determinefreehost

freehost  时间:2021-04-10  阅读:()
ARTICLEReceived27May2013|Accepted10Sep2013|Published8Oct2013Macromolecularsemi-rigidnanocavitiesforcooperativerecognitionofspeciclargemolecularshapesTakaneImaoka1,YukiKawana1,TakutoKurokawa1&KimihisaYamamoto1Molecularshaperecognitionforlargerguestmolecules(typicallyover1nm)isadifculttaskbecauseitrequirescooperativitywithinawidethree-dimensionalnanospacecoincidentallyprobingeverymolecularaspect(size,outlineshape,exibilityandspecicgroups).
Althoughtheintelligentfunctionsofproteinshavefascinatedmanyresearchers,thereproductionbyarticialmoleculesremainsasignicantchallenge.
Herewereporttheconstructionoflarge,well-denedcavitiesinmacromolecularhosts.
Throughtheuseofsemi-rigiddendriticphe-nylazomethinebackbones,evensubtledifferencesintheshapesoflargeguestmolecules(uptoB2nm)maybediscriminatedbythecooperativemechanism.
Aconformationallyxedcomplexwiththebest-ttingguestissupportedbyathree-dimensionalmodelbasedonamolecularsimulation.
Interestingly,thesimulatedcavitystructurealsopredictscatalyticselectivitybyarutheniumporphyrincentre,demonstratingthehighshapepersistenceandwideapplicabilityofthecavity.
DOI:10.
1038/ncomms35811ChemicalResourcesLaboratory,TokyoInstituteofTechnology,Yokohama226-8503,Japan.
CorrespondenceandrequestsformaterialsshouldbeaddressedtoK.
Y.
(email:yamamoto@res.
titech.
ac.
jp).
NATURECOMMUNICATIONS|4:2581|DOI:10.
1038/ncomms3581|www.
nature.
com/naturecommunications1&2013MacmillanPublishersLimited.
Allrightsreserved.
Theultimatechallengeinhost–guestchemistryisthedesignofsynthetichoststhatcanuniversallyrecognizeguestmoleculeswithvariousstructuralcharacteristicsincludingsize,shapeanddetailssuchasthepositionsoffunctionalgroups.
Ofparticularscienticinterestistheconceptofthearticialenzyme,whichcanactasacatalystforaspecicsubstrateviacooperativerecognition1.
Theimportanceofpracticalmaterialscanbeseeninsolution-phaserecognition,whichallowsefcientchemicalseparationdespiteverysmallstructuraldifferences2.
Theessentialrequirementforrecognitionisashape-persistentcavitandgenerallymadeofcovalentmacrocycles3–5orsupra-molecularcages6–9.
However,recognitionhasbeenlimitedtorelativelysmallguestmoleculesofsubnanometresize(uptotwoaromaticrings).
Apartfromparticularexamples10,11,attemptsatsimpleenlargementofthecavitandswithoutastrategyaregenerallyfruitlessbecausethelargerhostmoleculesarenolongershapepersistent.
Onetypicalexampleisthecaseofdendrimers.
Themolecularweightandchemicalstructureofthedendrimersareunity.
Inaddition,thecore-shellarchitecturegenerallyprovidesauniqueencapsulationeffect12.
Atthedawnofdendrimerchemistry,itwasbelievedthatthegiantinnercavitywouldbeapplicabletovarioustypesofmolecularrecognition,similartonaturalenzymes13,andthatdendrimerswerepromisingcandidatesforlarge-scalerecognition14.
Theideawasthattheywouldactaslargecontainers,allowingencapsulationofmanyguestmoleculessimultaneously15–17.
However,thepreviousdendrimerswerefoundtobesuitableonlyforidenti-cationofsimpleandsmallguests18–22.
Althoughdendrimersarepotentialcontainersforalargerguestormanyguestmolecules,theycanbecomecompactthroughback-foldingoftheirterminalmonomerstowardstheinsideofthecavity,leadingtolossofthecavity23–25.
Meanwhile,dendriticstructureswithextra-rigidbackbonesdonotparticipatetoasignicantextentinhost–guestbinding26,27.
Exceptforsomeintriguingapproachessuchasmolecularimprinting28,molecules41nmarestilldifculttorecognize.
Evennow,itisimpossibleachievingthisonlybythemolecularshapebecausethisrequiresdetaileddesignofthenanospacethroughasemi-rigidarchitecture.
Inthisstudy,werevisithost–guestchemistryusingamoderndendrimerdesignforthehostmolecules.
Phenylazomethinedendrimerscomposedofrigidp-conjugatedbackbonesexhibitexceptionallynecoordinationprocesses,suchasstep-by-stepassembly29–31,allowingone-atomcontrolledsynthesisofmetalclusters32.
Inaddition,previousstudieshaveshownthatthestablequadrupolecharacterofsuchdendrimersallowsanefcientphotoelectricprocessbasedontheirrecticationproperties33.
Byusingthisuniquedendrimer,wesuccessfullyachieveverynerecognitionoflargeguestmolecules.
ResultsScreeningandrenementofguests.
Thehostmoleculesemployedinthisstudyaredendrimerswithametalloporphyrincoreasabindingcentreforguestmoleculessuchaspyridinederivatives.
Fourdendronunitswerehorizontallyspreadtotheoutsidefromtheporphyrincore,whereasthetwoaxialspaceswereretained(Fig.
1).
Forexample,theexperimentalhydro-dynamicdiameterofZnG4aisover4nm.
Thepercentageoffreevolumeinthedendrimer,denedasvacantspaceoftheatom-icallyoccupiedvanderWaalsvolumeinthemolecularhydro-dynamicspace,isca.
80%(ref.
34).
Tostudythecharacteristicsofthesesyntheticcavities,weinitiallyinvestigatedbindingbetweenaguestmoleculeandthezincporphyrincoreburiedinthecavity.
Apyridinederivativewasusedasaguestmolecule,because1:1complexformationbetweenzincporphyrinandthisderivativehasbeenestablishedandiswidelyaccepted35,36.
ZnG4awassynthesizedaccordingtoaliteraturemethod37.
BycomparingthebindingconstantsofZnG4aandthecorrespondingrst-generationmodel(ZnG1a),wewereabletoestimatethestericcontributionofthedendrongroupstohost–guestcomplexation.
Thereafter,theratioKG4a/KG1awasestimatedforeachguestmolecule(pyridinederivatives,Fig.
2)asanindexparameterforadaptabilitywiththesyntheticcavity.
Initialscreeningwascarriedoutusingpyridinederivativeswithseveralaromaticcomponentswithvariousconnections.
Anultraviolet–visibletitrationanalysiswascarriedoutinatoluene/acetonitrile(v/v1:1)solvent,followedbytheoreticalcurvettingoftheexperimentalresultstoobtainbindingconstantswiththesynthetichostsat20°C(SupplementaryTableS1).
Thebindingstoichiometryofthepyridinetothezincporphyrincore(axialposition)is1:1,asdeterminedbyultraviolet–visibleabsorption,isothermaltitrationcalorimetry(ITC)andNMRspectroscopy(atypicalexampleisshowninFig.
3).
Thebindingconstantswereindependentlyobtainedusingallofthesemeasurements,andeachresultwasfoundtobeingoodagreementwiththeothers.
ItisnotablethatthebindingafnitywiththedendrimerhostZnG4avariedinasensitivemannerdependingontheshapeoftheguestmolecule.
Pyridinederivativescontainingtwophenylgroupsatdifferentpositions(5,6,7,8,9and10)gaveverydifferentbindingconstants(KG4a),althoughtheirformulasandmolecularweightswereidentical.
Oneofthederivatives,whichwasY-shaped(4-(3,5-diaryl)phenylpyridine,11)wasfoundtocoordinatetothedendrimerhostwithalargerbindingconstant,whereasguestswithothershapes(15,16,17and18)didnotcoordinatesostrongly(Fig.
3f).
Eventheshapesofverylargemolecules(ca.
19width)withthesamechemicalformula(12,13and14)werecorrectlyrecognized.
Incontrast,amongtheselectedguestmolecules,therewaslittlevariationinbindingafnitywiththenon-dendritichost(ZnG1a).
Theseobservationsareevidenceofshaperecognition,butnotofanelectroniceffectcausedbytheelectron-donating/withdrawingcharacterofthesubstitutedgroups.
ThedendrimershellexhibitedapositiveeffectonthebindingofY-shapedguests,ascanbeobservedfromthevalueofthebindingconstantratioKG4a/KG1a(upto4.
2for11).
Previousreportsonhost–guestchemistryNNNNBDNHHnp-Phm-Php-BPhBDBDBDBDDPAGnMBDOOPhPhBzEGnnMZnG1ap-PhDPAG1ZnZnG2ap-PhDPAG2ZnZnG3ap-PhDPAG3ZnZnG4ap-PhDPAG4ZnZnG4bm-PhDPAG4ZnZnG4cp-BPhDPAG4ZnZnG4d–BzEG4ZnRuG1ap-PhDPAG4Ru(CO)RuG4ap-PhDPAG4Ru(CO)H2G4ap-PhDPAG4H2Figure1|Structuresofdendrimers.
Thedendrimersarecomposedofthreedifferentparts.
Thecoreunitisazincorrutheniumcarbonylporphyrin,whichcanbindonepyridinederivativeattheaxialposition.
Thebridges(B)arelinearorbentphenylenegroups,adjustingthepositionanddirectionofthedendronsubunits.
Thedendron(D),whichconsistsofdendriticphenylazomethineorbenzylethergroups,createsananospacethroughtheformationofarigidorexibleshell,respectively.
ARTICLENATURECOMMUNICATIONS|DOI:10.
1038/ncomms35812NATURECOMMUNICATIONS|4:2581|DOI:10.
1038/ncomms3581|www.
nature.
com/naturecommunications&2013MacmillanPublishersLimited.
Allrightsreserved.
involvingdendrimerarchitecturehaveshownthatanincreaseinthegenerationnumberresultsinaseveredecreaseinbindingafnitybecauseoftheshelleffect18–22.
Infact,thedendrimerhostunderdiscussionexhibitsunusualenhancementonhost–guestcomplexation.
Toseekthebest-ttingmolecule,wecarriedoutfurthertuningoftheY-shapedguests.
Chemicalmodicationofthetipsof11,giving19,20and21,increasedthebindingconstant(KG4a).
Ofparticularinterestwasthendingthatchemicalmodicationofthe'dip'oftheY-shapedpyridine25signicantlyenhancedthebindingstrength,resultinginahighbindingconstantratio(KG4a/KG1a)ofupto19for25.
Insharpcontrast,suchanenhancementwasnotobservedforanI-shapedderivative(24).
Thedendrimershelldidnotactasapositivefactorforotherguestssuchasunsubstitutedpyridine(1)andrigidI-shapedpyridines(4and10).
Further,thekinkedmolecules5,6,7and8,andoversizedderivativesthatdeviatedfromtheY-shape(12,22and23),wereexcludedfromthehost.
Thus,thecommonY-shapedstructureactedasananchorthatspecicallyboundtothedendrimerhost.
Modulationofinteractions.
Thedependenceofcomplementaryhost–guestbindingonthehoststructurewasstudiedbytestingzinc-porphyrin-coredphenylazomethinedendrimers(ZnGna:n1B4)withgenerationnumbersof1–4.
Thisexaminationrevealedthatadendriticstructurewithatleastfourgenerationsisessentialfortheformationofacavitythatiscapableofmoleculardiscrimination.
Indeed,noshape-selectivebindingtothehostwasobservedwhenthegenerationnumberwaso4(Fig.
4a).
Aroughestimateofthebindingstructureusingamolecularspace-llingmodelsuggestedthatthecavitiesindendrimersofgeneration3orlessweretooshallowtotightlyanchortheguest.
Thestructureofthedendrimersignicantlyaffectedhost–guestcomplexationthroughshapemodicationofthecavity.
Wesynthesizeddendrimerswithalternativestructures:onehadfourdendronsatthemeta-positionsonthephenylgroupsofthezincporphyrincore(ZnG4b),whereastheotherhadfourdendronsatthepara-positionswith1,4-phenylenespacers(ZnG4c).
Onthebasisofspace-llingmodelsobtainedbymolecularmodelling,itbecameapparentthatZnG4chadanextendedcavity,whereasthatofZnG4bwasshrunken.
Thesemolecularimageswereconrmedbyexploringthefreevolumepercentageswithinthehydrodynamicvolume(ZnG4a,78%;ZnG4b,71%;ZnG4c,77%)34.
TheZnG4bhost,whichhadanarrowcavity,didnotallowbindingoftheguestmolecule20,buttheZnG4chost,whichhadanextendedcavity,alsoshowedalowerbindingafnitywith20.
ZnG4cpreferredlargerguestmoleculessuchas14and22.
Wealsoexaminedaexibledendrimercomposedofabenzyletherstructure(ZnG4d)withthesametopologicalarchitecturearoundthezincporphyrincore,butwithaverysmallfreevolumepercentage(45%)38.
Asshowninpreviousstudies,exibledendronsexhibitexclusivehost–guestbind-ing18,20–22.
ThehostZnG4dallowedbindingonlyofsmallguestmolecules(1and4)withoneornophenylgroup(Fig.
4b).
Thisobservationwasconsistentwithpreviousndingsthatexibledendrimerssimplydecreaseguestmolecularbinding(thewell-recognized'shelleffect').
Conversely,exchangingthemetalcomplexdidnotaffecttheselectivityofthehostmoleculetothesameextent.
Theruthenium-porphyrin-coredphenylazomethinedendrimerRuG4a,acarbonyl-cappedcomplex,showedalmostthesametrendinitsshapeselectivityasZnG4a(SupplementaryFig.
S1).
Thisfactindicatedthatmetalcomplexationintheporphyrincoredidnotaffecttheshapeofthecavity.
Structuralanalysis.
Todeterminethebindingstate,a1HNMRanalysiswascarriedoutusingtheY-shapedguestmolecule20withtert-butyl(tBu)groups.
ThechemicalshiftcorrespondingtotheprotonsofthetBuunitin20wasshiftedupeldonadditionof20toaZnG4asolutionat20°C(Fig.
5a).
Thisobservationimpliedthatchemicalexchangebetweenthetrappedandfree-guestmoleculeswasfasterthantheNMRtimescale(afewmil-liseconds).
Atalowtemperature(20°C),wecouldobservetheprotonsignalscorrespondingtothetrappedandfree-guestmolecules.
Whentwoequivalentsof20wereadded,thesignalNR3R2R1R1R2R11:R1=R2=R3=H2:R1=Ph,R2=R3=H3:R2=Ph,R1=R3=H4:R3=Ph,R1=R2=H17:R2=TPP,R1=R3=H5:R1=Ph,R2=R3=H6:R2=Ph,R1=R3=H7:R3=Ph,R1=R2=HNR1R1R2R2R38:R1=Ph,R2=R3=H9:R2=Ph,R1=R3=H10:R3=Ph,R1=R2=HNR3NR1R2R3R3R2R111:R1=R2=R3=H12:R1=Ph,R2=R3=H13:R2=Ph,R1=R3=H14:R3=Ph,R1=R2=H19:R3=iPr,R1=R2=H20:R3=tBu,R1=R2=H21:R3=cHex,R1=R2=HNR215:R1=R2=H16:R1=Ph,R2=HTPPNRRRR22:R=Ph23:R=tBuN24:R1=HR2=C18H3725:R1=PhR2=C18H37R1R1OR218:R3=TPP,R1=R2=H26:R1=HR2=C6H1327:R1=PhR2=C6H13Figure2|Structuresofguestmolecules.
Shape-persistentpyridinederivativeswereselectedasmolecular'keys'forthehostmoleculesbasedonthedendrimerarchitecture.
Eachkeywascomposedofapyridineandseveralphenylgroupswithdifferentconnections.
Thepyridinegroupactedastheconnectingtiptotheaxialcoordinationsiteofthezincporphyrincorexedinthedendrimerhost.
Thephenylgroupactedasanidentierforthemolecules,recognizedbythecavityaroundtheaxialligationsiteofthehost.
NATURECOMMUNICATIONS|DOI:10.
1038/ncomms3581ARTICLENATURECOMMUNICATIONS|4:2581|DOI:10.
1038/ncomms3581|www.
nature.
com/naturecommunications3&2013MacmillanPublishersLimited.
Allrightsreserved.
integrationvaluesofthesetrappedandfree-guestmoleculeswerealmostequivalent,supporting1:1host–guestcomplexation.
Oneofthesesignalsappearingdowneldhadachemicalshift(d)of1.
31p.
p.
m.
andaspin-latticerelaxationtime(T1)of684ms,whichwereidenticaltothoseofthefree-guestmolecule(d1.
31p.
p.
m.
,T1665msfor20),whereastheothersignalexhibitedaverydifferentchemicalshift(d1.
02p.
p.
m.
)andrelaxationtime(T1874ms).
ThelongerT1forthesignalat1.
02p.
p.
m.
canbeunderstoodbasedoneffectiveencapsulationbythedendrimershell,aspreviouslyreported16,18,37,39,40.
Thisbehaviouristypicalfortheenvironmentinrigidphenyl-azomethinedendrimers,whereT1andT1/T2increasewereobservedfortheencapsulatedprotonsasthegenerationnumberincreases37,41.
Thisincreaseisinterrelatedasaslowerdynamicmotionofthedendrimer(longerrotationalcorrelationtime)42.
1Hdiffusion-orderedspectroscopy(DOSY)-NMRmeasure-mentssupportedourcontentionthatthesignalsat1.
31and1.
02p.
p.
m.
correspondedtothefreeandbindingguest,respectively.
Thediffusioncoefcient(D)ofZnG4a(2.
31010m2s1)determinedbyDOSY-NMRwasmuchsmallerthanthatofzinctetraphenylporphyrin(9.
21010m2s1)becauseofthelargerhydrodynamicradius(SupplementaryFig.
S2).
ThesevaluesarecomparabletothediffusioncoefcientsofZnG4a(1.
11010m2s1)andzinctetraphenylporphyrin(8.
01010m2s1)intetrahydrofuran,calculatedfromthehydrody-namicradiiusingtheStokes–Einsteinequation34.
IftheguestmoleculebindstoZnG4a,theD-valuecorrespondingtothebindingguestmoleculeshouldbeidenticaltothatofthedendrimerhostmoleculebecausetheywoulddiffusetogetherinthesolution.
However,DofthetBuunitcorrespondingtoZnG4a–20wasslightlydifferentonthediffusionaxisevenatalowtemperature(20°C).
Thisresultindicatedthatthetimescaleofchemicalexchangebetweenthecomplexandthefreebasewasclosetothediffusiondelay(40ms).
Forquantitativeanalysis,wenextemployedRuG4a,inwhichbindingwasstrongerthanthatinZnG4a.
ItwasfoundthatthevalueofDforthetBuunitcorrespondingtoRuG4a–20agreedexactlywiththevalueofDforthedendronmoieties(Fig.
5c).
1HnuclearO¨verhauserenhancementspectroscopy-NMRmeasurementoftheRuG4a–20systemwascarriedoutforthestablecomplexovera100-mstimescale.
Thistechniquehasbeenextensivelyusedtoelucidatedendrimer-basedhost–guestsys-tems43.
Inthetwo-dimensionalspectrum,manycross-peakswereobservedamongthearomaticprotonsofthedendronsubunitsasintramolecularnuclearO¨verhausereffect(NOE)couplings.
Inaddition,aclearcross-peakbetweenthetBuprotonsofthebindingguestmolecule(20)andaspecicaromaticprotonsignal01234512345678910111213141516171819202122232425GuestmoleculeLogK(M–1)ZnG4aZnG1aNo'Y'motifContaining'Y'motifDeviated'Y'motif26270.
80.
60.
40.
20.
0450440430420λ(nm)Abs.
432nm442nm02460–15–10–50020406080100Heatflow(μJs–1)Heat(kJmol–1)Time(min)[Guest]/[Host]K=6.
0*104(M–1)–ΔH=55(kJmol–1)TΔS=–28(kJmol–1)135–0.
2–0.
10.
00.
13020100ExperimentalCurvefitting1.
01.
240[Guest](μM)ΔAbs.
442nm432nm–40–30–20–10NNNNZnNNNNNZnNCooperativerecognitionBindingcentreHostGuestKFigure3|Examinationofhost–guestbinding.
(a)Schematicrepresentationofcooperativebinding.
Dockingtestsforguestmoleculeswithvariousshapesallowedprobingoftheshapeofthecavity.
(b)Ultraviolet–visibleabsorptionspectra(20°C)ofZnG4a(2.
5mM)onadditionoftheguestmolecule20intoluene/acetonitrile(1:1).
(c)Plotsofthechangeinabsorbanceattwodifferentwavelengthsforvariousconcentrationsof20.
Atheoreticalttingcurve(solidline)wasappliedtotheabsorbancedata.
(d)Isothermaltitrationcalorimetricdatafortheadditionof20toasolutionofZnG4a(51mM)intoluene/acetonitrile(1:1).
(e)Aplotofthemolarreactionheatforeachtitrationpoint.
Theoreticalttingoftheexperimentaldatagavethethermodynamicparametersforhost–guestbinding.
(f)Host–guest-bindingconstants(K)betweenzincporphyrin-containingdendrimers(ZnG1aandZnG4a)andpyridinederivativesintoluene/acetonitrile(1:1).
Overall,Y-shapedguestmoleculesshowedhighbindingconstants.
112131418K(103M–1)K(103M–1)Guestmolecule14201422Guestmolecule23n=1n=2n=3n=4G4aG4bG4cG4d010203040500102030405060FitWideNarrowShrunkenGenerationnumberCavityshapeFigure4|Bindingconstantsforeachhost–guestpair.
(a)Dependenceonthegenerationnumber(n)ofthedendrimerZnG4n.
Thefourth-generationdendrimer(ZnG4a)showedastrongafnityforY-shapedguestmolecules.
Nosignicantdependencewasfoundfordendrimerswithagenerationnumbero3.
(b)Dependenceoncavitysizeandexibilityofthedendrimers.
ThespecicrecognitionobservedforZnG4awaslostwhenthecavitysizewasextendedorshrunk.
Theexiblebackbonealsoexcludedthelargerguestmolecules.
ARTICLENATURECOMMUNICATIONS|DOI:10.
1038/ncomms35814NATURECOMMUNICATIONS|4:2581|DOI:10.
1038/ncomms3581|www.
nature.
com/naturecommunications&2013MacmillanPublishersLimited.
Allrightsreserved.
ofthedendronsubunitwasalsoobservedasintermolecularNOEcoupling(Fig.
5d).
Asthephenylazomethinemonomerhadtwonon-equivalentaromaticringsatsyn-andanti-positions,theNMRprotonsignalsforeveryaromaticringinonedendronsubunitcouldnotbereconciled.
Onthebasisofthis,thetBuprotonsofthebindingguestmolecule(20)werethoughttobeclosetoaspecicareneinthedendrimercavitywithoutanytiltorrotation.
Itisnoteworthythatthegeneration-3dendrimerRuG3adidnotshowanyNOEcross-peakwith20,suggestingthatthefourthlayerofthedendrimercontributedtogueststabilization,asnotedabove.
Thisresultfeasiblyexplainsthemolecularpictureofthecomplexinathree-dimensional(3D)space(Fig.
5b)inwhichthemonomerunitonthefourthlayerofadendronapproachesthetBuunitoftheguestmolecule(20),probablybecauseofweakCH/pinteractions.
Theupeldshiftofthealiphaticprotonsignalobservedinthe1HNMRspectrumoftheZnG4a–20system(Fig.
5a)isatypicalbehaviourforaCH/pinteraction44,45.
Thermodynamicanalysis.
ThermodynamicdatafromITCandultraviolet–visibleanalysis(van0tHoffplot)providedinformationaboutthemechanismofmolecularrecognition.
ThevaluesofDH°(enthalpychange)andDS°(entropychange)obtainedfromITCanalysiswereingoodagreementwiththosefromthevan0tHoffanalysisandwereverydifferentforeachhost–guestpair.
Inthecaseof20(agoodt),DH°hadaverylargenegativevalue,whereasTDS°(T293K)hadalargepositivevalue(SupplementaryTableS1).
Incontrast,theabsolutevaluesofDH°andTDS°forthemorebadlyttingmoleculesweresmaller.
Thesefactscanbeinterpretedtomeanthatmaximalcontactbetweenthehostandguestresultingreaterstabilizationintermsoffreeenergy(DG°DH°TDS°).
Thisstabilizationismainlyduetothelargeintermolecularforceassociatedwiththeenthalpyfactor(DH°).
Surprisingly,thevalueofDH°for20wasalmosttwicethatfor4,whichimpliesthatthecontributionsfromtheupper'anchor'structureandfrompyridinecoordinationwerenearlyequivalent.
ThisincreaseinDH°canbeunderstoodasasummationofweakintermolecularinteractionsincludingp/p,CH/N,CH/p,vanderWaalsattractionandhydrophobicinter-action.
Thenon-dendritichost–guestsystemgaveamuchsmallerDH°variationforguestmoleculeswithdifferentshapes.
There-fore,theprimaryfactorinthehighmolecularrecognitionabilityofthedendrimerZnG4aisthoughttobetheenthalpycon-tribution,basedonthelargecontactareabetweenthehostandguestmolecules.
Animpressivedifferencewasfoundbetweenguestmolecules24and25,althoughtheonlystructuraldifferencewasthepresenceoftwophenylringsin25.
Althoughthealkylchainin25contributesthetightbindingverymuch,thesameDendrontButBuChemicalshift(p.
p.
m.
)8.
06.
04.
02.
08.
06.
04.
04.
06.
08.
02.
0–9.
0log[D(m2s–1)]1.
41.
31.
21.
11.
00.
940°C20°C0°C–20°CGuestonly(20°C)Chemicalshift(p.
p.
m.
)tButButButButButBuCoalescencePorphyrin(β-proton)SolventDendronDendronPorphyrin(β-proton)SolventF1(p.
p.
m.
)F2(p.
p.
m.
)–9.
5IntermolecularNOEIntramolecularNOEacdbCross-sectionTopNNNNZnNNNNRuCONEncapsulated(T1=874ms)Freebase(T1=665ms)EncapsulatedFreebaseHostGuestCH-ππ-πNNtButButButBuFigure5|Structuralanalysisofthehost–guest-bindingcomplex.
(a)Variable-temperature1HNMRspectraofaZnG4awith20atamixingratioof1:2(H:G)intoluene-d8/acetonitrile-d3(2:1).
ThesignalsoftBugroupsintheguestmolecule(20)areshownforboundandfreestates.
(b)Acomputer-generatedspace-llingmodelofZnG4aandacross-sectionalimageshownasasolvent-accessiblesurface(proberadius:1.
4)with20.
Theporphyrincoreishighlightedinmagenta.
This3Dcoordinatewasobtainedfromsemi-empiricalmolecularorbitalcalculations(MOPAC-AM1).
(c)1HDOSY-NMRspectrumofaRuG4awith20atamixingratioof1:2(H:G)indichloromethane-d2.
(d)1HnuclearO¨verhauserenhancementspectroscopy-NMRspectrumofRuG4awith20atamixingratioof1:1(H:G)indichloromethane-d2.
Theinsetgureisa3Dmodelofthehost–guestcomplex.
NATURECOMMUNICATIONS|DOI:10.
1038/ncomms3581ARTICLENATURECOMMUNICATIONS|4:2581|DOI:10.
1038/ncomms3581|www.
nature.
com/naturecommunications5&2013MacmillanPublishersLimited.
Allrightsreserved.
structurein24didnotcontributeanyimprovementinhost–guestbinding.
Asimilardifferencewasfoundbetween26and27.
ThetitrationexperimentsdemonstratedthatbindingbetweenthehostandtheY-shapedpyridineinpuretoluenewasnotasstrongasinamixedsolventoftoluene/acetonitrile(1:1).
Ahighermixingratioofalesssolubilizingmedium(acetonitrile)allowedstrongerbindingbasedonanenthalpicdrivingforce(SupplementaryTableS2).
Inparticular,theuseofaspecicallypolararomaticsolvent(forexample,dimethylphthalate)asagoodmediumsignicantlyenhancedthebindingafnity(KG45.
4105M–1)andselectivity(KG4a/KG1a142)ofthereaction,asshowninSupplementaryTableS3.
Thisresultindicatesthedominanceofanon-classicalhydrophobiceffectasdiscussedbyDiederichandco-workers46,whichenablesstrongerhost–guestbindinginadendrimersystem.
Thethermodynamicbehaviourisdifferentfromthatoftheclassicalhydrophobicinteraction,inwhichentropicfavourabilityduetodesolvationisaprincipaldrivingforce47.
Ingeneral,hydrophobicinteractionsdonothaveacrucialroleinmolecularrecognition.
However,itisinterestingtonotethatthesolventeffectenhancesselectivityinthepresentsystem.
Thisenthalpicfavourabilitywasfoundonlyintheshape-matchingguestmoleculesandnotintheotherpyridinederivatives.
Selectivityincatalysis.
Thesyntheticnanocavitycanselectfavourableguestmoleculesbasedontheirshapes.
Inanaturalenzyme,thisprincipleisutilizedtoachieveexcellentselectivitybetweensubstratesandproducts.
OnthebasisofaMichaelis–Mentenmodel,thestabilityofanintermediateenzyme–substratecomplexisimportantinthedeterminationoftheentirekinetics.
Catalyticepoxidationofaromaticolensbyarutheniumpor-phyrin(RuPor)wasdemonstrated48–50.
Themechanismofcatalysis,usinga2,6-dichloropyridine-N-oxideastheoxidativereagent,iswellestablished,asfollows:(1)thereagentoxidizestheRuPortoaffordanoxo-complex(RuOPor)49.
(2)AnolenderivativeapproachestheoxygenatomonRuandformsanadductastheintermediatestate51.
(3)TheRuOPorrevertstoRuPorbydesorptionoftheepoxideproduct.
WereasonedthatifaRuPorinadendrimer-baseddeepcavitywasusedasacatalyst,molecularrecognitionoftheintermediatestatemightsignicantlyaffectthekineticsaspredictedbytheMichaelis–Mentenmodel.
Beforetheexperiment,wesimulatedthestructureofinter-mediatespecieswithvariousolens.
Forexample,methoxy-styrenehasthreestructuralisomers(o-,m-andpMeO-Sty).
Thesesubstratesweretestedwiththe3Dstructuralmodelofthedendrimerveriedfromtheabove-mentionedhost–guestchemistry.
Inthispredictionanalysis,mMeO-Stytthecavityverywell,whereasthepMeO-Styconictedwiththesidewall,asshowninFig.
6a,b.
Thekineticsweredetermined(SupplementaryTableS4)foreachpairoftwodendrimers(RuG1aandRuG4a)andtwosubstrates(mMeO-StyandpMeO-Sty).
Thereactionswerecarriedoutusing100mmoll1ofthesubstrates,anequimolaramountofoxidativereagent(2,6-dichloropyridine-N-oxide)and0.
05mol%ofthecatalyst(RuG1aandRuG4a)atroomtemperature(25°C)inchloroform.
Thereactionprogresswasmonitoredusing1HNMRandgaschromatography.
AlthoughtheentirekineticsofthereactionusingRuG4a(VG4)wereslowerthanthoseforRuG1a(VG1)becauseofhighsterichindrance,theratioVG4/VG1clearlydemonstratedtheeffectofthecavityonsubstrateselectivity.
AsshowninFig.
6c,theratioVG4/VG1formMeO-StywastwicethatforpMeO-Sty.
Toachieveagreaterunderstandingofthecatalyticactivity,thedependenceonsubstrateconcentrationwasexaminedbasedonaMichaelis–Mentenmodel.
Inthecaseofarutheniumtetraphenylporphyrinmonocarbonylcatalyst,theapparentproductformationkineticsshowedalmostlineardependenceonthesubstrateconcentrationbetween100and1,000mmoll1(SupplementaryFig.
S3).
TheMichaelis–Mentenconstantwasdeterminedtobe45moll1formMeO-Sty.
Incontrast,amuchsmallerconcentrationdependencewasobservedwhenRuG4awasusedasacatalyst,suggestingahigherafnitybetweenmMeO-StyandRuG4a.
TheestimatedMichaelis–MentenconstantforRuG4awas90mmoll1.
AsimilarkineticinvestigationwasalsoappliedtomPh-StyandpPh-Sty,whichexhibitedalmostthesametrend.
Thissuggestedthatselectivityinthepresentexperimentalconditions([S]100mM)wasthermodynamicallycontrolledbytheenzyme–substratecomplexequilibrium,butnotkineticallybycomplexformation.
Ofparticularimportanceistheagreementbetweentheexperimentalresultsandthesimplesimulationbasedonastaticmolecular3Dmodel.
Theseresultsareincontrasttopreviouslyreportedselectivitybydendrimersintermsofpredictability52.
DiscussionAlthoughtheentropyfactor(TDS°)actsasanegativedrivingforceforbinding,thisissmallerthanthepositivedrivingforcebecauseofenthalpy(DH°).
Similartotheliterature5,13,53,54,thehost–guestsystemunderdiscussionshowedagoodlinearcorrelation(correlationcoefcient:r0.
98)betweenDH°andTDS°(SupplementaryFig.
S4).
Thisbehaviour,whichiscalledenthalpy-entropycompensation,hasbeenwidelyobservedinnaturalandsynthetichost–guestsystems.
AsitisknownthatanapparentcorrelationbetweenDH°andTDS°mayalsobe0.
000.
050.
100.
150.
00.
10.
20.
3o–m–p–m–p–VG4/VG1VG4/VG1PhMeORROCat.
:RuG4aorRuG1aNClClOOMeOMeox:Cat.
,oxChloroform25°CFigure6|Catalyticepoxidationofolensbythedendrimercatalyst.
(a)Reactionscheme.
(b)3DsimulationmodelofmMeO-StyintheRuG4acavity.
Thissubstratetsinthecavityinaside-onpositioninrelationtotheoxygenatomontheRuPorcore.
(c)3DsimulationmodelofpMeO-StyintheRuG4acavity.
Themethoxygroupconictswiththesidewall.
(d)RatioofthereactionratecatalysedbyRuG4aandRuG1aforeachmethoxystyrenesubstrate.
(e)RatioofthereactionratecatalysedbyRuG4aandRuG1aforeachphenylstyrenesubstrate.
ARTICLENATURECOMMUNICATIONS|DOI:10.
1038/ncomms35816NATURECOMMUNICATIONS|4:2581|DOI:10.
1038/ncomms3581|www.
nature.
com/naturecommunications&2013MacmillanPublishersLimited.
Allrightsreserved.
observedbecauseofastatisticalartifact,weanalysedthesedatawithcaution13.
Indeed,weexaminedthereproducibilityofhost–guestbindingbetweenZnG4aand20vetimes,andtheresultingexperimentalvalues(DH°andTDS°byITC)werefoundtobewithinatypicalexperimentalerrorof±10%,stemmingfromthesummationofmeasurements(weightorvolume)anddataprocessing(curvetting).
TheexperimentalvaluesofK(DG°)andDH°foralloftheguestmoleculesweredistributedoverasubstantialrangeexceedingtheerrorrange;therefore,theobservedrelationshipmayberegardednotasanapparentcorrelationbasedonstatisticalerrorbutasaphysicalphenom-enon.
Hereanunexpectedlylowproportionalcoefcienta(TDDS°/DDH°0.
75at293K)wasobservedfortheZnG4asystem;thiswassubstantiallylowerthanthatofthenon-dendriticzincporphyrin(zinctetraphenylporphyrin:a0.
91).
Theobservedrelationshipsuggeststhat25%(1–a)oftheenthalpygaincanbeusedforfree-energygain(DG°)onmolecularrecognition.
Thisslopeissimilartothatofa-cyclodextrinsandrathersmallerthanthatofg-cyclodextrins5.
Theinterceptoftheenthalpy-entropycompensationplotgaveavalueofTDS0°13.
9kJmol–1,closetothevalueforg-cyclodextrins5.
Thisinterceptvalueisreferredtoasanentropygainaccompanyingdesolvationfromthebindingcentreinthecavityofthefreehostmolecule.
Therelativelysmalla(comparabletoa-cyclodextrins)andlargeTDS0°(comparabletog-cyclodextrins)indicategoodshapepersistenceofthelargecavityinthedendrimer.
Thesignicantcontributionofthelongalkylchainon25canbeinterpretedasthehydrophobiceffectorCH/pinteraction,whichenhanceshost–guestafnity.
AnupeldshiftoftheNMRprotonsignalscorrespondingtothealkylchainwasobservedoncomplexationwithZnG4a.
Thisresultindicatedacooperativerecognitionmechanism55withinterlockingateachrecognitionsiteincludingthepyridine(tip),Y-shapedaromaticrings(anchor)andlongalkylchainmoieties(thread)asshowninFig.
7.
Inspiteofthesignicantcontributionoftheanchorandthreadin25(anadditional40kJmol1DH°),itisnotablethat25didnotshowanyinteractionwiththefree-baseporphyrinformofthedendrimer(H2G4a),asmonitoredbyultravioilet–visibletitrationandITC.
Thisresultdemonstratesthatprexingoftheguestmoleculesthroughpyridinecoordinationisthekeytothesubsequentmolecularshaperecognition.
Inaddition,furtherinterlocking,whichcanbeseenasthesecondkey,allowsthelongalkylchaintofunctionasapositivedrivingforce.
Signicantamplicationofrecognitionwasachievedthroughsequentialcooperativitybetweendifferentpartsoftheguestmolecule,whichmayberelatedtoaninduced-tmechanism13,47.
Suchamechanismmaybethekeytounderstandingprotein-basedrecognitionsystems.
Inconclusion,wehavecreatedasynthetickeyholethatnelydiscriminatestheshapeofaspecicmolecularkey.
Theessentialelementinprobingthemultidimensionalstructureofguestmoleculesistheshapepersistenceofthemacromolecularhostintermsofconformationandcavitygeometry.
Whereastheshapeofthecavityinconventionaldendrimersisundened,anappro-priatedesignwithsufcientrigidityallowedustoprovidealargecavitywithaprogrammedfunctionformolecularrecognitionandcatalysis.
Further,thereasonablysemi-rigidkeyhole,inwhichshapepersistenceandadaptabilitygotogether,providescoopera-tiverecognition,allowingamplicationofrecognitionthroughcomplexation-inducedxationofthecavitystructure,whichmayberelatedtoallostericnatureofthiskindofhostmolecule56.
MethodsChemicals.
Phenylazomethinedendrimerswithazincporphyrincore(ZnGna:n1,2,3and4)usedinthisstudyweresynthesizedbyaconvergentmethodasdescribedintheliterature37.
Othertypesofphenylazomethinedendrimer(RuG4a,ZnG4bandZnG4c)werenewlysynthesizedasdescribedintheSupplementaryMethods.
Abenzylether(Frechettype)dendrimerwithazincporphyrincorewassynthesizedasdescribedintheliterature57.
AllpyridinederivativesusedasguestmoleculeswerepurchasedorsynthesizedasdescribedintheSupplementaryMethods.
NMR.
1Hand13CNMRspectrawereobtainedusingaBrukerAvanceIII-400spectrometerequippedwitha5-mmBBFOz-gradientprobe(gradientstrength:57Gcm1).
Thechemicalshiftvalueswerecalibratedtoaninternaltetra-methoxysilanestandard.
TheDOSYexperimentwascarriedoutwiththefollowingsettings.
Thediffusiondelaywasintherangeof40–60msdependingonthesample.
Thegradientpulselengthandthegradientstrengthwerevariedfrom1.
5to3.
0msandfrom2to100%,respectively.
The1H–1HnuclearO¨verhauserenhancementspectroscopyexperimentwascarriedoutusingstandardpulsesequencesonthesamespectrometerwitha120-msmixingtime.
Determinationofbindingparameters.
Coordinationconstantsandthermo-dynamicparametersforallhost–guestpairsweredeterminedbytitrationexperi-mentsbasedonultraviolet–visibleabsorptionmeasurementsandisothermalcalorimetryat20°C(seeSupplementaryFigsS5–S30).
Ultraviolet–visibleabsorp-tionspectraweremeasuredonaShimadzuUV-3150PCspectrometer.
Curve-ttinganalysesbasedonaleast-squaresmethodattwoindependentwavelengthsweredoneusinghomemadesoftwaretodeterminethebindingconstants.
ITCwascarriedoutusingaMicrocalVP-ITCinstrument.
Analysiswascarriedoutonbuilt-insoftwaretodeterminethebindingconstantsandenthalpyandentropydiffer-ences(DHandDS).
Determinationofthekineticparameters.
CatalyticepoxidationofstyrenederivativesbytheRuPorcatalystwasinitiallyconrmedby1HNMRmeasure-mentsinCDCl3.
DetailedkineticdatainCHCl3wereobtainedbymonitoringtheepoxideproductusingagaschromatograph(Shimadzu,GC-14B)withaTCDdetectorandHecarriergas.
Turnoverfrequencyvaluesweredeterminedfromthetimecourseofproductformation.
AllthereactionswerecarriedoutunderaN2atmosphereat25°C.
References1.
Krishnamurthy,V.
M.
etal.
Carbonicanhydraseasamodelforbiophysicalandphysical-organicstudiesofproteinsandprotein-ligandbinding.
Chem.
Rev.
108,946–1051(2008).
2.
Mitra,T.
etal.
Molecularshapesortingusingmolecularorganiccages.
Nat.
Chem.
5,276–281(2013).
3.
Harada,A.
Cyclodextrin-basedmolecularmachines.
Acc.
Chem.
Res.
34,456–464(2001).
4.
Izatt,R.
M.
,Pawlak,K.
&Bradshaw,J.
S.
Thermodynamicandkineticdataformacrocycleinteractionwithcationsandanions.
Chem.
Rev.
91,1721–2085(1991).
5.
Rekharsky,M.
V.
&Inoue,Y.
Complexationthermodynamicsofcyclodextrins.
Chem.
Rev.
98,1875–1918(1998).
ΔΔH=–15kJmol–1TΔΔS=+11kJmol–1ΔΔH=+1kJmol–1TΔΔS=–2kJmol–1ΔΔH=–41kJmol–1TΔΔS=+34kJmol–1ΔΔH=–25kJmol–1TΔΔS=+21kJmol–1NNNOC18H37OC18H37NΔH=–70kJmol–1–TΔS=41kJmol–1ΔG=–29kJmol–1ΔH=–45kJmol–1–TΔS=20kJmol–1ΔG=–25kJmol–1ΔH=–29kJmol–1–TΔS=7kJmol–1ΔG=–22kJmol–1ΔH=–30kJmol–1–TΔS=9kJmol–1ΔG=–21kJmol–14112524Figure7|Asquareschemeofcooperativerecognition.
InthepresenceoftwophenylgroupsinaY-shape,thelongalkylchainfurtherincreasesafnitywiththeZnG4ahost.
Insharpcontrast,thesamealkylgroupatthesamepositiondoesnotdemonstratethisfunctionatallintheabsenceofthetwophenylgroups.
NATURECOMMUNICATIONS|DOI:10.
1038/ncomms3581ARTICLENATURECOMMUNICATIONS|4:2581|DOI:10.
1038/ncomms3581|www.
nature.
com/naturecommunications7&2013MacmillanPublishersLimited.
Allrightsreserved.
6.
Diederich,F.
&Gomez-Lopez,M.
Supramolecularfullerenechemistry.
Chem.
Soc.
Rev.
28,263–277(1999).
7.
Yoshizawa,M.
,Tamura,M.
&Fujita,M.
Chiralityenrichmentthroughtheheterorecognitionofenantiomersinanachiralcoordinationhost.
Angew.
Chem.
Int.
Ed.
46,3874–3876(2007).
8.
Pluth,M.
D.
&Raymond,K.
N.
Reversibleguestexchangemechanismsinsupramolecularhost-guestassemblies.
Chem.
Soc.
Rev.
36,161–171(2007).
9.
Rebek,Jr.
J.
Molecularbehaviorinsmallspaces.
Acc.
Chem.
Res.
42,1660–1668(2009).
10.
Ferrand,Y.
,Crump,M.
P.
&Davis,A.
P.
ASyntheticlectinanalogforbiomimeticdisacchariderecognition.
Science318,619–622(2007).
11.
Fujita,D.
etal.
Proteinencapsulationwithinsyntheticmolecularhosts.
Nat.
Commun.
3,1093(2012).
12.
Hecht,S.
&Frechet,J.
M.
J.
Dendriticencapsulationoffunction:applyingnature'ssiteisolationprinciplefrombiomimeticstomaterialsscience.
Angew.
Chem.
Int.
Ed.
40,74–91(2001).
13.
Houk,K.
N.
,Leach,A.
G.
,Kim,S.
P.
&Zhang,X.
Bindingafnitiesofhost-guest,protein-ligand,andprotein-transition-statecomplexes.
Angew.
Chem.
Int.
Ed.
42,4872–4897(2003).
14.
Zeng,F.
&Zimmerman,S.
C.
Dendrimersinsupramolecularchemistry:frommolecularrecognitiontoself-assembly.
Chem.
Rev.
97,1681–1712(1997).
15.
Bauer,R.
E.
,Clark,C.
G.
&Mu¨llen,K.
Precisionhost-guestchemistryofpolyphenylenedendrimers.
N.
J.
Chem.
31,1275–1282(2007).
16.
Jansen,J.
F.
G.
A.
,deBrabander-vandenBerg,E.
M.
M.
&Meijer,E.
W.
Encapsulationofguestmoleculesintoadendriticbox.
Science266,1226–1229(1994).
17.
Broeren,M.
A.
etal.
Multicomponenthost-guestchemistryofcarboxylicacidandphosphonicacidbasedguestswithdendritichosts:anNMRstudy.
J.
Am.
Chem.
Soc.
127,10334–10343(2005).
18.
Tomoyose,Y.
etal.
Aryletherdendrimerswithaninteriormetalloporphyrinfunctionalityasaspectroscopicprobe:Interpenetratinginteractionwithdendriticimidazoles.
Macromolecules29,5236–5238(1996).
19.
Jiang,D.
-L.
&Aida,T.
Adendriticironporphyrinasanovelhaemoproteinmimic:effectsofthedendrimercageondioxygen-bindingactivity.
Chem.
Commun.
1523–1524(1996).
20.
Shinoda,S.
,Ohashi,M.
&Tsukube,H.
'Pocketdendrimers'asnanoscalereceptorsforbimolecularguestaccommodation.
Chem.
Eur.
J.
13,81–89(2007).
21.
Ong,W.
etal.
ElectrochemicalandguestbindingpropertiesofFrechet-andNewkome-typedendrimerswithasingleviologenunitlocatedattheirapicalpositions.
J.
Am.
Chem.
Soc.
127,3353–3361(2005).
22.
Balzani,V.
etal.
Host-guestcomplexesbetweenanaromaticmoleculartweezerandsymmetricandunsymmetricdendrimerswitha4,4'-bipyridiniumcore.
J.
Am.
Chem.
Soc.
128,637–648(2006).
23.
Ballauff,M.
&Likos,C.
N.
Dendrimersinsolution:insightfromtheoryandsimulation.
Angew.
Chem.
Int.
Ed.
43,2998–3020(2004).
24.
Potschke,D.
,Ballauff,M.
,Lindner,P.
,Fischer,M.
&Vo¨gtle,F.
Analysisofthestructureofdendrimersinsolutionbysmall-angleneutronscatteringincludingcontrastvariation.
Macromolecules32,4079–4087(1999).
25.
Lim,J.
,Pavan,G.
M.
,Annunziata,O.
&Simanek,E.
E.
Experimentalandcomputationalevidenceforaninversioninguestcapacityinhigh-generationtriazinedendrimerhosts.
J.
Am.
Chem.
Soc.
134,1942–1945(2012).
26.
Posocco,P.
,Ferrone,M.
,Fermeglia,M.
&Pricl,S.
Bindingatthecore.
Computationalstudyofstructuralandligandbindingpropertiesofnaphthyridine-baseddendrimers.
Macromolecules40,2257–2266(2007).
27.
Zimmerman,S.
C.
,Wang,Y.
,Bharathi,P.
&Moore,J.
S.
Analysisofamidiniumguestcomplexationbycomparisonoftwoclassesofdendrimerhostscontainingahydrogenbondingunitatthecore.
J.
Am.
Chem.
Soc.
120,2172–2173(1998).
28.
Zimmerman,S.
C.
,Wendland,M.
S.
,Rakow,N.
A.
,Zharov,I.
&Suslick,K.
S.
Synthetichostsbymonomolecularimprintinginsidedendrimers.
Nature418,399–403(2002).
29.
Yamamoto,K.
&Imaoka,T.
Dendrimercomplexesbasedonne-controlledmetalassembling.
Bull.
Chem.
Soc.
Jpn79,511–526(2006).
30.
Ochi,Y.
etal.
Controlledstorageofferrocenederivativesasredox-activemoleculesindendrimers.
J.
Am.
Chem.
Soc.
132,5061–5069(2010).
31.
Ochi,Y.
,Fujii,A.
,Nakajima,R.
&Yamamoto,K.
Stepwiseradialcomplexationoftriphenylmethyliumsonaphenylazomethinedendrimerfororganicmetalhybridassembly.
Macromolecules43,6570–6576(2010).
32.
Yamamoto,K.
etal.
Size-speciccatalyticactivityofplatinumclustersenhancesoxygenreductionreactions.
Nat.
Chem.
1,397–402(2009).
33.
Imaoka,T.
,Ueda,H.
&Yamamoto,K.
Enhancingthephotoelectriceffectwithapotential-programmedmolecularrectier.
J.
Am.
Chem.
Soc.
8412–8415(2012).
34.
Imaoka,T.
,Tanaka,R.
&Yamamoto,K.
Investigationofamolecularmorphologyeffectonpolyphenylazomethinedendrimers;physicalpropertiesandmetal-assemblingprocesses.
Chem.
Eur.
J.
12,7328–7336(2006).
35.
Fowler,C.
J.
etal.
Metalcomplexesofporphycene,corrphycene,andhemiporphycene:stabilityandcoordinationchemistry.
Chem.
Eur.
J.
8,3485–3496(2002).
36.
Imai,H.
,Nakagawa,S.
&Kyuno,E.
Recognitionofaxialligandsbyazincporphyrinhostonthebasisofnonpolarinterligandinteraction.
J.
Am.
Chem.
Soc.
114,6719–6723(1992).
37.
Imaoka,T.
etal.
Probingstepwisecomplexationinphenylazomethinedendrimersbyametallo-porphyrincore.
J.
Am.
Chem.
Soc.
127,13896–13905(2005).
38.
Matos,M.
S.
etal.
Effectofcorestructureonphotophysicalandhydro-dynamicpropertiesofporphyrindendrimers.
Macromolecules33,2967–2973(2000).
39.
Hecht,S.
&Frechet,J.
M.
J.
Analternativesyntheticapproachtowarddendriticmacromolecules:novelbenzene-coredendrimersviaalkynecyclotrimerization.
J.
Am.
Chem.
Soc.
121,4084–4085(1999).
40.
Uyemura,M.
&Aida,T.
Characteristicsoforganictransformationsinaconneddendriticcore:studiesontheAIBN-initiatedreactionofdendrimercobalt(II)porphyrinswithalkynes.
Chem.
Eur.
J.
9,3492–3500(2003).
41.
Higuchi,M.
,Shiki,S.
,Ariga,K.
&Yamamoto,K.
Firstsynthesisofphenylazomethinedendrimerligandsandstructuralstudies.
J.
Am.
Chem.
Soc.
123,4414–4420(2001).
42.
Pinto,L.
F.
,Correa,J.
,Martin-Pastor,M.
,Riguera,R.
&Fernandez-Megia,E.
ThedynamicsofdendrimersbyNMRrelaxation:interpretationpitfalls.
J.
Am.
Chem.
Soc.
135,1972–1977(2013).
43.
Hu,J.
,Xu,T.
&Cheng,Y.
NMRinsightsintodendrimer-basedhost-guestsystems.
Chem.
Rev.
112,3856–3891(2012).
44.
Fukazawa,Y.
,Usui,S.
,Tanimoto,K.
&Hirai,Y.
Conformational-analysisbytheringcurrentmethod—thestructureof2,2,13,13-tetramethyl[4.
4]metacyclophane.
J.
Am.
Chem.
Soc.
116,8169–8175(1994).
45.
Tarkanyi,G.
,Kirary,P.
,Varga,S.
,Vakulya,B.
&Soos,T.
Edge-to-faceCH/piaromaticinteractionandmolecularself-recognitioninepi-cinchona-basedbifunctionalthioureaorganocatalysis.
Chem.
Eur.
J.
14,6078–6086(2008).
46.
Meyer,E.
A.
,Castellano,R.
K.
&Diederich,F.
Interactionswitharomaticringsinchemicalandbiologicalrecognition.
Angew.
Chem.
Int.
Ed.
42,1210–1250(2003).
47.
Iwamoto,H.
,Mizutani,T.
&Kano,K.
Thermodynamicsofhydrophobicinteractions:entropicrecognitionofahydrophobicmoietybypoly(ethyleneoxide)-zincporphyrinconjugates.
Chem.
AsianJ.
2,1267–1275(2007).
48.
Hu,W.
-X.
,Li,P.
-R.
,Jiang,G.
,Che,C.
M.
&Chen,J.
Amildcatalyticoxidationsystem:rutheniumporphyrinand2,6-dichloropyridineN-oxideappliedforalkenedihydroxylation.
Adv.
Synth.
Catal.
352,3190–3194(2010).
49.
Che,C.
-M.
&Huang,J.
-S.
Metalloporphyrin-basedoxidationsystems:frombiomimeticreactionstoapplicationinorganicsynthesis.
Chem.
Commun.
3996–4015(2009).
50.
Groves,J.
T.
&Quinn,R.
Aerobicepoxidationofolenswithrutheniumporphyrincatalysts.
J.
Am.
Chem.
Soc.
107,5790–5792(1985).
51.
Ishikawa,A.
&Sakaki,S.
Theoreticalstudyofphotoinducedepoxidationofolenscatalyzedbyrutheniumporphyrin.
J.
Phys.
Chem.
A115,4774–4785(2011).
52.
Zhang,J.
L.
,Zhou,H.
B.
,Huang,J.
-S.
&Che,C.
M.
Dendriticrutheniumporphyrins:anewclassofhighlyselectivecatalystsforalkeneepoxidationandcyclopropanation.
Chem.
Eur.
J.
8,1554–1562(2002).
53.
Frederick,K.
K.
,Marlow,M.
S.
,Valentine,K.
G.
&Wand,A.
J.
Conformationalentropyinmolecularrecognitionbyproteins.
Nature448,325–329(2007).
54.
Leung,D.
H.
,Bergman,R.
G.
&Raymond,K.
N.
Enthalpy-entropycompensationrevealssolventreorganizationasadrivingforceforsupramolecularencapsulationinwater.
J.
Am.
Chem.
Soc.
130,2798–2805(2008).
55.
Williams,D.
H.
,Calderone,C.
T.
,O'Brien,D.
P.
&Zerella,R.
Changesinmotionversusbondinginpositivelyversusnegativelycooperativeinteractions.
Chem.
Commun.
1266–1267(2002).
56.
Albrecht,K.
,Kasai,Y.
,Kuramoto,Y.
&Yamamoto,K.
Dynamiccontrolofdendrimer–fullereneassociationbyaxialcoordinationtothecore.
Chem.
Commun.
49,6861–6863(2013).
57.
Pollak,K.
W.
,Leon,J.
W.
,Frechet,J.
M.
J.
,Maskus,M.
&Abruna,H.
D.
Effectsofdendrimergenerationonsiteisolationofcoremoieties:electrochemicalanduorescencequenchingstudieswithmetalloporphyrincoredendrimers.
Chem.
Mater.
10,30–38(1998).
AcknowledgementsThisworkwassupportedinpartbytheCRESTprogramoftheJapanScienceandTechnology(JST)AgencyandGrants-in-AidforScienticResearchonInnovativeAreas'CoordinationProgramming'(area2107,Number21108009)fromtheJapanSocietyforthePromotionofScience(JSPS).
ARTICLENATURECOMMUNICATIONS|DOI:10.
1038/ncomms35818NATURECOMMUNICATIONS|4:2581|DOI:10.
1038/ncomms3581|www.
nature.
com/naturecommunications&2013MacmillanPublishersLimited.
Allrightsreserved.
AuthorcontributionsT.
I.
,Y.
K.
andT.
K.
preparedthedendrimersandpyridinederivatives.
T.
I.
andY.
K.
carriedoutthetitrationexperiments.
T.
K.
carriedoutthecatalyticepoxidationexperiment.
T.
I.
andK.
Y.
conceivedexperimentsandco-wrotethemanuscript.
AdditionalinformationSupplementaryInformationaccompaniesthispaperathttp://www.
nature.
com/naturecommunicationsCompetingnancialinterests:Theauthorsdeclarenocompetingnancialinterests.
Reprintsandpermissioninformationisavailableonlineathttp://npg.
nature.
com/reprintsandpermissions/Howtocitethisarticle:Imaoka,T.
etal.
Macromolecularsemi-rigidnanocavitiesforcooperativerecognitionofspeciclargemolecularshapes.
Nat.
Commun.
4:2581doi:10.
1038/ncomms3581(2013).
NATURECOMMUNICATIONS|DOI:10.
1038/ncomms3581ARTICLENATURECOMMUNICATIONS|4:2581|DOI:10.
1038/ncomms3581|www.
nature.
com/naturecommunications9&2013MacmillanPublishersLimited.
Allrightsreserved.

香港 1核1G 29元/月 美国1核 2G 36元/月 快云科技

快云科技: 11.11钜惠 美国云机2H5G年付148仅有40台,云服务器全场7折,香港云服务器年付388仅不到五折 公司介绍:快云科技是成立于2020年的新进主机商,持有IDC/ICP/ISP等证件资质齐全主营产品有:香港弹性云服务器,美国vps和日本vps,香港物理机,国内高防物理机以及美国日本高防物理机官网地址:www.345idc.com活动截止日期为2021年11月13日此次促销活动提供...

paypal$10的代金券,选购美国VPS

paypal贝宝可撸$10的代金券!这两天paypal出了活动,本次并没有其他的限制,只要注册国区的paypal,使用国内的手机号和62开头的银联卡,就可以获得10美元的代金券,这个代金券购买产品需要大于10.1美元,站长给大家推荐几个方式,可以白嫖一年的VPS,有需要的朋友可以看看比较简单。PayPal送10美元活动:点击直达活动sfz与绑定卡的号码可以重复用 注册的邮箱,手机号与绑的银联卡必须...

atcloud:480G超高防御VPS低至$4/月,美国/新加坡等6机房,512m内存/1核/500g硬盘/不限流量

atcloud主要提供常规cloud(VPS)和storage(大硬盘存储)系列VPS,其数据中心分布在美国(俄勒冈、弗吉尼亚)、加拿大、英国、法国、德国、新加坡,所有VPS默认提供480Gbps的超高DDoS防御+不限流量,杜绝DDoS攻击骚扰,比较适合海外建站等相关业务。ATCLOUD.NET是一家成立于2020年的海外主机商,主要提供KVM架构的VPS产品、LXC容器化产品、权威DNS智能解...

freehost为你推荐
公司网络被攻击最近企业受到网络攻击的事件特别多,怎么才能有效地保护企业的网络安全呢?留学生认证留学生服务中心认证内容和范围?阿丽克丝·布莱肯瑞吉行尸走肉第六季女演员原代码什么是原代码嘀动网动网和爱动网各自的优势是什么?haokandianyingwang谁有好看电影网站啊、要无毒播放速度快的、在线等porntimesexy time 本兮 MP3地址www.5any.com我想去重庆上大学lcoc.toptop weenie 是什么?www.ijinshan.com在电脑看港台电视台那个网站最好而又不用钱速度又快
虚拟空间购买 欧洲免费vps vps是什么意思 免费注册网站域名 服务器评测 godaddy info域名 免费ftp站点 河南服务器 福建铁通 中国网通测速 申请免费空间和域名 中国linux ledlamp 可外链的相册 测试网速命令 宿迁服务器 googlevoice 镇江高防服务器 hosting 更多