translationnxgx.com
nxgx.com 时间:2021-04-07 阅读:(
)
AbInitioCalculationsinaUniformMagneticFieldUsingPeriodicSupercellsWeiCaiandGiuliaGalliLawrenceLivermoreNationalLaboratory,UniversityofCalifornia,Livermore,California94550,USA(Received22September2003;published5May2004)Wepresentaformulationofabinitioelectronicstructurecalculationsinanitemagneticeld,whichretainsthesimplicityandefciencyoftechniqueswidelyusedinrstprinciplesmoleculardynamicssimulations,basedonplane-wavebasissetsandFouriertransforms.
Inadditionwediscussresultsobtainedwiththismethodfortheenergyspectrumofinteractingelectronsinquantumwells,andfortheelectronicpropertiesofdenseuiddeuteriuminauniformmagneticeld.
DOI:10.
1103/PhysRevLett.
92.
186402PACSnumbers:71.
15.
–m,71.
10.
–w,71.
70.
DiInthelasttwodecades,abinitioelectronicstructuremethodsbasedondensityfunctionaltheory(DFT)havebecomematuretechniques,whicharenowwidelyusedtoinvestigatethestructuralandelectronicpropertiesofbothcondensedandnitesystems,e.
g.
,moleculesandclusters[1].
Inparticular,theformulationofabinitiomoleculardynamics(MD)[2]haspermittedkeyprogressinthepredictionofnitetemperaturepropertiesofma-terialsentirelyfromrstprinciples.
ThemostwidelyusedimplementationofabinitioMDandofelectronicstruc-turecalculationsforcondensedsystemsisbasedonpseu-dopotentialsandplane-wave(PW)basissets.
TheuseofPWhasseveraladvantages.
Theconvergenceoftotalenergyandforcecalculationscanbecontrolledbyasingleparameter(kineticenergycutoff)andimprovedtoarbitraryaccuracy.
Atomicforcescanbeeasilycom-putedwithoutevaluatingtheso-calledPulaycontribu-tions[3]andefcientfastFouriertransform(FFT)techniquescanbeapplied.
PWbasissetscallfortheuseofperiodicboundaryconditions(PBC),whichcon-venientlyeliminatesurfaceandinterfaceeffectsandallowforasmallsimulationcelltomimicthebulkbehaviorofmaterials.
Todate,mostabinitioinvestigationshavefocusedongroundstatepropertiesintheabsenceofexternalelectro-magneticelds.
DuetotechnicaldifcultiesindescribingniteeldswithinPWformulationsandusingPBC,al-mostallstudieswithelectromagneticeldshavebeencarriedoutperturbatively.
Withinthisapproach,simula-tionsareperformedatzeroeldandelectricpolarizabil-ityandmagneticsusceptibilityarecomputedbasedonlinearresponsetheory[4].
Whilethistechniquecanbeusedwhentheappliedeldissufcientlysmall,therearemanysituations,e.
g.
,condensedsystems—notablyhy-drogen—instarsandplanets[5],wheretheeffectofaniteeldcannotbetreatedinaperturbativefashion.
Recentlytherehasbeenprogressinexplicitlyincorpo-ratinganiteelectriceldincondensed-phaseabinitiosimulations[6].
AnonpeturbativeBlochsolutionoftheSchro¨dinger'sequationinanitemagneticeldwasalsoproposed[7].
Yetnoattempthasbeenmadetoformulateelectronicstructurecalculationsincludingnitemag-neticeldsinthecontextofcondensed-phaseabinitioMDsimulations.
InthisLetter,wedescribeaformulationofself-consistentabinitiocalculationswithinDFTwheretheeffectofanite,uniformmagneticeldistreatedinanonperturbativemanner,usingalgorithmsbasedonPWbasissetsandFFT.
ThesealgorithmshavebeenkeyinthedevelopmentofsimpleandefcientrstprinciplesMDtechniques.
Wepresentapplicationsofthisnewmethodtointeractingelectronsinaquantumwellanddenseliquiddeuteriuminauniformmagneticeld.
Magneticperiodicboundaryconditions.
—TheHamil-tonianofanelectroninaperiodicpotentialV~rrandauniformmagneticeld~BBisH12m~ppe~AA~rr2V~rr;(1)where~AA~rristhevectorpotential(~BBr~AA).
Foruniform~BB,~AA~rrisnotperiodicandtheelectronwavefunction~rrcannotsatisfyPBC.
However,physicalob-servablesmaystillretaintranslationalinvarianceproper-tiesinsuchconditions.
Forexample,inaclassicalpictureamagneticelddoesnotdoanyworkwhenanelectronmovesfromonepointtoanotherinspace(Lorentzforceisalwaysperpendiculartoelectronvelocity),sothattheelectronickineticenergyistranslationallyinvariant.
ThissuggeststhatPBCmaybegeneralizedtodescribeelec-tronsinauniformmagneticeld.
Let~ccbetheperiodicityofthepotentialV~rr,i.
e.
,V~rr~ccV~rr.
If~rrisaneigenfunctionofH,then~rr~ccisaneigenfunctionofH0,whichdiffersfromHonlybyitsvectorpotential~AA0~rr~AA~rr~cc.
When~BBisuniform,~AA~rrislinear,i.
e.
,~AA~rr~cc~AA~rr~AA~cc.
Therefore,wecanregardtheabovetranslationofHasagaugetransformationfor~AA:~AA0~rr~AA~rrr~rr,with~rr~AA~cc~rr.
Gaugeinvarianceinsuresthat0~rrexpieh~rr~rrisalsoaneigenfunctionofH0.
InthespiritoftheBlochtheorem,wecanrequire~rr~cctoequal0~rr,uptoaphasefactorexpi~kk~cc:~rr~ccexpieh~AA~cc~rri~kk~cc~rr;(2)PHYSICALREVIEWLETTERSweekending7MAY2004VOLUME92,NUMBER18186402-10031-9007=04=92(18)=186402(4)$22.
502004TheAmericanPhysicalSociety186402-1Equation(2)expressestheso-calledmagneticperiodicboundarycondition(MPBC),whichwasrstsuggestedinRef.
[8].
ItisstraightforwardtoseethatifthewavefunctionsatisesMPBC,thenthechargedensity~rrj~rrj2—ameasurablequantity,isaperiodicfunction.
Inthezero-eldcase,Eq.
(2)simplyreducestotheBlochtheorem.
Forsimplicityinthefollowingwewillonlydiscussthecaseof~kk0(point).
Considerarectangularsimulationcell[forwhichV~rrisperiodic]ofdimensionaandbalongxandy,respec-tively.
LetauniformmagneticeldbeparalleltothezaxisandadopttheLandaugauge:~AA~rr0;Bx;0.
Asthewavefunctionisperiodicalongthezaxis,inthefollowingwewillnotdiscussexplicitlythezdependenceof.
IntheLandaugauge,MPBCcanbeexpressedasxa;yexpieBahyx;y;x;ybx;y:(3)AninterestingpropertyofMPBCcanbeobtainedbyconsideringthephasechangeofasonemovesalongtheedgeofthesimulationcell.
OneaccumulatesatotalphaseofeBab=haftercompletingoneloop,whichmustequal2n(ninteger)forself-consistency.
Therefore,theenforcementofMPBCrequiresthetotalmagneticuxthroughthesimulationcelltobeanintegermultipleofthefundamentalquanta0h=e:Babnh=en0.
Dependingonthesizeofthesupercell(aandb),thisquantizationimposesaconstraintonthemagnitudeofmagneticeldsthatonecanconsiderusingMPBC.
ImplementingMPBCwithinaplane-wave-likeformu-lation.
—WerstreviewthebasicsofabinitiocalculationsusingPBCandPWbasis.
Inthezero-eldcase,therealspacewavefunctionx;ycanbeexpressedbyitsFouriercomponentsckx;ky,wherekxnxGxandkynyGy,Gx2=a,Gy2=b(nx;nyintegers).
Thewavefunctionisthentruncatedinreciprocalspace,nx2Nx=21;Nx=2,ny2Ny=21;Ny=2,sothatitisrepresentedbyanNxNyarrayofcomplexnumbers.
FFTtechniquescanbeusedtogoefcientlyfromrealtoreciprocalspacerepresentations.
Ofcoursethetransfor-mationfromx;ytockx;kycanbedonenumericallyinonestepbyatwo-dimensionalFFT.
However,letusconsideratwo-stepprocess,wherex;yisFouriertransformedalongtheyaxisrst,leadingtofx;ky,whichisthentransformedalongthexaxis,resultinginckx;ky.
Wedenefx;kyasthewavefunctioninthe''intermediate''space,sincekyisareciprocalspacevariablewhilexisarealspaceone.
fx;kycanberegardedasasetofone-dimensionalperiodicfunctionsofx,eachcorrespondingtoadifferentky(thereareNyofthemintotal).
ThereforetheFouriertransformoffintoreciprocalspacecanbeconsideredasNyindividualone-dimensionalFFTsalongthexaxis.
WhenB0,x;ysatisesMPBCasinEq.
(3).
Forsimplicityconsiderthesmallesteldvaluepermitted,Bh=eab,i.
e.
,n1.
Becausex;yisperiodiciny,itcanbeFouriertransformedintotheintermediatespace,x;y!
FFTyfx;ky.
Inthisspace,MPBCbecomes:fxa;kyfx;kyGy:(4)Thustheintermediatewavefunctionfx;kycannolongerberegardedasasetofindependent,periodicfunctionsofx.
Instead,alloftheNyfunctionsarenowinterconnected.
Infact,ifwedeneanewvariable^xxxaky=Gy,Eq.
(4)canbeautomaticallysatisedbylettingfbeaone-dimensionalfunctionof^xx,f^xxfx;kyfxa;kyGy(5)f^xxcannowbeFouriertransformedintothereciprocalspace,f^xx!
FFT^xxck^xx,wheretheck^xxaretheFouriercoefcientsofthewavefunctionintoplane-wave-like,orthonormalbasisfunctionssatisfyingMPBC.
Theeffec-tivereductionofdimensionality(fromtwotoone)ofwavefunctionsduetothepresenceofamagneticeldhasbeennoticedpreviously[9].
ThetopologychangeoftheintermediatespaceisillustratedinFig.
1.
Whilefx;kyatB0canberegardedasasetofindependentrings(eachrepresentingaperiodicfunctionofxfordifferentky),itbecomesalongspiralwhenBh=eab.
Thissituationisanalogoustothatofacrystallatticecontainingascrewdislocation[10].
EvaluationoftotalenergiesusingMPBC.
—AkeystepinabinitiosimulationsisthecalculationofH,givenanarbitrarywavefunction.
OnceHiscomputed,itera-tivealgorithmsandMDtechniquescanbeappliedtoykFFTYRealspace),(yxψxy),(yxkkcReciprocalspacexkykFFTXIntermediatespace),(ykxxykfykFFTYRealspace),(yxψxyyGxyk),(ykxfyGyyGkaxx/+=FFTk)=(f),(ykxfxxxx)(ckxReciprocalspaceIntermediatespaceUnfold(a)(b)FIG.
1(coloronline).
Thereal-spacewavefunctionx;ycanbeFouriertransformedintoreciprocalspaceckx;kyintwosteps,viaanintermediate-spacewavefunctionfx;ky(seetext).
(a)AtB0,fx;kycanberegardedasasetofone-dimensionalperiodicfunctions,orrings.
(b)AtBh=eab,MPBCrequiresfx;kytobealongspiral.
Theresultingwavefunctioninintermediateandreciprocalspaceiseffectivelyonedimensional.
PHYSICALREVIEWLETTERSweekending7MAY2004VOLUME92,NUMBER18186402-2186402-2computetotalenergiesandforces.
WhenB0,thetwocomponentsofH—kineticenergy^TTandpotentialenergy^VV,arediagonalinreciprocalandrealspace,respectively:^TTckx;kyh2=2mk2xk2yckx;ky,^VVx;yVx;yx;y.
Therefore,^TTand^VVcanbeeasilycomputedinthesetwospacesseparately,and^HHisobtainedbyas-semblingthemtogetherviaFFT.
WhenBh=eab,theHamiltoniancanbeseparatedintothreecomponents,eachdiagonalinadifferentspace,H12m~ppe~AAx;y2Vx;y12mih@x2ih@yeBx2Vx;yh22m@2xh2G2y2ma2xi@yaGy2Vx;y^TTx^TTy^VV:(6)The''xcomponent''ofthekineticenergyisdiagonalinreciprocalspace,^TTxck^xxhk2^xx=2mck^xx.
The''ycomponent''becomesaharmonicpotentialintheinter-mediatespace,^TTyf^xxh2G2y=2ma2^xx2f^xx.
Thepo-tentialenergyisdiagonalinrealspaceasusual.
ThereforeHcanbeobtainedefcientlybycalculatingthesethreecomponentsseparatelyinthreespaces,followedbyanassemblyviaFFT,i.
e.
,),(yxψFFTx)(ckx)(fxFFTy)(fxTxyT)(ckxV),(yxψ+FFTx+FFTyFFTxH)(ckxThereal-tointermediate-toreciprocal-spaceFouriertransformsillustratedaboveapplytowavefunctionsonly.
DFTcalculationsalsorequireFouriertransformingthechargedensityjj2.
Sinceisasimpleperiodicfunctioninbothxandydirections,itsFouriertransformcanbeperformedbyordinarytwo-dimensionalFFTasinthezero-eldcase.
Forsimplicitywehaveonlyconsideredthecaseofthelowestpermittedmagneticeld.
Ingeneral,n=0canbelargerthan1.
Inthiscase,theintermediatespacecanbevisualizedasnspiralsinterlacedwitheachother(seeFig.
1).
TheFouriertransformbetweenintermediateandreciprocalspaceshouldthenbecarriedoutbynindependentone-dimensionalFFTs.
Moretechnicalde-tailswillbepresentedinaforthcomingLetter.
Results.
—Wehaveimplementedtheformalismdis-cussedabovetostudydifferentsystemsinamagneticeldwithincreasinglevelsofcomplexity.
First,asaproofofprinciplewesolvedthewellknownproblemofasingleelectroninauniformmagneticeldandcorrectlyrepro-ducedtheenergyspectrumofequallyspacedLandaulevels[11].
Wethencomputedtheenergyspectrumofasingleelectronandthatoftwointeractingelectronsinatwo-dimensionalquantumdot.
InRef.
[12],thisquantumdotwasmodeledasasquarepotentialwellwithenergyzeroinsideandinniteoutsidethewell.
Becausetheelectronwavefunctionisentirelylocalizedwithinthedot,thisproblemcanbesolvedwithoutusingasupercellandplane-wave-likebasisfunctions.
Asabenchmarkforourmethod,wesolvethisproblemusingasupercellenclosingthedot[seeinsetofFig.
2(a)].
Thepotentialenergyoutsidethedotissetto0.
1eV.
Foreachmagneticeld,weobtainthelowest64singleelectronlevels.
Theenergyspectrumofthetwo-electronsystemisthenob-tainedbydiagonalizingtheHamiltonianmatrixinthespacespannedbythesesingleelectronwavefunctions.
AsshowninFig.
2,theagreementwithpreviousresultsisverygood.
Thesmalldiscrepancyisattributedtothefactthatinourstudythepotentialenergyoutsidethequantumdotisnotstrictlyinnite.
Ourmethodisreadilyappli-cabletothemorechallengingproblemofaperiodicarrayofquantumdots,withelectronwavefunctionsnotcom-pletelylocalizedwithineachdot.
InthiscasethemethodofRef.
[12]isnolongerapplicable.
Wealsocalculatedthelowestthreelevelsofahydrogenatominmagneticelds[Fig.
3(a)].
Again,supercelltech-niquesarenotrequiredforthisproblem,sothatprevious00.
020.
040.
060.
020.
040.
060.
08B(T)E(meV)1600nm800nm00.
010.
020.
030.
040.
050.
060.
320.
340.
360.
380.
4B(T)E(meV)(a)(b)FIG.
2.
(a)Energyspectrumofsingleelectroninquantumdotasafunctionofmagneticeld.
Theinsetshowsthegeometryofquantumdot(shadedarea)andsimulationcell(outersquare).
(b)Energyspectrumoftwointeractingelec-tronsinquantumdotasafunctionofmagneticeld.
Filledandopencirclesindicatespinsingletandtripletstatesfromthiswork.
ThickandthinlinesareforsingletandtripletstatesfromRef.
[12].
02468x10420151050B(T)E(eV)00.
511.
522.
53x10521.
510.
500.
5B(T)E(eV)(a)(b)FIG.
3.
(a)Lowestlevelsofahydrogenatomasafunctionofmagneticeld:forthiswork,solidlineforpreviousresults[5].
(b)ChangeofbindingenergyofanH2moleculeinthe1gstate(twospinsantiparallel)asafunctionofmagneticeld:forourresultusingHartree-Fockapproximationwithinter-protondistancexedat0:74A,andsolidlinefromRef.
[13].
PHYSICALREVIEWLETTERSweekending7MAY2004VOLUME92,NUMBER18186402-3186402-3data[5]existforcomparison.
Weusedacubicsupercellof14Awithanenergycutoffof103eV,andourresultsagreeverywellwithearlierreports.
Theconstantdiffer-enceinthegroundstateisduetothewellknownproblemforPWtoresolvetheCoulombsingularityatthenucleus.
WealsocomputedthechangeofbindingenergyofahydrogenmoleculeasafunctionofmagneticeldusingtheHartree-Fockapproximation[Fig.
3(b)],againincloseagreementwithearlierresults[13].
NoticethatthemagneticeldhereisaboutsevenordersofmagnitudeshigherthanthatinFig.
2.
Thisdemonstratesthecorrect-nessandaccuracyofourmethodregardlessofthemag-nitudeofthemagneticeld.
Finally,weimplementedourformalismwithinthelocaldensityapproximation(LDA)ofDFTandcarriedoutself-consistentcalculationsoftheelectronicproper-tiesofdenseuiddeuterium[Fig.
4(a)].
Thepositionsof128deuteriumionsareobtainedfromasnapshotofanearlierabinitioMDsimulation[14]attemperature5000Kanddensity5105mol=m3underzeromagneticeld.
Thesimulationcellisacubewithlength7:52Aandanenergycutoffof2:7103eVisused.
WehavefoundthattheinstantaneousbandgapEgisstronglyinuencedbythemagneticeld:Eg0:176eVatB0withEg0:272eVatB104T.
Whilenoappreciabledifferenceisobservedinthetotalchargedensityatthesetwomagneticelds(whichissomewhatsurprising),theden-sityofindividualelectroniclevelschangesdramatically.
Fig.
4(b)plotsthechargedensityofthehighestoccupiedmolecularorbital(HOMO)forbothB0(blue)andB104T(red).
Weseethatthisstateisassociatedwithdiffer-entatomsatthesetwomagneticeldvalues.
Similarconsiderationsapplytothelowestunoccupiedmolecularorbital(LUMO).
Thereforeweexpectastrongmagneticeldtohaveasignicantinuenceontheelectromagneticandopticalresponseofcompresseduiddeuterium.
Insummary,wedevelopedamethodforabinitiocalculationsinthepresenceofauniformmagneticeld.
OurapproachretainsthesimplicityandefciencyofelectronicstructurecalculationsbasedonPWandFFT,andcanbeappliedtobothniteandcondensedsystems.
OurformulationopensthewaytoperformingabinitioMDsimulationsinanitemagneticeld.
Calculationsofvelocityindependentcomponentofionicforcesisex-pectedtobestraightforward,atleastforlocalpseudo-potentials.
Inaddition,ageometricalcomponentcomingfromtheBerryphasecontributestotheLorenzforceonthenuclei[15].
Generalizationofthisapproachtoincludeacouplingofthemagneticeldwithspindegreesoffreedomisunderway.
WethankE.
PollockforusefuldiscussionsandL.
Kraussforhelponvisualization.
ThisworkwasperformedundertheauspicesofU.
S.
DepartmentofEnergybyUniversityofCaliforniaLawrenceLivermoreNationalLaboratoryunderContractNo.
W-7405-Eng-48.
W.
C.
issupportedbytheUniversityRelationshipProgramatLLNL.
[1]R.
M.
Martin,ElectronicStructure:BasicTheoryandPracticalMethods(CambridgeUniversityPress,Cambridge,2003).
[2]R.
CarandM.
Parrinello,Phys.
Rev.
Lett.
55,2471(1985).
[3]P.
Pulay,inAbInitioMethodsinQuantumChemistryII,editedbyK.
P.
Lawley(Wiley,Chichester,1987),p.
241.
[4]S.
Baroni,P.
Giannozzi,andA.
Testa,Phys.
Rev.
Lett.
58,1861(1987);F.
MauriandS.
G.
Louie,ibid.
76,4246(1996);F.
Mauri,B.
Pfrommer,andS.
G.
Louie,ibid.
77,5300(1996).
[5]H.
Ruder,G.
Wunner,H.
Herold,andF.
Geyer,AtomsinStrongMagneticFields(Springer-Verlag,Berlin,1994).
[6]I.
Souza,J.
Iniguez,andD.
Vanderbilt,Phys.
Rev.
Lett.
89,117602(2002);P.
UmariandA.
Pasquarello,Phys.
Rev.
Lett.
89,157602(2002).
[7]A.
Trellakis,Phys.
Rev.
Lett.
91,056405(2003).
[8]E.
Brown,Phys.
Rev.
133,A1038(1964).
[9]G.
M.
ObermairandH.
-J.
Schellnhuber,Phys.
Rev.
B23,5185(1981).
[10]J.
P.
HirthandJ.
Lothe,TheoryofDislocations(Wiley,NewYork,1982).
[11]L.
D.
LandauandE.
M.
Lifshitz,QuantumMechanics(Pergamon,Oxford,1977),3rded.
[12]C.
E.
Crefeld,J.
H.
Jefferson,S.
Sarkar,andD.
L.
J.
Tipton,Phys.
Rev.
B62,7249(2000).
[13]T.
Detmer,P.
Schmelcher,F.
K.
Diakonos,andL.
S.
Cederbaum,Phys.
Rev.
A56,1825(1997).
[14]G.
Galli,R.
Q.
Hood,A.
U.
Hazi,andF.
Gygi,Phys.
Rev.
B,61,909(2000);S.
Bonev,B.
Militzer,andG.
Galli,Phys.
Rev.
B(tobepublished).
[15]R.
Resta,J.
Phys.
Condens.
Matter12,R107(2000).
FIG.
4(color).
(a)Totalchargedensityofadensedeuteriumuid(seetext),whichremainsessentiallythesameasBgoesfrom0to104T.
(b)ThechargedensitiesoftheHOMOstateforB0(blue)andB104T(red)aredistributedondiffer-entatoms.
PHYSICALREVIEWLETTERSweekending7MAY2004VOLUME92,NUMBER18186402-4186402-4
pacificrack发布了7月最新vps优惠,新款促销便宜vps采用的是魔方管理,也就是PR-M系列。提一下有意思的是这次支持Windows server 2003、2008R2、2012R2、2016、2019、Windows 7、Windows 10,当然啦,常规Linux系统是必不可少的!1Gbps带宽、KVM虚拟、纯SSD raid10、自家QN机房洛杉矶数据中心...支持PayPal、...
官方网站:点击访问亚州云活动官网活动方案:地区:美国CERA(联通)CPU:1核(可加)内存:1G(可加)硬盘:40G系统盘+20G数据盘架构:KVM流量:无限制带宽:100Mbps(可加)IPv4:1个价格:¥128/年(年付为4折)购买:直达订购链接测试IP:45.145.7.3Tips:不满意三天无理由退回充值账户!地区:枣庄电信高防防御:100GCPU:8核(可加)内存:4G(可加)硬盘:...
npidc全称No Problem Network Co.,Limited(冇問題(香港)科技有限公司,今年4月注册的)正在搞云服务器和独立服务器促销,数据中心有香港、美国、韩国,走CN2+BGP线路无视高峰堵塞,而且不限制流量,支持自定义内存、CPU、硬盘、带宽等,采用金盾+天机+傲盾防御系统拦截CC攻击,非常适合建站等用途。活动链接:https://www.npidc.com/act.html...
nxgx.com为你推荐
留学生认证留学生前阶段双认证认证什么内容?李子柒年入1.6亿新晋网红李子柒是不是背后有团队是摆拍、炒作为的是人气、流量?刘祚天还有DJ网么?比肩工场大运比肩主事,运行长生地是什么意思?同一服务器网站一个服务器能运行多少个网站www.sesehu.comwww.121gao.com 是谁的网站啊avtt4.comwww.51kao4.com为什么进不去啊?www.ijinshan.com在电脑看港台电视台那个网站最好而又不用钱速度又快www.mfav.org海关编码在线查询http://www.ccpit.org.cdpscycle痛苦术士PVE输出宏
新网域名管理 dns是什么 服务器评测 香港机房托管 gomezpeer 服务器架设 165邮箱 howfile 刀片服务器的优势 中国电信测网速 免费测手机号 免费智能解析 网通服务器托管 电信托管 空间购买 starry 学生机 globalsign 连连支付 tracert 更多