translationnxgx.com

nxgx.com  时间:2021-04-07  阅读:()
AbInitioCalculationsinaUniformMagneticFieldUsingPeriodicSupercellsWeiCaiandGiuliaGalliLawrenceLivermoreNationalLaboratory,UniversityofCalifornia,Livermore,California94550,USA(Received22September2003;published5May2004)Wepresentaformulationofabinitioelectronicstructurecalculationsinanitemagneticeld,whichretainsthesimplicityandefciencyoftechniqueswidelyusedinrstprinciplesmoleculardynamicssimulations,basedonplane-wavebasissetsandFouriertransforms.
Inadditionwediscussresultsobtainedwiththismethodfortheenergyspectrumofinteractingelectronsinquantumwells,andfortheelectronicpropertiesofdenseuiddeuteriuminauniformmagneticeld.
DOI:10.
1103/PhysRevLett.
92.
186402PACSnumbers:71.
15.
–m,71.
10.
–w,71.
70.
DiInthelasttwodecades,abinitioelectronicstructuremethodsbasedondensityfunctionaltheory(DFT)havebecomematuretechniques,whicharenowwidelyusedtoinvestigatethestructuralandelectronicpropertiesofbothcondensedandnitesystems,e.
g.
,moleculesandclusters[1].
Inparticular,theformulationofabinitiomoleculardynamics(MD)[2]haspermittedkeyprogressinthepredictionofnitetemperaturepropertiesofma-terialsentirelyfromrstprinciples.
ThemostwidelyusedimplementationofabinitioMDandofelectronicstruc-turecalculationsforcondensedsystemsisbasedonpseu-dopotentialsandplane-wave(PW)basissets.
TheuseofPWhasseveraladvantages.
Theconvergenceoftotalenergyandforcecalculationscanbecontrolledbyasingleparameter(kineticenergycutoff)andimprovedtoarbitraryaccuracy.
Atomicforcescanbeeasilycom-putedwithoutevaluatingtheso-calledPulaycontribu-tions[3]andefcientfastFouriertransform(FFT)techniquescanbeapplied.
PWbasissetscallfortheuseofperiodicboundaryconditions(PBC),whichcon-venientlyeliminatesurfaceandinterfaceeffectsandallowforasmallsimulationcelltomimicthebulkbehaviorofmaterials.
Todate,mostabinitioinvestigationshavefocusedongroundstatepropertiesintheabsenceofexternalelectro-magneticelds.
DuetotechnicaldifcultiesindescribingniteeldswithinPWformulationsandusingPBC,al-mostallstudieswithelectromagneticeldshavebeencarriedoutperturbatively.
Withinthisapproach,simula-tionsareperformedatzeroeldandelectricpolarizabil-ityandmagneticsusceptibilityarecomputedbasedonlinearresponsetheory[4].
Whilethistechniquecanbeusedwhentheappliedeldissufcientlysmall,therearemanysituations,e.
g.
,condensedsystems—notablyhy-drogen—instarsandplanets[5],wheretheeffectofaniteeldcannotbetreatedinaperturbativefashion.
Recentlytherehasbeenprogressinexplicitlyincorpo-ratinganiteelectriceldincondensed-phaseabinitiosimulations[6].
AnonpeturbativeBlochsolutionoftheSchro¨dinger'sequationinanitemagneticeldwasalsoproposed[7].
Yetnoattempthasbeenmadetoformulateelectronicstructurecalculationsincludingnitemag-neticeldsinthecontextofcondensed-phaseabinitioMDsimulations.
InthisLetter,wedescribeaformulationofself-consistentabinitiocalculationswithinDFTwheretheeffectofanite,uniformmagneticeldistreatedinanonperturbativemanner,usingalgorithmsbasedonPWbasissetsandFFT.
ThesealgorithmshavebeenkeyinthedevelopmentofsimpleandefcientrstprinciplesMDtechniques.
Wepresentapplicationsofthisnewmethodtointeractingelectronsinaquantumwellanddenseliquiddeuteriuminauniformmagneticeld.
Magneticperiodicboundaryconditions.
—TheHamil-tonianofanelectroninaperiodicpotentialV~rrandauniformmagneticeld~BBisH12m~ppe~AA~rr2V~rr;(1)where~AA~rristhevectorpotential(~BBr~AA).
Foruniform~BB,~AA~rrisnotperiodicandtheelectronwavefunction~rrcannotsatisfyPBC.
However,physicalob-servablesmaystillretaintranslationalinvarianceproper-tiesinsuchconditions.
Forexample,inaclassicalpictureamagneticelddoesnotdoanyworkwhenanelectronmovesfromonepointtoanotherinspace(Lorentzforceisalwaysperpendiculartoelectronvelocity),sothattheelectronickineticenergyistranslationallyinvariant.
ThissuggeststhatPBCmaybegeneralizedtodescribeelec-tronsinauniformmagneticeld.
Let~ccbetheperiodicityofthepotentialV~rr,i.
e.
,V~rr~ccV~rr.
If~rrisaneigenfunctionofH,then~rr~ccisaneigenfunctionofH0,whichdiffersfromHonlybyitsvectorpotential~AA0~rr~AA~rr~cc.
When~BBisuniform,~AA~rrislinear,i.
e.
,~AA~rr~cc~AA~rr~AA~cc.
Therefore,wecanregardtheabovetranslationofHasagaugetransformationfor~AA:~AA0~rr~AA~rrr~rr,with~rr~AA~cc~rr.
Gaugeinvarianceinsuresthat0~rrexpieh~rr~rrisalsoaneigenfunctionofH0.
InthespiritoftheBlochtheorem,wecanrequire~rr~cctoequal0~rr,uptoaphasefactorexpi~kk~cc:~rr~ccexpieh~AA~cc~rri~kk~cc~rr;(2)PHYSICALREVIEWLETTERSweekending7MAY2004VOLUME92,NUMBER18186402-10031-9007=04=92(18)=186402(4)$22.
502004TheAmericanPhysicalSociety186402-1Equation(2)expressestheso-calledmagneticperiodicboundarycondition(MPBC),whichwasrstsuggestedinRef.
[8].
ItisstraightforwardtoseethatifthewavefunctionsatisesMPBC,thenthechargedensity~rrj~rrj2—ameasurablequantity,isaperiodicfunction.
Inthezero-eldcase,Eq.
(2)simplyreducestotheBlochtheorem.
Forsimplicityinthefollowingwewillonlydiscussthecaseof~kk0(point).
Considerarectangularsimulationcell[forwhichV~rrisperiodic]ofdimensionaandbalongxandy,respec-tively.
LetauniformmagneticeldbeparalleltothezaxisandadopttheLandaugauge:~AA~rr0;Bx;0.
Asthewavefunctionisperiodicalongthezaxis,inthefollowingwewillnotdiscussexplicitlythezdependenceof.
IntheLandaugauge,MPBCcanbeexpressedasxa;yexpieBahyx;y;x;ybx;y:(3)AninterestingpropertyofMPBCcanbeobtainedbyconsideringthephasechangeofasonemovesalongtheedgeofthesimulationcell.
OneaccumulatesatotalphaseofeBab=haftercompletingoneloop,whichmustequal2n(ninteger)forself-consistency.
Therefore,theenforcementofMPBCrequiresthetotalmagneticuxthroughthesimulationcelltobeanintegermultipleofthefundamentalquanta0h=e:Babnh=en0.
Dependingonthesizeofthesupercell(aandb),thisquantizationimposesaconstraintonthemagnitudeofmagneticeldsthatonecanconsiderusingMPBC.
ImplementingMPBCwithinaplane-wave-likeformu-lation.
—WerstreviewthebasicsofabinitiocalculationsusingPBCandPWbasis.
Inthezero-eldcase,therealspacewavefunctionx;ycanbeexpressedbyitsFouriercomponentsckx;ky,wherekxnxGxandkynyGy,Gx2=a,Gy2=b(nx;nyintegers).
Thewavefunctionisthentruncatedinreciprocalspace,nx2Nx=21;Nx=2,ny2Ny=21;Ny=2,sothatitisrepresentedbyanNxNyarrayofcomplexnumbers.
FFTtechniquescanbeusedtogoefcientlyfromrealtoreciprocalspacerepresentations.
Ofcoursethetransfor-mationfromx;ytockx;kycanbedonenumericallyinonestepbyatwo-dimensionalFFT.
However,letusconsideratwo-stepprocess,wherex;yisFouriertransformedalongtheyaxisrst,leadingtofx;ky,whichisthentransformedalongthexaxis,resultinginckx;ky.
Wedenefx;kyasthewavefunctioninthe''intermediate''space,sincekyisareciprocalspacevariablewhilexisarealspaceone.
fx;kycanberegardedasasetofone-dimensionalperiodicfunctionsofx,eachcorrespondingtoadifferentky(thereareNyofthemintotal).
ThereforetheFouriertransformoffintoreciprocalspacecanbeconsideredasNyindividualone-dimensionalFFTsalongthexaxis.
WhenB0,x;ysatisesMPBCasinEq.
(3).
Forsimplicityconsiderthesmallesteldvaluepermitted,Bh=eab,i.
e.
,n1.
Becausex;yisperiodiciny,itcanbeFouriertransformedintotheintermediatespace,x;y!
FFTyfx;ky.
Inthisspace,MPBCbecomes:fxa;kyfx;kyGy:(4)Thustheintermediatewavefunctionfx;kycannolongerberegardedasasetofindependent,periodicfunctionsofx.
Instead,alloftheNyfunctionsarenowinterconnected.
Infact,ifwedeneanewvariable^xxxaky=Gy,Eq.
(4)canbeautomaticallysatisedbylettingfbeaone-dimensionalfunctionof^xx,f^xxfx;kyfxa;kyGy(5)f^xxcannowbeFouriertransformedintothereciprocalspace,f^xx!
FFT^xxck^xx,wheretheck^xxaretheFouriercoefcientsofthewavefunctionintoplane-wave-like,orthonormalbasisfunctionssatisfyingMPBC.
Theeffec-tivereductionofdimensionality(fromtwotoone)ofwavefunctionsduetothepresenceofamagneticeldhasbeennoticedpreviously[9].
ThetopologychangeoftheintermediatespaceisillustratedinFig.
1.
Whilefx;kyatB0canberegardedasasetofindependentrings(eachrepresentingaperiodicfunctionofxfordifferentky),itbecomesalongspiralwhenBh=eab.
Thissituationisanalogoustothatofacrystallatticecontainingascrewdislocation[10].
EvaluationoftotalenergiesusingMPBC.
—AkeystepinabinitiosimulationsisthecalculationofH,givenanarbitrarywavefunction.
OnceHiscomputed,itera-tivealgorithmsandMDtechniquescanbeappliedtoykFFTYRealspace),(yxψxy),(yxkkcReciprocalspacexkykFFTXIntermediatespace),(ykxxykfykFFTYRealspace),(yxψxyyGxyk),(ykxfyGyyGkaxx/+=FFTk)=(f),(ykxfxxxx)(ckxReciprocalspaceIntermediatespaceUnfold(a)(b)FIG.
1(coloronline).
Thereal-spacewavefunctionx;ycanbeFouriertransformedintoreciprocalspaceckx;kyintwosteps,viaanintermediate-spacewavefunctionfx;ky(seetext).
(a)AtB0,fx;kycanberegardedasasetofone-dimensionalperiodicfunctions,orrings.
(b)AtBh=eab,MPBCrequiresfx;kytobealongspiral.
Theresultingwavefunctioninintermediateandreciprocalspaceiseffectivelyonedimensional.
PHYSICALREVIEWLETTERSweekending7MAY2004VOLUME92,NUMBER18186402-2186402-2computetotalenergiesandforces.
WhenB0,thetwocomponentsofH—kineticenergy^TTandpotentialenergy^VV,arediagonalinreciprocalandrealspace,respectively:^TTckx;kyh2=2mk2xk2yckx;ky,^VVx;yVx;yx;y.
Therefore,^TTand^VVcanbeeasilycomputedinthesetwospacesseparately,and^HHisobtainedbyas-semblingthemtogetherviaFFT.
WhenBh=eab,theHamiltoniancanbeseparatedintothreecomponents,eachdiagonalinadifferentspace,H12m~ppe~AAx;y2Vx;y12mih@x2ih@yeBx2Vx;yh22m@2xh2G2y2ma2xi@yaGy2Vx;y^TTx^TTy^VV:(6)The''xcomponent''ofthekineticenergyisdiagonalinreciprocalspace,^TTxck^xxhk2^xx=2mck^xx.
The''ycomponent''becomesaharmonicpotentialintheinter-mediatespace,^TTyf^xxh2G2y=2ma2^xx2f^xx.
Thepo-tentialenergyisdiagonalinrealspaceasusual.
ThereforeHcanbeobtainedefcientlybycalculatingthesethreecomponentsseparatelyinthreespaces,followedbyanassemblyviaFFT,i.
e.
,),(yxψFFTx)(ckx)(fxFFTy)(fxTxyT)(ckxV),(yxψ+FFTx+FFTyFFTxH)(ckxThereal-tointermediate-toreciprocal-spaceFouriertransformsillustratedaboveapplytowavefunctionsonly.
DFTcalculationsalsorequireFouriertransformingthechargedensityjj2.
Sinceisasimpleperiodicfunctioninbothxandydirections,itsFouriertransformcanbeperformedbyordinarytwo-dimensionalFFTasinthezero-eldcase.
Forsimplicitywehaveonlyconsideredthecaseofthelowestpermittedmagneticeld.
Ingeneral,n=0canbelargerthan1.
Inthiscase,theintermediatespacecanbevisualizedasnspiralsinterlacedwitheachother(seeFig.
1).
TheFouriertransformbetweenintermediateandreciprocalspaceshouldthenbecarriedoutbynindependentone-dimensionalFFTs.
Moretechnicalde-tailswillbepresentedinaforthcomingLetter.
Results.
—Wehaveimplementedtheformalismdis-cussedabovetostudydifferentsystemsinamagneticeldwithincreasinglevelsofcomplexity.
First,asaproofofprinciplewesolvedthewellknownproblemofasingleelectroninauniformmagneticeldandcorrectlyrepro-ducedtheenergyspectrumofequallyspacedLandaulevels[11].
Wethencomputedtheenergyspectrumofasingleelectronandthatoftwointeractingelectronsinatwo-dimensionalquantumdot.
InRef.
[12],thisquantumdotwasmodeledasasquarepotentialwellwithenergyzeroinsideandinniteoutsidethewell.
Becausetheelectronwavefunctionisentirelylocalizedwithinthedot,thisproblemcanbesolvedwithoutusingasupercellandplane-wave-likebasisfunctions.
Asabenchmarkforourmethod,wesolvethisproblemusingasupercellenclosingthedot[seeinsetofFig.
2(a)].
Thepotentialenergyoutsidethedotissetto0.
1eV.
Foreachmagneticeld,weobtainthelowest64singleelectronlevels.
Theenergyspectrumofthetwo-electronsystemisthenob-tainedbydiagonalizingtheHamiltonianmatrixinthespacespannedbythesesingleelectronwavefunctions.
AsshowninFig.
2,theagreementwithpreviousresultsisverygood.
Thesmalldiscrepancyisattributedtothefactthatinourstudythepotentialenergyoutsidethequantumdotisnotstrictlyinnite.
Ourmethodisreadilyappli-cabletothemorechallengingproblemofaperiodicarrayofquantumdots,withelectronwavefunctionsnotcom-pletelylocalizedwithineachdot.
InthiscasethemethodofRef.
[12]isnolongerapplicable.
Wealsocalculatedthelowestthreelevelsofahydrogenatominmagneticelds[Fig.
3(a)].
Again,supercelltech-niquesarenotrequiredforthisproblem,sothatprevious00.
020.
040.
060.
020.
040.
060.
08B(T)E(meV)1600nm800nm00.
010.
020.
030.
040.
050.
060.
320.
340.
360.
380.
4B(T)E(meV)(a)(b)FIG.
2.
(a)Energyspectrumofsingleelectroninquantumdotasafunctionofmagneticeld.
Theinsetshowsthegeometryofquantumdot(shadedarea)andsimulationcell(outersquare).
(b)Energyspectrumoftwointeractingelec-tronsinquantumdotasafunctionofmagneticeld.
Filledandopencirclesindicatespinsingletandtripletstatesfromthiswork.
ThickandthinlinesareforsingletandtripletstatesfromRef.
[12].
02468x10420151050B(T)E(eV)00.
511.
522.
53x10521.
510.
500.
5B(T)E(eV)(a)(b)FIG.
3.
(a)Lowestlevelsofahydrogenatomasafunctionofmagneticeld:forthiswork,solidlineforpreviousresults[5].
(b)ChangeofbindingenergyofanH2moleculeinthe1gstate(twospinsantiparallel)asafunctionofmagneticeld:forourresultusingHartree-Fockapproximationwithinter-protondistancexedat0:74A,andsolidlinefromRef.
[13].
PHYSICALREVIEWLETTERSweekending7MAY2004VOLUME92,NUMBER18186402-3186402-3data[5]existforcomparison.
Weusedacubicsupercellof14Awithanenergycutoffof103eV,andourresultsagreeverywellwithearlierreports.
Theconstantdiffer-enceinthegroundstateisduetothewellknownproblemforPWtoresolvetheCoulombsingularityatthenucleus.
WealsocomputedthechangeofbindingenergyofahydrogenmoleculeasafunctionofmagneticeldusingtheHartree-Fockapproximation[Fig.
3(b)],againincloseagreementwithearlierresults[13].
NoticethatthemagneticeldhereisaboutsevenordersofmagnitudeshigherthanthatinFig.
2.
Thisdemonstratesthecorrect-nessandaccuracyofourmethodregardlessofthemag-nitudeofthemagneticeld.
Finally,weimplementedourformalismwithinthelocaldensityapproximation(LDA)ofDFTandcarriedoutself-consistentcalculationsoftheelectronicproper-tiesofdenseuiddeuterium[Fig.
4(a)].
Thepositionsof128deuteriumionsareobtainedfromasnapshotofanearlierabinitioMDsimulation[14]attemperature5000Kanddensity5105mol=m3underzeromagneticeld.
Thesimulationcellisacubewithlength7:52Aandanenergycutoffof2:7103eVisused.
WehavefoundthattheinstantaneousbandgapEgisstronglyinuencedbythemagneticeld:Eg0:176eVatB0withEg0:272eVatB104T.
Whilenoappreciabledifferenceisobservedinthetotalchargedensityatthesetwomagneticelds(whichissomewhatsurprising),theden-sityofindividualelectroniclevelschangesdramatically.
Fig.
4(b)plotsthechargedensityofthehighestoccupiedmolecularorbital(HOMO)forbothB0(blue)andB104T(red).
Weseethatthisstateisassociatedwithdiffer-entatomsatthesetwomagneticeldvalues.
Similarconsiderationsapplytothelowestunoccupiedmolecularorbital(LUMO).
Thereforeweexpectastrongmagneticeldtohaveasignicantinuenceontheelectromagneticandopticalresponseofcompresseduiddeuterium.
Insummary,wedevelopedamethodforabinitiocalculationsinthepresenceofauniformmagneticeld.
OurapproachretainsthesimplicityandefciencyofelectronicstructurecalculationsbasedonPWandFFT,andcanbeappliedtobothniteandcondensedsystems.
OurformulationopensthewaytoperformingabinitioMDsimulationsinanitemagneticeld.
Calculationsofvelocityindependentcomponentofionicforcesisex-pectedtobestraightforward,atleastforlocalpseudo-potentials.
Inaddition,ageometricalcomponentcomingfromtheBerryphasecontributestotheLorenzforceonthenuclei[15].
Generalizationofthisapproachtoincludeacouplingofthemagneticeldwithspindegreesoffreedomisunderway.
WethankE.
PollockforusefuldiscussionsandL.
Kraussforhelponvisualization.
ThisworkwasperformedundertheauspicesofU.
S.
DepartmentofEnergybyUniversityofCaliforniaLawrenceLivermoreNationalLaboratoryunderContractNo.
W-7405-Eng-48.
W.
C.
issupportedbytheUniversityRelationshipProgramatLLNL.
[1]R.
M.
Martin,ElectronicStructure:BasicTheoryandPracticalMethods(CambridgeUniversityPress,Cambridge,2003).
[2]R.
CarandM.
Parrinello,Phys.
Rev.
Lett.
55,2471(1985).
[3]P.
Pulay,inAbInitioMethodsinQuantumChemistryII,editedbyK.
P.
Lawley(Wiley,Chichester,1987),p.
241.
[4]S.
Baroni,P.
Giannozzi,andA.
Testa,Phys.
Rev.
Lett.
58,1861(1987);F.
MauriandS.
G.
Louie,ibid.
76,4246(1996);F.
Mauri,B.
Pfrommer,andS.
G.
Louie,ibid.
77,5300(1996).
[5]H.
Ruder,G.
Wunner,H.
Herold,andF.
Geyer,AtomsinStrongMagneticFields(Springer-Verlag,Berlin,1994).
[6]I.
Souza,J.
Iniguez,andD.
Vanderbilt,Phys.
Rev.
Lett.
89,117602(2002);P.
UmariandA.
Pasquarello,Phys.
Rev.
Lett.
89,157602(2002).
[7]A.
Trellakis,Phys.
Rev.
Lett.
91,056405(2003).
[8]E.
Brown,Phys.
Rev.
133,A1038(1964).
[9]G.
M.
ObermairandH.
-J.
Schellnhuber,Phys.
Rev.
B23,5185(1981).
[10]J.
P.
HirthandJ.
Lothe,TheoryofDislocations(Wiley,NewYork,1982).
[11]L.
D.
LandauandE.
M.
Lifshitz,QuantumMechanics(Pergamon,Oxford,1977),3rded.
[12]C.
E.
Crefeld,J.
H.
Jefferson,S.
Sarkar,andD.
L.
J.
Tipton,Phys.
Rev.
B62,7249(2000).
[13]T.
Detmer,P.
Schmelcher,F.
K.
Diakonos,andL.
S.
Cederbaum,Phys.
Rev.
A56,1825(1997).
[14]G.
Galli,R.
Q.
Hood,A.
U.
Hazi,andF.
Gygi,Phys.
Rev.
B,61,909(2000);S.
Bonev,B.
Militzer,andG.
Galli,Phys.
Rev.
B(tobepublished).
[15]R.
Resta,J.
Phys.
Condens.
Matter12,R107(2000).
FIG.
4(color).
(a)Totalchargedensityofadensedeuteriumuid(seetext),whichremainsessentiallythesameasBgoesfrom0to104T.
(b)ThechargedensitiesoftheHOMOstateforB0(blue)andB104T(red)aredistributedondiffer-entatoms.
PHYSICALREVIEWLETTERSweekending7MAY2004VOLUME92,NUMBER18186402-4186402-4

  • translationnxgx.com相关文档

欧路云:美国200G高防云-10元/月,香港云-15元/月,加拿大480G高防云-23元/月

欧路云 主要运行弹性云服务器,可自由定制配置,可选加拿大的480G超高防系列,也可以选择美国(200G高防)系列,也有速度直逼内地的香港CN2系列。所有配置都可以在下单的时候自行根据项目 需求来定制自由升级降级 (降级按天数配置费用 退款回预存款)。由专业人员提供一系列的技术支持!官方网站:https://www.oulucloud.com/云服务器(主机测评专属优惠)全场8折 优惠码:zhuji...

VoLLcloud(月付低至2.8刀)香港vps大带宽,三网直连

VoLLcloud LLC是一家成立于2020年12月互联网服务提供商企业,于2021年1月份投入云计算应用服务,为广大用户群体提供云服务平台,已经多个数据中心部署云计算中心,其中包括亚洲、美国、欧洲等地区,拥有自己的研发和技术服务团队。现七夕将至,VoLLcloud LLC 推出亚洲地区(香港)所有产品7折优惠,该产品为CMI线路,去程三网163,回程三网CMI线路,默认赠送 2G DDoS/C...

创梦网络-江苏宿迁BGP云服务器100G高防资源,全程ceph集群存储,安全可靠,数据有保证,防护真实,现在购买7折促销,续费同价!

官方网站:点击访问创梦网络宿迁BGP高防活动方案:机房CPU内存硬盘带宽IP防护流量原价活动价开通方式宿迁BGP4vCPU4G40G+50G20Mbps1个100G不限流量299元/月 209.3元/月点击自助购买成都电信优化线路8vCPU8G40G+50G20Mbps1个100G不限流量399元/月 279.3元/月点击自助购买成都电信优化线路8vCPU16G40G+50G2...

nxgx.com为你推荐
安徽汽车网安徽什么汽车网站比较好?云计算什么叫做“云计算”?firetrap我发现好多外贸店都卖其乐的原单,有怎么多原单吗125xx.comwww.free.com 是官方网站吗?抓站工具一起来捉妖神行抓妖辅助工具都有哪些?se9999se.comexol.smtown.comwww.zhiboba.com登录哪个网站可以看nba当天的直播 是直播www.ijinshan.com驱动人生是电脑自带的还是要安装啊!?在哪里呢?没有找到yinrentangWeichentang正品怎么样,谁知道?www.147qqqcom求女人能满足我的…
域名转让网 大庆服务器租用 加勒比群岛 omnis 国外bt 12306抢票攻略 godaddy优惠券 商家促销 太原联通测速平台 刀片服务器的优势 赞助 1g内存 流量计费 100m独享 网站在线扫描 免费私人服务器 香港亚马逊 web服务器是什么 贵阳电信测速 php服务器 更多