,seller,etc.
).
Severalsystemsareproposingsolutionstoanswertotheseneeds,butmanychal-lengeshavenotbeenovercomeyet,leavingroomforimprovement.
Forinstance,federatingseveralcommercialknowledgebasesinoneknowledgebasehasnotbeenaccomplishedyet.
Also,understandingandinterpretingcomplexnaturallanguagequestionsalsoknownasn-relationquestionsseemstobeoneoftheambitioustopicsthatsystemsarecurrentlytryingtogureout.
InthispaperwepresentabenchmarkfortrainingandevaluatingQuestionAnswering(QA)Systemsaimingatmediatingbetweenauser,expressinghisorherinformationneedinnaturallanguage,andsemanticdatainthecommercialdomainofthemobilephoneindustry.
WerstdescribetheRDFdatasetthatwehaveextractedthroughtheAPIsofmerchantsites,andtheschemasonwhichitrelies.
Wethenpresentthemethodologyweappliedtocreateasetofnaturallan-guagequestionsexpressingpossibleuserneedsintheabovementioneddomain.
SuchquestionsethasthenbefurtherannotatedbothwiththecorrespondingSPARQLqueries,andwiththecorrectanswersretrievedfromthedataset.
2AMerchantSitesDatasetfortheMobilePhonesIndustryThissectiondescribestheQALM(QuestionAnsweringoverLinkedMerchantwebsites)ontology(Section2.
1),andtheRDFdataset(Section2.
2)webuiltbyextractingasampleofdatafromasetofcommercialwebsites.
2.
1QALMOntologyTheQALMRDFdatasetreliesontwoontologies:theMerchantSiteOntology(MSO)andthePhoneOntology(PO).
TogethertheybuilduptheQALMOn-tology.
4MSOmodelsgeneralconceptsofmerchantwebsites,anditisalignedtothecommercialpartoftheSchema.
orgontology.
MSOiscomposedof5classes:mso:Product,mso:Seller,mso:Organization,mso:Store,mso:ParcelDelive-ry,andof29properties(e.
g.
mso:price,mso:url,mso:location,mso:seller)declaredassubclassesandsubpropertiesofSchema.
orgclassesandproperties.
Weaddedtothemmultilinguallabels(bothinEnglishandinFrench),thatcanbeexploitedbyQAsystemsinparticularforpropertyidenticationinthequestioninterpretationstep.
WereliedonWordNetsynonyms[2]toextractasmuchlabelsaspossible.
Forexample,thepropertymso:pricehasthefollowingEnglishlabels:"price","cost","value","tari","amount",andthefollowingFrenchlabels:"prix","cout","couter","valoir","tarif","s'elever".
POisadomainontologymodelingconceptsspecictothephoneindus-try.
Itiscomposedof7classes(e.
g.
po:Phone,po:Accessory)whicharede-claredassubclassesofmso:Product,andof35properties(e.
g.
po:handsetType,po:operatingSystem,po:phoneStyle).
2.
2QALMRDFDatasetOurnalgoalistobuildauniedRDFdatasetintegratingcommercialproductdescriptionsfromvariouse-commercewebsites.
Inordertoachievethisgoal,weanalyzethewebservicesofthee-commercewebsitesregardlessoftheirtype(eitherSOAPorREST).
Tofeedourdataset,wecreateamappingbetweentheremotecallstothewebservicesandtheontologyproperties,thatwestoreinaseparateleforreuse.
Inparticular,webuilttheQALMRDFdatasetbyextractingdatafromeBay5andBestBuy6commercialwebsitesthroughBestBuyWebserviceandeBayAPI.
TheextractedrawdataistransformedintoRDFtriplesbyapplyingtheabovedescribedmappingbetweentheQALMontology4Availableatwww.
i3s.
unice.
fr/qalm/ontology5http://www.
ebay.
com/6http://www.
bestbuy.
com/andtheAPI/webservice.
Forinstance,themethodgetPrice()intheeBayAPIismappedtothepropertymso:priceintheQALMontology.
Currently,theQALMdatasetcomprises500000productdescriptionsandupto15millionstriplesextractedfromeBayandBestBuy.
73QALMQuestionSetInordertotrainandtoevaluateaQAsystemmediatingbetweenauserandsemanticdataintheQALMdataset,asetofquestionsrepresentingusersre-questsinthephoneindustrydomainisrequired.
Uptoourknowledge,theonlyavailablestandardsetsofquestionstoevaluateQAsystemsoverlinkeddataaretheonesreleasedbytheorganizersoftheQALD(QuestionAnsweringoverLinkedData)challenges.
8HoweversuchquestionsareovertheEnglishDBpediadataset9,andthereforecoverseveraltopics.
Forthisreason,wecreatedasetofnaturallanguagequestionsforthespeciccommercialdomainofthephoneindustry,followingtheguidelinesdescribedbytheQALDorganizersforthecreationoftheirquestionsets[1].
Morespecically,thesequestionswerecre-atedby12externalpeople(studentsandresearchersinothergroups)withnobackgroundinquestionanswering,inordertoavoidabiastowardsaparticularapproach.
Toaccomplishthetaskofquestioncreation,eachpersonwasgiveni)thelistoftheproducttypespresentintheQALMdataset(mainlycomposedofITproductsasphonesandaccessories);ii)thelistofthepropertiesoftheQALMontologypresentedasproductfeaturesinwhichtheycouldbeinterestedin;andtheywereaskedtoproducei)both1-relationand2-relationquestions,andii)atleast5questionseach.
Thequestionsweredesignedtopresentpotentialuserquestionsandtoincludeawiderangeofchallengessuchaslexicalambiguitiesandcomplexsyntacticalstructures.
SuchquestionswerethenannotatedwiththecorrespondingSPARQLqueries,andthecorrectanswersretrievedfromthedataset,inordertoconsiderthemasareliablegoldstandardforourbenchmark.
Thenalquestionsetcomprises70questions;itisdividedintoatrainingset10andatestsetofrespectively40and30questions.
AnnotationsareprovidedinXMLformat,andaccordingtoQALDguidelines,thefollowingattributesarespeciedforeachquestionalongwithitsID:aggregation(indicateswhetheranyoperationbeyondtriplepatternmatchingisrequiredtoanswerthequestion,e.
g.
,counting,ltering,ordering),answertype(givestheanswertype:resource,string,boolean,double,date).
Wealsoaddedtheattributerelations,toindicatewhetherthequestionisconnectedtoitsanswerthroughoneormorepropertiesoftheontology(values:1,n).
Finally,foreachquestionthecorrespondingSPARQLqueryisprovided,aswellastheanswersthisqueryreturns.
Examples1and2showsomequestionsfromthecollectedquestionset,connectedtotheiranswersthrough1propertyormorethan1propertyoftheontology,respectively.
In7Availableatwww.
i3s.
unice.
fr/QALM/qalm.
rdf8http://greententacle.
techfak.
uni-bielefeld.
de/~cunger/qald/9http://dbpedia.
org10Availableatwww.
i3s.
unice.
fr/QALM/training_questions.
xmlparticular,questions14and50fromExample2requirealsotocarryoutsomereasoningontheresults,inordertorankthemandtoproducethecorrectanswer.
Example1.
1-relationquestions.
id=36.
Givemethemanufacturerswhosupplyon-earheadphones.
id=52.
WhatcolorsareavailablefortheSamsungGalaxy5id=61.
WhichproductsofAlcatelareavailableonlineExample2.
n-relationsquestions.
id=14.
Whichcellphonecase(anymanufacturer)hasthemostratingsid=50.
WhatisthehighestcameraresolutionofphonesmanufacturedbyMotorolaid=58.
IwouldliketoknowinwhichstoresIcanbuyApplephones.
4ConclusionsandOngoingWorkThispaperpresentedabenchmarktotrainandtestQAsystems,composedofi)theQALMontologies;ii)theQALMRDFdatasetofproductdescriptionsex-tractedfromeBayandBestBuy;andiii)theQALMQuestionSet,containing70naturallanguagequestionsinthecommercialdomainofphonesandaccessories.
Asforfuturework,wewillconsideraligningtheQALMontologytotheGoodRelationsontologytofullycoverthecommercialdomain,andtobenetfromthesemanticscapturedinthisontology.
WealsoconsiderimprovingtheQALMRDFdatasetbyi)extractingRDFdatafromadditionalcommercialwebsitesthatprovidewebservicesorAPIs;andii)directlyextractingRDFdataintheSchema.
orgontologyfromcommercialwebsiteswhosepagesareautomaticallygeneratedwithSchema.
orgmarkup(e.
g.
Magento,OSCommerce,Genesis2.
0,Prestashop),toextendthenumberofaddressedcommercialwebsites.
Inparallel,wearecurrentlydevelopingtheSynchroBotQAsystem[3],anontology-basedchatbotforthee-commercedomain.
WewillevaluateitbyusingtheproposedQALMbenchmark.
AcknowledgementsWethankAmazon,eBayandBestBuyforcontributingtothisworkbysharingwithuspublicdataabouttheircommercialproducts.
TheworkofE.
CabriowasfundedbytheFrenchGovernmentthroughtheANR-11-LABX-0031-01program.
References1.
Cimiano,P.
,Lopez,V.
,Unger,C.
,Cabrio,E.
,Ngomo,A.
C.
N.
,Walter,S.
:Multi-lingualquestionansweringoverlinkeddata(qald-3):Laboverview.
In:CLEF.
pp.
321–332(2013)2.
Fellbaum,C.
:WordNet:AnElectronicLexicalDatabase.
BradfordBooks(1998)3.
Hallili,A.
:Towardanontology-basedchatbotendowedwithnaturallanguagepro-cessingandgeneration.
In:Proc.
ofESSLLI2014-StudentSession,Posterpaper(2014)

georgedatacenter39美元/月$20/年/洛杉矶独立服务器美国VPS/可选洛杉矶/芝加哥/纽约/达拉斯机房/

georgedatacenter这次其实是两个促销,一是促销一款特价洛杉矶E3-1220 V5独服,性价比其实最高;另外还促销三款特价vps,georgedatacenter是一家成立于2019年的美国VPS商家,主营美国洛杉矶、芝加哥、达拉斯、新泽西、西雅图机房的VPS、邮件服务器和托管独立服务器业务。georgedatacenter的VPS采用KVM和VMware虚拟化,可以选择windows...

CloudCone中国新年特别套餐,洛杉矶1G内存VPS年付13.5美元起

CloudCone针对中国农历新年推出了几款特别套餐, 其中2019年前注册的用户可以以13.5美元/年的价格购买一款1G内存特价套餐,以及另外提供了两款不限制注册时间的用户可购买年付套餐。CloudCone是Quadcone旗下成立于2017年的子品牌,提供VPS及独立服务器租用,也是较早提供按小时计费VPS的商家之一,支持使用PayPal或者支付宝等付款方式。下面列出几款特别套餐配置信息。CP...

ReliableSite:美国服务器租用,洛杉矶/纽约/迈阿密等机房;E3-1240V6/64GB/1TSSD,$95/月

reliablesite怎么样?reliablesite是一家于2006年成立的老牌美国主机商,主要提供独服,数据中心有迈阿密、纽约、洛杉矶等,均免费提供20Gbps DDoS防护,150TB月流量,1Gbps带宽。月付19美金可升级为10Gbps带宽。洛杉矶/纽约/迈阿密等机房,E3-1240V6/64GB内存/1TB SSD硬盘/DDOS/150TB流量/1Gbps带宽/DDOS,$95/月,...

oscommerce为你推荐
三星iphone重庆网络公司一九互联我重庆2013年7月毕业,报到证上写的是A公司,档案也在A公司,半年后我辞职,到B公司上班,档案也ym.163.comfoxmail设置163免费企业邮箱波音737起飞爆胎为什么很少见到飞机轮胎爆胎?asp.net网页制作怎么用ASP.NET 做一个网页注册。简单的就行腾讯公司电话腾讯总公司服务热线是多少curl扩展如何增加mysqli扩展discuz伪静态求虚拟主机Discuz 伪静态设置方法discuz!databaseerrorDiscuz,Database Error是什么原因,怎么修复商务软件软件分为哪几种类型?
cn域名注册 vps论坛 查询ip地址 cybermonday 星星海 godaddy主机 狗爹 特价空间 60g硬盘 英语简历模板word typecho 全能主机 一元域名 南昌服务器托管 促正网秒杀 炎黄盛世 老左来了 dnspod 免费个人主页 深圳域名 更多