newmp10
wmp10 时间:2021-02-27 阅读:(
)
ReviewFoodpowders:SurfaceandformcharacterizationrevisitedI.
Murrieta-Pazosa,b,C.
Gaiania,,L.
Galetb,R.
Calvetb,B.
Cuqc,J.
ScheraaUniversitédeLorraine,LIBio,2AvenuedelaforêtdeHaye,B.
P.
172,54505Vanduvre-lès-Nancy,FrancebUniversitédeToulouse,MinesAlbi,CentreRAPSODEE,CNRS,UMR5302,CampusJarlard,81013AlbiCedex09,FrancecMontpellierSupAgroINRA,UMR1208UnitforEmergingTechnologyandPolymerEngineering,2,PlaceViala,34060MontpellierCedex1,FrancearticleinfoArticlehistory:Received15November2011Receivedinrevisedform24February2012Accepted1March2012Availableonline20March2012Keywords:FoodpowdersSurfacecharacterizationXPSAFMICGFunctionalpropertiesabstractTheamountofinterestingmethodsthatallowsurfacecharacterisationoffoodpowders,boththoserecentlyusedandindevelopment,aregrowing.
Untilnow,amajorproblemfacingresearchersandman-ufacturerswasthelackofacentralsourceofinformationtoprovidepracticalknowledgefocusedonlyonfoodpowdersurfacesandform.
Therstgoalofthisreviewistopresentrecentandinnovatingmethod-ologiesusedtocharacterizethesurfaceandformofvariousfoodpowders.
Inaddition,relationshipsbetweenfoodpowderssurfaces(surfaceenergy,composition,structure,etc.
)aswellasformandfunc-tionalproperties(wettability,caking,owability,etc.
)arehighlighted.
2012ElsevierLtd.
Allrightsreserved.
Contents1.
Introduction22.
X-rayphotoelectronspectroscopy(XPS)22.
1.
UseofXPSinthedairypowderfield22.
1.
1.
Reconstitutionproperties.
52.
1.
2.
Cakingphenomena72.
1.
3.
Lipidsoxidation72.
1.
4.
Flowability72.
2.
UseofXPSfornon-dairyfoodpowders.
72.
3.
Interestingcomplementarytechnique83.
Microscopytechniquesmakingsurfacecharacterizationpossible103.
1.
Electronmicroscopytechniques.
103.
1.
1.
ClassicalSEMcharacterization.
103.
1.
2.
Interestingcomplementarymethods103.
2.
Atomicforcemicroscopy(AFM)113.
3.
Transmissionelectronmicroscopy(TEM)123.
4.
Confocallaserscanningmicroscopy(CLSM)124.
Laserdiffractionanddynamicimageanalysis135.
Dynamicvaporsorption(DVS)136.
Surfacechemicalextractiontechniques147.
Inversegaschromatography(IGC)157.
1.
IGCandmoistureadsorptionisothermstoinvestigateinteractionsbetweenhumidityandfoodcomponents157.
2.
IGCatechniqueusedtostudysurfaceamorphouscontent160260-8774/$-seefrontmatter2012ElsevierLtd.
Allrightsreserved.
http://dx.
doi.
org/10.
1016/j.
jfoodeng.
2012.
03.
002Correspondingauthor.
Tel.
:+33(0)383595877;fax:+33(0)383595804.
E-mailaddress:claire.
gaiani@ensaia.
inpl-nancy.
fr(C.
Gaiani).
JournalofFoodEngineering112(2012)1–21ContentslistsavailableatSciVerseScienceDirectJournalofFoodEngineeringjournalhomepage:www.
elsevier.
com/locate/jfoodeng7.
3.
IGCtoinvestigateinteractionsbetweenflavorcompoundsandfoodcomponents177.
4.
IGCtoassessthemodificationsofsurfacesaftercoatingbyemulsifiers.
188.
Conclusionandperspectives18Acknowledgments19References191.
IntroductionTheselast10years,alotoffoodproductshavebeendevel-opedandcommercializedinapowderedform.
Asaconsequence,anewbranchofscienceandengineeringmaybeidentied.
Suchdisciplinedealswiththeintegrationoffundamentalscienticelds(processengineering,particleengineering,surfacephysicsandchemistry,physico-chemistry)withinsomeappliedscien-ticelds(foodbiochemistry,foodtechnology,functionalproperties,andfoodquality)(Cuqetal.
,2011;Ortega-Rivas,2009).
Forthefoodindustry,theinterestwithpowderformsismainlylinkedtotheirstability(chemicalandmicrobiological),tothereducedtransportcostsandgeneralconvenience.
Inindus-trypowderscanbeconsideredasendproducts(sugar,salt,coffee,spices,driedmilk.
.
.
)andalsoasintermediateproductsbetweenseveralindustries;forexample,thoseproducingpow-dersandalternativelythoseusingpowdersasingredientsforfoodproducts(fruits,starch,eggs,milk,cereals,etc.
).
Forconsum-ers,quickandcompletereconstitutionoftheseproductsisoneofthemainqualityindicators(Fornyetal.
,2011).
Foodpowdersrepresentalargevarietyofpowdermaterialsthatdifferintheirchemicalcompositionandphysicalcharacteristics.
Sourcesoffoodpowdersareasdiverseasfoodingeneral(Fig.
1),thereforedifferencesinforms,structures,compositionandbehaviorsoffoodpowderscanbebetterunderstoodbyknowingpowders'ori-gins(Cuqetal.
,2011).
Itisimportanttoremarkthatpowderscanalsobeamixofingredientsmakingitscompositionandstudymorecomplex.
However,scienticandtechnicaldescriptionsofthefoodpowderpropertiesremainincomplete.
Itisknownthatthecharacteristicsandthepropertiesoftheparticles(andmoreparticularlythesurfaceproperties)playacentralroleinthemechanismsinvolvedduringpowdersproduction(milling,spraydrying,orcrystallization),anduse(storage,ow,agglom-eration,dispersion,solubilisation.
.
.
).
Untilnow,thepropertiesoffoodpowdersareclassicallydescribedusingbulkparame-ters.
Nevertheless,itisbeingrecognizedthatthefunctionalpropertiesoffoodpowdersarelargelydependentofthesurfacecompositionandsurfacecharacteristicsoftheparticles(Gaianietal.
,2006;Kimetal.
,2002;Millqvist-Furebyetal.
,2001).
Thisisoneofthereasonswhyseveralpowderpropertiesmaybeexplainedbyabetterknowledgeandcharacterizationofparti-clesurfacesandphysicaland/orchemicalinteractionsamongthemandtheirenvironment(Gaiani,2006;Kim,2008).
Thecharacteristicsoftheparticlesurfacemaydependondifferentfactors:bulkcomposition,operatingconditionsandstorageconditions(Fig.
2).
Powdersurfaceinvestigationrequiresverypreciseandelabo-ratetechniques.
Untilnowfewinvestigationshavebeenappliedtofoodpowdersurfaces.
Consequentlyresearchisstilllimitedandthisisthereasonwhythedevelopmentofnewsurfacecharac-terizationtechniquesmaybeanextensiveeldtoexploitwithconsiderableinteresttothefoodindustry.
Thisreviewisgoingtohighlighttheexperimentaltechniquesthatenablethecharacterizationoffoodpowderssurfacesand,whenitisreported,toconnectthisinformationwiththeirfunc-tionalproperties.
2.
X-rayphotoelectronspectroscopy(XPS)XPS1(alsocalledESCAorelectronspectroscopyforchemicalanalysis)isananalyticaltechniquewidelyusedinsurfaceanalysis(Briggs,1994;RouxhetandGenet,2011).
Itprovideselementalandchemicalstatedatafromtherstnanometersofthesurfaceofsolidsamples.
ThesampleisplacedinanultrahighvacuumandirradiatedwithphotonsfromasoftX-raysourcewithawelldenedenergy.
Themethodisbasedonsurfaceirradiationwhichcausesacompletetransferofphotonenergytoatomicelectrons(Bosquillonetal.
,2004).
Whentheelectronbindingenergy(Eb)islowerthanthepho-tonenergy(ht),theelectronisemittedfromtheatomwithakineticenergy(Ek)equaltothedifferencebetweenthephotonenergyandthebindingenergy,minusthespectrometerworkfunctionU:EkhtEbU1BecauseXPSisanultrahighvacuumtechnique(108kPa),itmaypresentslimitationsforfoodwithwaterpresent,butnotforpow-deredfood(JamesandSmith,2009).
2.
1.
UseofXPSinthedairypowdereldTherstdevelopmentsusingthisequipmentintheeldofdairypowdersweredonebyFldt(1995).
Then,theuseofXPSwasreg-ularlyreportedforthedeterminationofthesurfacecompositionofdairypowders(Kimetal.
,2002,2009a–c;Gaianietal.
,2006,2007;Gaianietal.
,2010,2011a;Millqvist-Furebyetal.
,2001;Millqvist-FurebyandSmith,2007;Shresthaetal.
,2007)andsugarmixedwithdairyproteinspowders(Jayasunderaetal.
,2010,2011a–c)atanelementallevel.
FromtheC,OandNpercentages,surfacecontentsinprotein,lactoseandlipidswerecalculatedwithama-trixformulawheretheelementalcompositioninthesampleisas-sumedtobealinearcombinationofpurecomponentsmakingupthesample(Kimetal.
,2002;Gaianietal.
,2006;Jayasunderaetal.
,2009).
Milkpowdersaregenerallycomposedoflipids,pro-teinsandlactosebutalsovitaminsandtracesofmineralelements.
Byusingtheprecedentmatrix,onlylactose,lipidsandproteinsweretakenintoaccount;othercomponentswereneglected(Fldt,1995;Gaianietal.
,2006;Kim,2008).
Oneofthemostimportantresultsobtainedwiththistechniqueconcernedtheover-representationofsomecomponentsatthepowdersurfaceincomparisonwiththebulkcomposition(Shres-thaetal.
,2007;Kimetal.
,2002;Gaianietal.
,2006;Vignollesetal.
,2009).
Lipidsandproteins(surfaceactivecomponents)weresystematicallyfoundover-representedatthesurfacewhereaslac-tosewaslessrepresented(Tables1a,1band1c).
Indeed,whenfatispresentintheformulation,eveninverylowquantity,for1Abbreviations:AFM,atomicforcemicroscopy;CLSM,confocallaserscanningmicroscopy;PL,phospholipids;CP,creampowder;DSC,differentialscanningcalorimetry;DVS,dynamicvaporsorption;EDX,energydispersiveX-rayspectros-copy;ESCA,electronspectroscopyforchemicalanalysis;GAB,Guggenheim–Ander-son–Boer;HPLC,highperformanceliquidchromatography;GC,gaschromatography;IGC,inversegaschromatography;MPC,milkproteinsconcentrate;NMC,nativemicellarcasein;NL,neutrallipids;NWI,nativewheyisolate;RH,relativehumidity;SEM,scanningelectronmicroscopy;SMP,skimmilkpowder;SMPG,skimmilkpowdergranulated;SPI,soyproteinisolate;TEM,transmissionelectronmicroscopy;ToF-SIMS,timeofightsecondaryionmassspectrometry;WMP,wholemilkpowder;WMPG,wholemilkpowdergranulated;XPS,X-rayphotoelectronspectroscopy.
2I.
Murrieta-Pazosetal.
/JournalofFoodEngineering112(2012)1–21exampletheskimmilkpowder,thefatisstillpresentatthesur-face.
Alternatively,proteinwillgovernthesurfaceinabsenceoflipidsorsharethesurfacewiththefatpresent.
Nevertheless,thelipidscoverthemajorityofthesurfaceinthepresenceofbothcomponents.
Finally,lactosewasobservedintheinterioroftheparticleafterfreefatextraction(Table1c).
Thistendencytoobserveanoverrepresentationofthelipidsandthentheproteinsatthesurface,isobservedatallproductionscales,independentoftheproductionconditions.
Resultsforlabo-ratory(Table1a),pilot(Table1b)andindustrial(Table1c)dryersareshownconrmingthistendency.
Fig.
2.
Factorsaffectingthepowdersurfacesproperties.
FruitsandvegetablesCerealsandleguminousHerbs,Flowers,DairyMeatEggsMushroomsSaltsVegetalAnimalFungusInorganicPrincipalrawmaterialsoriginsPrincipalproductionPrincipalfoodpowdersFlavors,Fruitpowders,colorants,starches,tea,additives,endulcorants,flours,Dairypowders,eggpowder,meatpowder,Separation,Comminution,Aglomeration/Granulation,Cristallisation/Prescipitation+drying,Mixing,MineralsYeastsFig.
1.
Principaloriginsoffoodpowders.
I.
Murrieta-Pazosetal.
/JournalofFoodEngineering112(2012)1–213Inlaboratoryconditions(Table1a),NijdamandLangrish(2006)studied2dryingtemperaturesand6formulations,mixingwholemilkpowder(WMP)andskimmilkpowder(SMP)inordertochangethelipidconcentration.
Asmallchangeintheaveragefatcontentresultsinalargechangeinthesurfacefatcoverage,how-ever,thesurfacefatcoverageislessaffectedbyincreasesintheaveragefatcontentathigherfatconcentrations.
Highertempera-tureresultedinlargerfatandlactosecover.
Nevertheless,theaug-mentationoflactoseatthesurfacedoesnotcorrespondtotheprotein-lactoseproportioninbulkcomposition.
Authorspostulatethatatlowerdryingtemperatures,proteinhasmoretimetomi-gratetothesurfaceofthedropletbeforesufcientmoistureisevaporatedtoformaskin.
Similarresultsintermsoflactose-pro-teinsurfacecompositionwhereobservedbyShresthaetal.
(2007)whostudiedpowdersconformedbymixturesofSMPandlactose.
LaterKimetal.
(2009c)studied3solidconcentrationsinTable1aBulkcompositionandsurfacecompositionobtainedfromXPSandlinearequationrelatingelementalcomponentstolactose,proteinandfatinmilkpowdersandmilksub-productpowdersobtainedfromlabscalespraydryers.
PowdersystemFeedsolids(%)NumberofhomogenizationpassesTin/Tout(°C)%Ofsurfacelactose(bulk)%Ofsurfaceproteins(bulk)%Ofsurfacefat(bulk)ReferencesWMP-SMP1.
1%fat41.
2–120/8041*(59.
6)51*(39.
3)8*(1.
1)NijdamandLangrish(2006)WMP-SMP1.
8%fat41.
2–120/8035*(59.
2)45*(39.
0)20*(1.
8)WMP-SMP3.
4%fat41.
2–120/8031*(58.
3)38*(38.
4)31*(3.
4)WMP-SMP6.
7%fat41.
2–120/8029*(56.
3)33*(37.
0)38*(6.
7)WMP-SMP14.
0%fat41.
2–120/8023*(52.
1)24*(33.
9)53*(14.
0)WMP-SMP29.
8%fat41.
2–120/8019*(43.
0)21*(27.
3)60*(29.
8)WMP-SMP1.
1%fat41.
2–200/12552*(59.
6)31*(39.
3)17*(1.
1)WMP-SMP1.
8%fat41.
2–200/12542*(59.
2)29*(39.
0)29*(1.
8)WMP-SMP3.
4%fat41.
2–200/12536*(58.
3)28*(38.
4)36*(3.
4)WMP-SMP6.
7%fat41.
2–200/12535*(56.
3)24*(37.
0)41*(6.
7)WMP-SMP14.
0%fat41.
2–200/12527*(52.
1)24*(33.
9)49*(14.
0)WMP-SMP29.
8%fat41.
2–200/12520*(43.
0)16*(27.
3)64*(29.
8)SMP:Lac(3:1)35–180/8029(63)61(26)10(1)Shresthaetal.
(2007SMP:Lac(1:1)35–180/8031(75)58(17)11(0.
8)SMP:Lac(1:3)35–180/8039(88)57(9)5(0.
25)SMP10–145/8510*(51.
0)46*(36.
0)44*(1.
0)Kimetal.
(2009c)SMP20–145/8516*(51.
0)48*(36.
0)35*(1.
0)SMP30–145/8551*(51.
0)24*(36.
0)25*(1.
0)SMP10–205/10518*(51.
0)48*(36.
0)34*(1.
0)SMP20–205/10522*(51.
0)50*(36.
0)28*(1.
0)SMP30–205/10529*(51.
0)51*(36.
0)20*(1.
0)WMP106145/850*(36.
6)3*(27.
9)97*(26.
6)WMP206145/850*(36.
6)3*(27.
9)97*(26.
6)WMP306145/850*(36.
6)3*(27.
9)97*(26.
6)WMP106205/1050*(36.
6)3*(27.
9)97*(26.
6)WMP206205/1050*(36.
6)3*(27.
9)97*(26.
6)WMP306205/1050*(36.
6)3*(27.
9)97*(26.
6)WMP102145/850*(36.
6)2*(27.
9)98*(26.
6)WMP202145/850*(36.
6)2*(27.
9)98*(26.
6)WMP302145/850*(36.
6)2*(27.
9)98*(26.
6)WMP102205/1050*(36.
6)2*(27.
9)98*(26.
6)WMP202205/1050*(36.
6)2*(27.
9)98*(26.
6)WMP302205/1050*(36.
6)2*(27.
9)98*(26.
6)NMC15––/700.
8(0.
2)93.
9(87.
3)5.
3(0.
3)Gaianietal.
(2010)NWI15––/700.
1(0.
5)66.
1(91.
9)33.
8(0.
4)NMC+Lac15––/7014.
3(26.
6)76.
8(63.
1)8.
9(Tra)NWI+Lac15––/709.
5(28.
5)62.
9(64.
4)27.
6(0.
5)NMC+NWI15––/700.
3(0.
3)89.
6(88.
8)10.
1(Tra)NMC15––/800.
6(0.
1)99.
4(86.
4)0.
0(0.
8)NWI15––/800.
0(0.
6)69.
8(92.
2)30.
2(0.
3)NMC+La15––/8016.
0(26.
6)79.
3(62.
0)4.
7(0.
7)NWI+Lac15––/8012.
7(28.
9)66.
3(65.
7)21.
0(T)NMC+NWI15––/800.
0(0.
6)95.
6(86.
1)4.
4(T)NMC15––/1102.
2(0.
1)97.
8(86.
7)0.
0(0.
5)NWI15––/1100.
0(0.
8)88.
6(92.
2)11.
4(T)NMC+Lac15––/11016.
5(26.
7)83.
5(62.
7)0.
0(T)NWI+Lac15––/11018.
8(28.
5)81.
1(66.
1)0.
1(T)NMC+NWI15––/1100.
2(0.
6)94.
3(89.
1)5.
5(T)NMC15––/1301.
5(0.
4)98.
5(87.
6)0.
0(0.
5)NWI15––/1300.
0(1.
3)88.
1(92.
3)11.
9(0.
6)NMC+Lac15––/13019.
7(27.
9)80.
3(63.
2)0.
0(T)NWI+Lac15––/13020.
8(29.
3)79.
2(65.
6)0.
0(0.
5)NMC+NWI15––/1300.
0(0.
5)92.
9(86.
8)7.
1(T)NMC15––/1503.
5(0.
3)96.
5(86.
5)0.
0(0.
3)NWI15––/1504.
0(0.
7)85.
4(91.
6)10.
6(0.
4)NMC+Lac15––/15019.
7(25.
6)80.
3(63.
3)0.
0(T)NWI+Lac15––/15019.
2(26.
6)77.
0(67.
8)3.
8(T)NMC+NWI15––/1500.
8(0.
5)99.
2(88.
7)0.
0(0.
6)Lac,lactose;NMC,nativemicellarcasein;NWI,nativewheyisolate;SMP,skimmilkpowder;Tin/Tout,inlettemperature/outlettemperature;T,Traces;WMP,wholemilkpowder.
Valuesdirectlyextractedfromgraphics.
4I.
Murrieta-Pazosetal.
/JournalofFoodEngineering112(2012)1–21spraydryingfeedsolutions,2dryingtemperaturesforSMPandWMPand2homogenizationpassesforWMP.
Theauthorpostu-latedthathigherfeedsolidscontentwouldgiverisetomorevis-cousdroplets,preventingthemigrationofcomponentsandredistributionatthesurface.
Theauthorsgoesontodescribenowlactoseconcentrationisstrongerathighertemperatures,agreeingwithNijdamandLangrish(2006)proposalthatthefatsurfacecon-centrationisreducebyhightemperaturesinSMPanddoesnotpresentanimportantinuenceinWMP.
InadditionanydifferenceisnotedwiththeincreaseofhomogenizationpassesperformedinWMPfeedingsolutions.
Gaianietal.
(2010)observedanenrich-mentofthesurfaceinlipidsandproteinsregardlessofthespray-dryingtemperature(thepowderwasdriedat5differentoutlettemperatures)ortheformulationobtainedbycombinationsofNa-tivemicellarcasein(NMC),Nativewheyisolate(NWI)andlactose.
Furthermore,lipidsenrichmentisstrongerinpowderscontainingNWIthanNMCandhighertemperaturesincreasetheprotein-lac-tosesurfacecontentandreducethesurfacefatcontent.
Atpilotscale(Table1b),Gaianietal.
(2006)producedandana-lyzedthesurfaceofparticlesofNMC,andmixturesofNMCwithproteinultraltrateorlactose,consequentlysurfaceparticleswasmodied.
Thenatureoftheingredientaddedwasdeterminantinthesurfacemodication.
Laterthesameauthors(Gaianietal.
,2007)studiedtheeffectofstorageinNMCpowderat20and50°C,stokedintwodifferentpackage(standardorwatertightbags),thestoragetimewas15,30and60dayseachsample.
Re-sultsrevealedsignicantsurfacechangesonlyafter60daysofstorage,whenpowderisstockedinwatertightbags.
Whenpow-dersarestoredinstandardbags,changesareregisteredafter30daysofstorage.
Theseresultssuggestthatpowderconservationispossiblebefore30daysofstorageormoretimeiftheyarestockedinwatertightbags.
Temperaturedidnotdemonstrateaneffectinsurfacecompositionmodication.
Atindustrialscale(Table1c),itwasobservedthesurfacecom-positionofWMP,SMP,creampowder(CP)andwheyproteincon-centrate(WPC)(Kimetal.
,2002,2005b).
Later,thesameauthor(Kimetal.
,2009b),determinedtheeffectofstorage(6months)forthesepowders,amigrationoffattothesurfacewassystemat-icallyobservedinallthepowders.
WMP,SMPandinstantmilkpower(IMP),werecollectedindifferentpointsofthespraydryinganduidizedbedprocesses(Kimetal.
,2009a).
Surfacedidnotpresentstrongchangesinthestructureaccordingtothecollectionpoint,resultssuggestthatsurfacecharacteristicsaredevelopedindryingandtheyarenotmodiedinthesubsequentlysteps.
Murri-eta-Pazosetal.
(2012)comparedthesurfacecompositionofWMPandSMPwiththeagglomeratedmilkpowderversions:WMPgran-ulated(WMPG)andSMPgranulated(SMPG).
Asimilarcomposi-tionwasobservedbetweenWMPandWMPG,thesameeffectwasobservedbetweenSMPandSMPG.
Theagglomerationprocessconsistsintheadditionofneparticlesbeforethedryingstep,thenthesuspensionofnesandmilkisdried.
Thestudydemonstratesthatthissupplementarystepdoesnotchangethesurfacecompo-sition.
Fyfeetal.
(2011)studiedtheeffectofstorageinmilkpro-teinsconcentrate(MPC)after14,30,60and90daysat25and40°C.
Thepowderswerestockedinrecipientswithrelativehumi-litiesat44%,66%and84%.
Nosignicantchangestothesurfacecompositionwereobserved.
Finallydifferentsolventsandtreatmentsareappliedtofattydairypowders(WMP,WMPG,CP)inordertoextractthesurfacefreefat(Kimetal.
,2002;Murrieta-Pazosetal.
,2012).
Theef-ciencyofthetechnicscanbeobservedafteranalysisofsurfacecompositionin''surfacefatfree''powders,thenthesepowderswereusedtoevaluatetheevolutionoffunctionalproperties.
Differentmechanismsofpowdersurfaceformationwerepro-posedanddiscussedfromtheseresultssummarizedinTables1a,1band1c,theyallagreeswiththeformationofafatsurface,thenthedryingofthenextlayerformingaskinwithasubsequentlydryingofthecore.
Recently,thistechnique(surfacecompositionbyXPS)hasbeensuccessfullyappliedtoinvestigatelinksbetweenparticlesurfacechemicalcompositionandparticlefunctionalproperties.
2.
1.
1.
ReconstitutionpropertiesBycomparingcaseinpowderscontainingvariablecombinationsofhygroscopicmaterial(lactoseand/orminerals),thepresenceoflactoseatthepowdersurfacecalculatedbythematrixmodelfromXPSresults,wasfoundtoimprovethewettingproperties(Gaianietal.
,2010).
NMCwasdriedat5differenttemperatures.
Afteradditionof30%oflactosetotheformulation,lactosepresentinthesurfaceincrease(Table1a)andwettingtimewasreducedfrom932to639sand623to201srespectively.
ThesamestudywasperformedforNWI.
Afteradditionof30%oflactoseintheformula-tion,thesurfacelactosealsoincreases,showingawettingtimeimprovementfrom1498to1085sand991to499s,respectively.
Surfacefatcoverseemstohaveaveryimportantinuenceinthepowderwettingproperties.
Forthe25powdersstudied(Gaianietal.
,2010),adirectcorrelationbetweenfatsurfacecontentandwettingtimewasobserved.
Forexample,forthesurfaceswithTable1bBulkcompositionandsurfacecompositionobtainedfromXPSandlinearequationrelatingelementalcomponentstolactose,proteinandfatinmilkpowdersandmilksub-productpowdersfrompilotscalespraydryers.
PowdersystemEvaporationcapacity(kgh1)Tin/Tout(°C)%Ofsurfacelactose(bulk)%Ofsurfaceproteins(bulk)%Ofsurfacefat(bulk)ReferencesNMC70–120–0.
0(0.
4)100.
0(86.
7)0.
0(0.
3)Gaianietal.
(2006)NMC+Lactose70–120–8.
9(22.
1)89.
4(66.
3)1.
7(0.
4)NMC+Ultraltrate70–120–3.
4(21.
3)91.
3(62.
2)5.
3(0.
4)NMC–215/700(1.
5)94(80.
6)6(0.
4)Gaianietal.
(2007)NMC-A15DS-20°C-WB–215/700(1.
5)94(80.
6)6(0.
4)NMC-A30DS-20°C-WB–215/700(1.
5)94(80.
6)6(0.
4)NMC-A60DS-20°C-WB–215/700(1.
5)89(80.
6)11(0.
4)NMC-A15DS-20°C-SB–215/700(1.
5)94(80.
6)6(0.
4)NMC-A30DS20°C-SB–215/700(1.
5)87(80.
6)13(0.
4)NMC-A60DS20°C-SB–215/700(1.
5)83(80.
6)17(0.
4)NMC-A15DS-50°C-WB–215/700(1.
5)94(80.
6)6(0.
4)NMC-A30DS-50°C-WB–215/700(1.
5)94(80.
6)6(0.
4)NMC-A60DS-50°C-WB–215/700(1.
5)86(80.
6)14(0.
4)NMC-A15DS-50°C-SB–215/700(1.
5)94(80.
6)6(0.
4)NMC-A30DS-50°C-SB–215/700(1.
5)88(80.
6)12(0.
4)NMC-A60DS-50°C-SB–215/700(1.
5)83(80.
6)17(0.
4)AxDS,afterxdaysofstorage(x=15,30or60);NMC,nativemicellarcasein;SB,standardbag;Tin/Tout,inlettemperature/outlettemperature;WB,watertightbag.
I.
Murrieta-Pazosetal.
/JournalofFoodEngineering112(2012)1–215Table1cBulkcompositionandsurfacecompositionobtainedfromXPSandlinearequationrelatingelementalcomponentstolactose,proteinandfatinmilkpowdersandmilksub-productpowdersfromindustrialinstallations.
PowdersystemStorageconditionsSolventnatureExtractiontime(h)%Ofsurfacelactose(bulk)%Ofsurfaceproteins(bulk)%Ofsurfacefat(bulk)ReferencesSMP–––36(51.
0)46(36.
0)18(1.
0)Kimetal.
2002(2005b)WMP–––2(36.
6)0(27.
9)98(26.
6)CP–––1(12.
3)0(11.
5)99(71.
5)WPC–––6(7.
4)41(80.
4)53(5.
6)SMP–––27(50.
0)61(34.
0)12(1.
0)Shresthaetal.
(2007)SMPAfter6months––36(51.
0)44(36.
0)20(1.
0)Kimetal.
(2009b)WMP––1(36.
6)0(27.
9)99(26.
6)CP––0(12.
3)0(11.
5)100(71.
5)SMP-ASFB–––42*(51.
4)40*(35.
0)18*(0.
8)Kimetal.
(2009a)SMP-A2VFB–––40*(51.
4)42*(35.
0)18*(0.
8)SMP-A3VFB–––42*(51.
4)39*(35.
0)19*(0.
8)WMP-ASDC–––97*(37.
5)0*(26.
5)3**(26.
8)WMP-A3VFB–––98*(37.
5)0*(26.
5)2*(26.
8)IWMP-ASDC–––98*(36.
1)0*(28.
0)2*(26.
8)IWMP-A1VFB–––98*(36.
1)0*(28.
0)2*(26.
8)IWMP-A2VFB–––98*(36.
1)0*(28.
0)2*(26.
8)MPC–––1.
8*(4.
8)68*(84.
7)30*(1.
5)Fyfeetal.
(2011)MPC-A14DS20°C,44RH%––1.
6*(4.
8)67*(84.
7)32*(1.
5)MPC-A30DS––1.
2*(4.
8)69*(84.
7)30*(1.
5)MPC-A60DS––1.
6*(4.
8)68*(84.
7)30*(1.
5)MPC-A90DS––3.
6*(4.
8)68*(84.
7)28*(1.
5)MPC-A14DS40°C,44RH%––1.
2**(4.
8)66*(84.
7)32*(1.
5)MPC-A30DS––1.
5*(4.
8)69*(84.
7)29*(1.
5)MPC-A60DS––1.
6*(4.
8)70*(84.
7)28*(1.
5)MPC-A90DS––3.
0*(4.
8)69*(84.
7)28*(1.
5)MPC-A14DS20°C,66RH%––3.
0*(4.
8)67*(84.
7)30*(1.
5)MPC-A30DS––1.
8*(4.
8)67*(84.
7)32*(1.
5)MPC-A60DS––2.
2*(4.
8)67*(84.
7)30*(1.
5)MPC-A90DS––3.
2*(4.
8)67*(84.
7)29*(1.
5)MPC-A14DS40°C,66RH%––1.
5*(4.
8)65*(84.
7)33*(1.
5)MPC-A30DS––2.
2*(4.
8)67*(84.
7)30*(1.
5)MPC-A60DS––1.
0*(4.
8)69*(84.
7)30*(1.
5)MPC-A90DS––3.
5*(4.
8)67*(84.
7)29*(1.
5)MPC-A14DS20°C,84RH%––1.
6*(4.
8)66*(84.
7)33*(1.
5)MPC-A30DS––1.
7*(4.
8)64*(84.
7)33*(1.
5)MPC-A60DS––1.
2*(4.
8)75*(84.
7)24*(1.
5)MPC-A90DS––4.
6*(4.
8)–*(84.
7)–*(1.
5)MPC-A14DS40°C-84RH%––1.
8*(4.
8)67*(84.
7)33**(1.
5)MPC-A30DS––2.
2*(4.
8)64*(84.
7)30*(1.
5)MPC-A60DS––2.
2*(4.
8)66*(84.
7)30*(1.
5)MPC-A90DS––3.
5*(4.
8)67*(84.
7)29*(1.
5)WMP–––0.
5(52.
0)6.
2(37.
1)93.
3(1.
4)Murrieta-Pazosetal.
(2012)AWMP–––1.
3(36.
7)7.
5(26.
2)91.
2(27.
3)SMP–––30.
9(52.
0)45.
1(37.
1)22.
8(1.
4)ASMP–––36.
3(36.
7)39.
3(26.
2)23.
2(27.
3)SMP–Petroleumether0.
1745(58)50(41)5(1)Kimetal.
(2002)–2444(58)55(41)1(1)–4845(58)54(41)1(1)WMP–Petroleumether0.
175(40)9(31)86(29)–249(40)10(31)81(29)–4810(40)22(31)68(29)CP–Petroleumether0.
1723(13)10(12)67(75)–2424(13)12(12)64(75)–4826(13)15(12)59(75)WPC–Petroleumether0.
177(8)92(86)1(6)–249(8)90(86)1(6)–489(8)90(86)1(6)SMP–Hexane0.
1744(58)53(41)3(1)–2459(58)41(41)–(1)–4862(58)38(41)–(1)WMP–Hexane0.
173(40)24(31)54(29)–2463(40)18(31)19(29)–4867(40)19(31)14(29)CP–Hexane0.
174(13)0(12)96(75)–244(13)0(12)96(75)–485(13)0(12)95(75)WPC–Hexane0.
178(8)92(86)0(6)–2410(8)90(86)0(6)–4810(8)90(86)0(6)6I.
Murrieta-Pazosetal.
/JournalofFoodEngineering112(2012)1–21higherfatcontent,valuesobtainedbyNWIdriedat70°C(33.
8%)gaveamaximumregisteredwettingtimeof1498s.
ThefastestwettingtimeswereregisteredforNMCwithadditionintheformu-lationof30%oflactoseandspraydriedat110,130and150°C;thisgave0%surfacefat.
TheseresultsagreedwiththoseobtainedbyKimetal.
(2002)studyingWMPandCP.
HerethewettingtimesforWMPandCPwerehigherthan900s,andafterfreefatextrac-tionthewettingtimeswerereducedto35and100sforWMPandCP,respectively.
Lecithinationofpowdersisapracticerecurrentinthefoodpowderindustrythatimproveswettingandrheologyofpowders.
Millqvist-FurebyandSmith(2007)addedlecithintoSMP,WPCandlactoseinordertoadaptthemethodrelatingelementalanal-ysisofXPStosurfacecompositionofpowderscoveredwithleci-thin.
Thisadaptationwasdevelopedwithalayermodelindicatingthatlecithinwouldcoatthewholeparticlesurface.
Sur-facecompositionforSMP+Lecithin,WPC+Lecithinandlac-tose+lecithinwas54.
3%,54.
8%and0%ofproteins,17.
9%,23.
5%and51.
3%oflactoseand27.
8%,21.
7%and48.
7%oflecithinrespectively.
Authorsattributethelowlecithinvaluestothethicknessofthecoverage.
Thelecithinlayerthicknessisestimatedatapproxi-mately2.
5nm.
Thisisthinnerthantheanalysisdepth(10nm).
Fromthisvalue,estimationofthesurfacelayerthicknessforeachpowderwascalculated:1.
6nmforSMP+Lecithin,0.
8nmforWPC+Lecithinand1.
9forlactose+lecithin.
AnotherstudyrelatedthewettingtimeofNMCpowderwithfatmigrationfromthebulktothesurfaceduringstorage(Gaianietal.
,2007).
Wettingvaluesgrewfrom12sinfreshpowdersto35s(watertightbag)and73s(standardbag)after60daysstorageat20°C.
Resultsweremoredrasticwhenthepowderisstoredat50°Cwith148s(watertightbag)and265s(standardbag).
Thisdelayinthewettingtimewasattributedtoalargerfatcoverage.
ForSMPthesamephenomenonwasobserved.
Thefatsurfacecoverageinfreshpowderwasdeterminedat18%andafter6monthsofstorageatroomtemperature(10–30°C),thefatcover-ageshiftedto20%.
ForWMPandCP,thefatsurfacecoveragewasimportantevenforfreshpowder(98%and99%).
Howevernosig-nicantchangeswereobservedafter6monthsstorage(Kimetal.
,2009c).
Inordertoimprovethereconstitutedpowderproperties,othersstudiedtheeffectofprocessingparametersonthepowdersurface.
Highspray-dryingtemperatures(Gaianietal.
,2010),highsolidcontentandhomogenization(Kimetal.
,2009c),appeartoproducepowderswithlesssurfacefat(Tables1a,1band1c)allowingshort-erwettingtimesasdemonstratedintheworkofGaianietal.
(2010).
Theinuenceoftheproteindenaturation(mainlywheypro-teins)oncomponentsrepartitioninthedryparticlewasalsostud-iedbyMillqvist-Furebyetal.
(2001).
Aslightincreaseinsurfacefatwasobservedwiththedenaturationpercentagewhereasthelac-tosecoveragewasalmostconstantandtheproteincoveragede-creased.
Thewettingtimewasaugmentedfrom21to40.
2sforthecorrespondingdegreeofdenaturationof4%and51%withaconsequentialincreaseinthesurfacefatcontent.
2.
1.
2.
CakingphenomenaCakingisaprevalentsituationthatcancauseproblemsinoper-ation,equipmentsurfacesorproductyield(Adhikarietal.
,2001).
NijdamandLangrish(2006)relatedthedegreeofcakingtothesur-facecompositionofmilkpowderspresentingdifferentfatcontents.
Theresultsindicatedthatthedegreeofcakingwashigh(>90%)forpowderscontainingbetween5%and30%ofsurfacefat.
Ontheotherhand,thecakingwasimportantlyreduced(160lm,NativesemolinaandSemolinaSieved315lm.
Wheatpar-ticledisplayvaluesofelongationbetween2.
04and2.
11,circularityfrom1.
13to1.
17,compactnessbetween0.
690and0.
707andnal-lyconvexityfrom0.
902to0.
873.
Thewettingbehaviorofasolidparticlemaybeinuencedbytheparticlesize.
Thewettabilitytimewassystematicallyshorter(88–115s)forlarge($400lm)particlesinthecaseofcaseinpow-ders(Gaianietal.
,2005).
Indeed,fasterwetting(4.
1sstudying4gofsievedskimmilkpowder)isoftenrecordedwithlargeparticles(>1000lm)doetotheformationoflargepores,highporosityandsmallcontactanglesbetweenthepowdersurfaceandthepene-tratingwater(Freudigetal.
,1999).
Verylittleworkhasbeencar-riedoutforfoodpowdersonparticlemorphology(Gaianietal.
,2011b;Pereaetal.
,2009)whereastheliteraturewasveryfur-nishedformineralspowders(Ulusoy,2008;Chauetal.
,2009).
Nevertheless,Pereaetal.
(2009)foundsomerelationshipsbetweenthemorphologyofmilkpowderagglomeratesandtheirrehydra-tionproperties.
Anincreaseofthesolubilityandthewettabilitywasrelatedwithanincreaseoftheparticlecompactnessandshapefactor.
ThestudyofGaianietal.
(2011b)showed,forthersttime,acorrelationbetweenpowderrehydrationpropertiesandparticlesshape,inadditiontotheparticlesizeandcolor(mainlyrelatedtochemicalcomposition).
Thesphericitywastheshapeparameterdemonstratingastrongerinuenceinrehydrationproperties,sphericityvalueswereregisteredbetween0.
5and0.
9fordairypowders(NMC,NWI,SMP,WMPandSemi-SMP),smallparticlespresentinghighsphericitiesvalues($0.
9)obtainedlowerwettingtimes,SMP=1750s,Semi-SMP=1650s,NMC=2500s.
Further-more,aregressionmodelwasdevelopedtoreplacetime-consum-ingmeasurementsfordispersibilityandsolubility.
5.
Dynamicvaporsorption(DVS)TheDVSapparatusprovidesfullyautomated,rapidandaccu-ratemeasurementsofgravimetricmoistureuptakeinsolidmateri-alsatawidetemperaturerangeusingdynamicenvironmentcontrolandultra-sensitiverecordingmicrobalance.
Sorptioniso-thermswereperformedforcaseinpowderduringstoragebyGaianietal.
(2009).
ByapplyingthemodelofGuggenheim–Anderson–Boer(GAB),after60daysofstorage,adecreaseofthemonolayercapacitywasregisteredfrom0.
0632to0.
0617kg/kgat20°Candfrom0.
0632to0.
0524kg/kgat50°C.
Thisdecreaseinthewaterafnitywasrelatedtothesurfacefatincreasesduringstorage.
ItwashypothesizedthatalayeroffatmayprogressivelycovertheTable5Characterizationoffoodpowdersbyconfocallaserscanningmicroscopy(CLSM).
MethodsPowdersystemsReferencesSpraydryingInstantwholemilkpowderInstantwholemilkpowderMcKennaetal.
(1999)WholemilkpowderKimetal.
(2002)MilkmodelwithlowfreefatMilkmodelwithlowfreefatafterfreefatextractionVignollesetal.
(2009)MilkmodelwithhighfreefatMilkmodelwithhighfreefatafterfreefatextractionMillingProteinsincornourChanvrieretal.
2005I.
Murrieta-Pazosetal.
/JournalofFoodEngineering112(2012)1–2113surfacemakingitmorehydrophobic,theappearanceofthisfatlayerwasconrmedbyXPS(Tables1a,1band1c).
Wheatouriso-thermswerealsoregisteredbySaadetal.
(2009).
IsothermswerettedtoGABmodel,thevaluesshownaslightlyincreaseinthemonolayercapacity,fromvaluesobtainedinnativeour(0.
085kg/kg)tothoseregisteredafterrstpassre-grinding(0.
084kg/kg),secondpassre-grinding(0.
085kg/kg)andthirstpassre-grinding(0.
0864kg/kg),evenwhenXPSpresentsadecreaseinthenumberofhydrophobicbondsincontrasttohydrophilicbonds.
Authorsattributedthehigherwaterafnitytoastarchgranulerupturecausedbythere-grindingprocess.
MathlouthiandRogé(2003)correlatedthewatervaporadsorptionisothermtothecak-ingandowabilityofsievedand/orpulverizedsucrose,studdingfromamorphousand/orcrystalline(RH>86%)forms.
Flowabilitymeasuredasfriabilityanglewasregisteredfrom35–55°atHR=30%to90°atHR=90%forallthesizes.
Thecakingofcrystal-lineformsdoesnotallowtodecakingthepowderbecauseofanagglomerationphenomena.
Murrieta-Pazosetal.
(2011)relateddataobtainedfromthesorptionisothermtothepowdersurfacecomposition(EDX,AFMandXPS).
Thecurvesofdiffusivityweredi-rectlycorrelatedtothechemicalstateoflactosecrystallized(HR>54%)oramorphous(HR25103atm),waterclustersareformedshowingthatwater–waterinteractionsarefavored.
ThisisshownbythevalueoftheclusterfunctionC1G11upperto0(Table7).
WaterisothermsweresuccessfullyttedtotheBET,GABandFreundlichisothermmod-els.
Riganakosetal.
(1994)comparedthegravimetric(thestaticmethodwithsaturatedsaltslurries)withtwoIGCmethods(calledIGCandCIGCrespectivelycorrespondingtoseveralinjectionsorasinglelargesoluteinjection)toobtainwatersorptionbywheatandTable7Zimm–Lundbergclusteranalysisfortwosystems:water–rafnoseandwater–wheatourat30°C.
Systema(mgH2Og1solid)p.
103(atm)aw(p/p0)C1G11ReferencesWater–wheatour100.
370.
010.
35Riganakosetal.
(1989)201.
850.
040.
65304.
630.
110.
854014.
800.
350.
605023.
870.
570.
166027.
200.
650.
057029.
970.
720.
298032.
380.
770.
559034.
600.
830.
8510036.
630.
871.
14Water–rafnose1.
07.
20.
170.
25Demertzisetal.
(1989)2.
017.
00.
41+0.
073.
022.
80.
52+0.
544.
026.
90.
64+1.
284.
527.
70.
66+1.
545.
028.
70.
69+1.
86a,wateruptake;aw,wateractivity;C1G11,clusterfunction;p,pressureofwater.
I.
Murrieta-Pazosetal.
/JournalofFoodEngineering112(2012)1–2115soyour.
ThepublicationofCoelhoetal.
(1979a)givesthedetailsabouttheplotofthemoisturesorptionisothermwiththesetwomethods.
Therewasanexcellentagreementbetweenmonolayervaluesusingthethreemethods(Table8).
Thesameauthorsalsoobtainedmoisturesorptionisothermsonpolysaccharidessuchasappleandcitruspectin(Demertzisetal.
,1991)andoncrystallinerafnose(Demertzisetal.
,1989).
ThemonolayervaluesforcrystallinerafnosecalculatedwiththeBETmodelatdifferenttemperaturesaremuchlower(1.
30mgH2Og1solidat35°C)thanthosereportedforothersugarssuchaslactose(32mgH2Og1solidat34°C)andsucrose(99mgH2Og1solidat35°C).
Thiscouldbeattributedtothehighdegreeofcrystallinityofrafnose,thehigheristhedegreeofcrystallinity,thehigherthehydrophobiccharacterofthesugarandtheten-dencytoformclusters.
Thisleadstoalowerwatermonolayerva-lue.
Thewater–waterinteractionsarefavoredwithregardtothehydrophobicsurface–waterinteraction.
ResultsoftheZimm–Lundbergclusteranalysisshowthatclusterformationisfavoredonrafnoseevenatrelativelylowwaterpressures(Table7).
TheclusterfunctionC1G11isgreaterthan0fromapressureequalto17103atm.
Ifwecomparethetwopowders,wheatourandrafnose,atanygivenpressure,thewateruptakeismuchlowerforrafnosethanforwheatour.
TheeffectofcrystallinitywasalsoreportedbySmithetal.
(1981)onwatersorptionisothermsofsucrose(crystallinesaccharose)andamorphousglucose.
Theabilitytosorbagivenamountofwaterisgreaterfortheamor-phoussugarthanforthecrystallineone.
Howevertheauthorsoverlookedsomekeyaspectsduringtheinvestigations.
Thenitro-genspecicsurfaceareaofthetwosugarsthatcaninuencewatersorptionwasnottakenintoaccount.
Also,theBETequationwasusedtocalculatethemonolayercoveragewithwater,howeverthedatadidnotconformtothelinearizedBETequation.
Theauthorstheninterpretedthisnon-conformityasaresultofacom-plexsorptionmechanismoccurringintheverylowwateractivityrangesstudied.
HelenandGilbert(1985)comparedwatersorptionisothermsoftwobakeryproducts:crackers(highinfatandlowinsugar)andsweetbiscuits.
Thecrackerabsorbssignicantlymoremoisturethanthesweetbiscuit,indicatingahigherhygroscopicityofthecrackers.
Theclusteringanalysisindicatedthatwater–foodinteractionswerefavoredinthecrackerscomparedwithwater–waterinteractionsinsweetbiscuits.
Anexperimentconsistingofaddingincreasingamountsofcrystallinesucrosetocrackersleadstoadecreaseoftheirhygroscopicity.
Thisfavourstheformationofwaterclusteringandshowstheisothermofcrackerstendtothatofthesweetbiscuit.
Thisstudyalsoconrmsthathigheristhecrys-tallinecharacterofapowder,smalleristhecapacitytoabsorbwaterandtheformationofwaterclusteringisfavored.
Pastaprod-uctswereanalyzedbyLagoudakietal.
(1993),whocomparedmoisturesorptionisothermsofconventionalanddietspaghetti.
Thecapacitytosorbwaterishigherforconventionalspaghettithanfordietspaghetti,duetoitshighercarbohydratecontent.
Thesameauthors(LagoudakiandDemertzis,1994)alsocomparedtheeffectsofmoistureandtemperatureonthewatersorptionofdehydratedfoodconstituentssuchaspotatostarch,eggalbuminandwheatgluten.
Table9gatherstheBETandGAPisothermcon-stantsforwatersorptionat30°Conpotatostarch,eggalbumin,wheatglutenandspaghetti.
7.
2.
IGCatechniqueusedtostudysurfaceamorphouscontentPerformanceofasolidindifferentprocessescanberelatedtoitsamorphouscontentespeciallylocatedatthesurface.
SotechniqueslikeIGCwhichareabletoquantifyamorphouscontentonasolidsurfaceareofgreatinterest.
DifferentworkswerecarriedoutonlactoseusingIGC.
Ticehurstetal.
(1996)examinedfourbatchesoflactose(BatchesA,B,CandD),whichexhibitedvariableprocess-ingperformancebutwererevealedidenticalbyusualphysicalandchemicaltechniques.
OnlyIGCledtodifferentsurfaceproperties.
Table10gathersvaluesofthedispersivecomponentofthesurfaceenergy,cDSandspecicfreeenergyofadsorption,DGspofdifferentpolarprobesforthefourbatches.
IfthecDSarecomparable,theDGspforpolarprobesexhibitsignicantdifferences,indicatingvaria-tionsinthepolarsurfacepropertiesbetweenthebatches.
Thelactosewasalsostudiedtoshowsomerelationshipsbe-tweenIGCparametersandamorphouscontentonthesolidsurface(Newelletal.
,2001a;NewellandBuckton,2004).
ThreesamplesoflactosewerecomparedbyIGC:acrystallinelactose,aspraydried100%amorphouslactoseandamilledlactosewithlessthan1%amorphouscontentbymass.
Themilledlactosewasnotedtohaveasimilardispersivesurfaceenergy(41.
6mJ/m2)tothe100%amor-phouslactose(37.
1mJ/m2),indicatingthattheamorphouswaspreferentiallylocatedonthesurface.
Thisresultrevealedthatmill-ingdisruptsthesurfacemorethanthebulk.
Forcomparison,thedispersivesurfaceenergyvalueforthecrystallinelactosewasTable8BETandGABisothermconstantsforwatersorptioninwheatandsoyoursusingthestaticgravimetric,IGCandCIGCsorptionmethodsat30°C(Riganakosetal.
,1994).
MethodPowderBETmodelGABmodelVm(g/g)CWm(g/g)CKGravimetricWheatour0.
06836.
900.
06526.
480.
94IGC0.
06334.
280.
06320.
280.
91CIGC0.
06130.
480.
06220.
840.
91GravimetricSoyour0.
05015.
280.
04820.
480.
90IGC0.
05520.
780.
05025.
300.
96CIGC0.
05114.
040.
05317.
200.
94Table9BETandGABisothermconstantsforwatersorptioninspaghetti,potatostarch,eggalbuminandwheatglutenat30°C.
SampleBETmodelGABmodelReferencesVm(g/g)CWm(g/g)KCConventionalspaghetti0.
0604±0.
00187.
77±4.
20.
0770±0.
01120.
84±0.
087.
48±1.
22Lagoudakietal.
(1993)Dietspaghetti0.
0548±0.
00607.
13±2.
50.
0589±0.
01550.
84±0.
306.
54±1.
37Potatostarch0.
0675±0.
005514.
04±1.
660.
0906±0.
00830.
73±0.
0810.
48±1.
72LagoudakiandDemertzis,1994Eggalbumin0.
0537±0.
00587.
91±1.
730.
0576±0.
00730.
77±0.
087.
17±1.
33Wheatgluten0.
0440±0.
00487.
49±1.
150.
0530±0.
00550.
85±0.
017.
32±1.
57Table10Surfacepropertiesofa-lactosemonohydrateat30°Cafterconditioningat40°C(Ticehurstetal.
,1996).
SamplescDS(mJ/m2)DGsp(kJ/mol)AcetoneTHFEtherEthylacetateBatchA44±29.
1±0.
37.
3±0.
26.
0±0.
28.
6±0.
2BatchB405.
74.
42.
95.
4BatchC41±38.
2±0.
36.
6±0.
25.
2±0.
27.
8±0.
2BatchD428.
76.
95.
47.
716I.
Murrieta-Pazosetal.
/JournalofFoodEngineering112(2012)1–21equalto31.
2mJ/m2.
Thesameauthors(Newelletal.
,2001b)alsoshowedthatunderhumidconditions(0–20%RH),thedispersivecomponentofthesurfaceenergyofamorphouslactosewasre-ducedtothevalueofthecrystallineone,givingevidenceofcrystallization.
Ambarkhaneetal.
(2005)comparedIGCandgravimetricvaporsorptiontostudythebehaviorofamorphouslactoseduringthewatersorption.
Thedatamadeitpossibletodeterminate:(1)arsttransitionatlowRH(ca.
10%RH)correspondingtotheonsetofsignicantmolecularmobilityintheamorphousmaterial;(2)theglasstransitionfollowedbythecollapseofamorphouslac-toseoccurringbetween30%and40%RH;and(3)theonsetofcrystallizationabove45%RH.
TheauthorsshowedthatateachtemperatureTofanalysis,theamorphouslactosecrystallizeswhenTgmix(usingtheGordon–Taylorequationtakingintoac-countthemassesandTgofwateranddryamorphouslactose)is32°CbelowT.
Recentlytherstpaperwherequanticationofsurfaceamor-phouscontentwasrealisedthankstothemeasurementofthedis-persivesurfacecomponent,waspublished(BrumandBurnett,2011).
Theauthorswrote,forasolidcomposedoftwokindsofsur-faces(e.
g.
aphysicalmixtureofcrystallineandamorphoussolids)theeffectivesurfaceenergyofthemixture,cDSeff(theneteffectoftheheterogeneoussurfaceontheprobe)isrelatedtothelinearcombinationofthesquarerootsofthesurfaceareanormalizeddis-persiveenergytermsofeachsolidcDS1etcDS2:cDSeff1=2/1cDS11=2/2cDS21=22where/xaretherespectivesurfacefractionsofeachsolid.
ThevaluescDS1andcDS2aredeterminedbythepuresolidsrefer-ence.
Thiscalculationneedscrystallineandamorphousreferences.
Theauthorswarnedagainstthereferencematerial;iftheamor-phouscontainsothersurfacedisorders(i.
e.
fractures,defectsites,etc.
)itsenergieswillbeinterpretedagainstamorphousreferences.
Thersttestreviewedonlactose.
Crystallinea-lactosemonohy-drateandspray-driedlactosewererespectivelytakenasthecrys-tallineandthefullyamorphoussurfacereferences.
Fromthesereferencematerials,severalphysicalmixtureswerepreparedinor-dertomeasurethedifferenceincDSandtocomparethemwiththetheoreticalvalues.
Thereisexcellentagreementbetweenexperi-mentaldataandthetheoreticalpredictionbasedonthesurfaceenergiesofthecrystallineandamorphousreferences.
IGCgivesonlythesurfaceamorphouscontent.
Abulktechnique,DSC,wascarriedouttoevaluatethebulkamorphouscontent.
ComparingtheIGCandDSCamorphouscontentshowedhowdisorderwasdis-tributedthroughouttheparticle.
Forthemicronizedsample,thedisorderresidesonlyatthesolidsurface.
Thepartiallyrecrystal-lizedspray-driedsamplepresentsanenergeticsurfaceaswellasbulkcorrespondingtoasignicantamorphouspercentage($70%).
Theballmilledparticlesleadtoveryhighsurfaceamor-phouscontentwhilethebulkgivesaround5%.
Toconclude,IGCappearsasanefcienttooltoevaluatethesurfaceamorphouscontentandtheamorphousphase,whichcanbedesirable(e.
g.
tostabilizeproteins)orundesirable(e.
g.
candecreasethestabilityandinducechangesinproductperformance).
7.
3.
IGCtoinvestigateinteractionsbetweenavorcompoundsandfoodcomponentsIGCisalsoofinterestinthefoodeldregardingthestudyofinteractionsbetweenavorcompoundsandfoodcomponents.
Thesecompoundshaveagreatimpactontheavorofthenalfoodproduct.
IGCisapowerfultooltoinvestigatetheadsorptionofavorcompoundsontosolidsupportsuchasproteins,starchandsugars.
OneoftherststudiesonthissubjectwasrealizedbyMcMullinetal.
(1975),whichdemonstratedthatlactosehasagreatabilitytoadsorbaromas.
Theheatsofadsorptionofalargevarietyoforganiccompounds(esters,aldehydes,ketones,alcoholsandhydrocar-bons)onanhydrouslactosewerecompared(Table11).
Foragivennumberofcarbonatomsalcoholshavethehighestheatsofadsorp-tion,hydrocarbonshavethelowest,andtheotherfunctionsadsorbwithintermediatestrengths.
Thehydrogenbondsformedbetweenthelactoseandthefunctionalgroupsoforganiccompounds,suchashydroxylforalcohols,wassupposedtobethemajorfactorin-volvedinthestrengthofadsorption.
Soyproteinisalsoofmuchinterestinthefoodeld.
Differentauthorsalsostudiedinteractionsbetweensoyproteinandaromacompounds.
Crowtheretal.
(1981)comparedadsorptioncoef-cientsandheatsofadsorptionofanumberofvolatileorganicsontosoyproteinisolate(SPI)aftertreatmentsinvolvingdifferentlevelsoftemperature,moistureandshear.
Theyobservedchangesinadsorptioncoefcientsofthetreatedsamplesattributedtoade-creaseinbindingduetotheproteindenaturation.
AspelundandWilson(1983)alsomeasuredheatsofadsorptiontodeterminestrengthsofadsorptionofavorsontoSPI(Table11).
Theynoticedthatthehydrocarbonsadsorbedtheweakestandthealcoholsthestrongestontodrysoyprotein.
Theformerinteractonlywithnon-specicinteractions(VanderWaals),thelatterinteractnotonlywithnonspecicinteractionsbutalsowithspeciconesandespeciallyhydrogenbonds.
ZhouandCadwallader(2004)alsoar-rivedatthesameconclusionasAspelundandWilson(1983).
Table11Heatsofadsorptionontwosolids:soyproteinisolateandlactoseobtainedbydifferentauthors.
Flavor–DH(kcal/mol)SoyproteinisolateLactoseAspelundandWilson(1983)Crowtheretal.
(1981)ZhouandCadwallader(2006,2004)McMullinetal.
(1975)n-Hexane––6.
8–n-Nonane6.
52––9.
24n-Decane8.
36––10.
55Hexanal8.
8911.
110.
311.
63Methyln-butyrate––10.
65Methyln-pentanoate6.
71––12.
14Methyln-hexanoate8.
19––13.
572-Pentanone2.
9210.
1–10.
812-Hexanone6.
0411.
010.
512.
032-Heptanone8.
1112.
7–13.
091-Pentanol11.
2513.
1–16.
031-Hexanol13.
8916.
716.
317.
571-Heptanol18.
0616.
8–17.
18I.
Murrieta-Pazosetal.
/JournalofFoodEngineering112(2012)1–2117Volatilepolarprobessuchas1-hexanolandhexanalhavehigherbindingafnitiesthananapolarone(hexane)duetohydrogenbindinginteractionswithSPI.
Theretentionofthesepolarprobesareweakerat30%RH,indicatingpossiblecompetitionforbindingsitesontheSPIsurfacebetweenthesevolatileprobesandwatermolecules.
Thesameauthors(ZhouandCadwallader,2006)com-pletedtheirrststudyonSPIbyinvestigatingtheinuenceofa-vorcompoundchemicalstructure,includingfunctionalgroups(hydrocarbons,esters,ketones,aldehydesandalcohols)andste-reochemistry(positionofadoublebond,orthedistancebetweenadoublebondandanhydroxylgroup)onbinding.
Theycomparedthermodynamicandsorptiondataunderdifferentrelativehumidities.
Boutbouletal.
(2000)investigatedtheinteractionsbetweenaromasandnativecornstarch.
Theyobservedthatretentionwashigherunderhumidconditionsthanunderdryconditionsespe-ciallyforalcohols.
Theauthorsproposeddifferenthypotheses;ononehandapredominantadsorptionphenomenoninvolvinghydro-genbondsbetweenaromacompoundssuchasalcohols,andglu-coseresiduesofthestarch.
Ontheotherhand,asolvationofaromacompoundsbywatermoleculesallowsfortheirdiffusionthroughthestarchmatrix.
Boutbouletal.
(2002)alsoobtaineddif-ferentsorptionisothermsonstarchdependingonthearomacom-poundsandtheinteractionsdevelopedbetweenthestarchandthearomacompounds(typeIIforanester,typeIIIford-limoneneandlinearforanaldehydeandanalcohol).
7.
4.
IGCtoassessthemodicationsofsurfacesaftercoatingbyemulsiersIGCisalsoausefultoolfortheassessmentofthemodicationsofsurfacepropertiesofpowdersafterdifferenttreatments.
Theevolutionofsurfacepropertiesofsucrosecoatedbyemulsierscommonlyusedinchocolate,lecithinorpolyglycerolpolyricinol-eate(PGPR),wasmonitoredbyIGC(Roussetetal.
2002)(Table12).
Theadsorptionoftheemulsiersdecreasestheacidiccharacter(Kaparameter)originatingfromthehydroxylgroupandconsequentlyincreasesthelipophilicityofthesucrose.
Thesucrose–sucroseinteractionsareweakerinducinganincreaseintheuidityoffat-basedsuspensionslikechocolate.
8.
ConclusionandperspectivesForabetterunderstandingoftherelationshipsbetweensurfacepropertiesandfunctionalpropertiesitisabsolutelynecessarytocharacterizethepowdersurfaceindetail.
Forthispurpose,specicanalyticalmethods(physico-chemistryandsurfacephysics)abletoevaluatethesurfacepropertiesofthefoodpowdersareneeded.
Sometechniquesarenowwelldevelopedinthefoodpowderelds(XPS,SEM).
Howeverothersmayneedmoreattentionfromthesci-enticcommunity(TOF-SIMS,particlemorphology,EDX).
InFig.
3,anexampleofmultiscalesurfaceinvestigationispresented.
Cou-plingatomic,molecular,microstructuralandphysicalapproachesTable12EffectofadsorbedlecithinandPGPRatthesucrosesurface(Roussetetal.
,2002).
GranulatedsucroseJetmilledsucroseWithoutemulsiersWithlecithinWithPGPRWithoutemulsiersWithlecithinWithPGPRcDS(mJ/m2)30.
330.
631.
136.
530.
930.
0KA102181515191616KB102232833222629Fig.
3.
Techniquesforsurfacecharacterizationatdifferentlevelsregardinginformationcontentandscale.
18I.
Murrieta-Pazosetal.
/JournalofFoodEngineering112(2012)1–21maybeaninterestingoptiontobestunderstandthesurfacereac-tivity.
Concurrently,sometechniques,likeIGC,wererarelyusedonfoodpowdersandmaybeanefcienttooltoevaluatethemodi-cationsofsurfacepropertiesofapowderunderwetconditions,ortheadsorptionofavorcompoundswhichhasagreatimpactontheavorofthenalproduct.
Recently,IGCwasalsocarriedouttoquantifythesurfaceamorphouscontentandtheamorphousphase(desirableorundesirable)forthestabilityofthepowder.
Concurrently,researchisneededtobindbasicapproacheswithtechnologicalapplications,whileintegratingthecontributionofbothparticlesurfaceandprocessparametersoccurringfrompow-dermanufacturingtoend-products.
Theprincipalfunctionalprop-ertiesofafoodpowdermaybelinkedtowater,thermaland/ormechanicalconstraints.
Fig.
4highlightssomelinksbetweensurfacecharacterizationandconstraints(hydric,thermalandmechanical).
Inconclusion,thesurfacepropertiesdeterminationscouldbeofgreatimportanceasthesurfacegovernssomeessentialfunctionalproperties:wetting,dispersibility,stickiness,owability,etc.
Inspiteoftheonlyrecentuseofsometechniques,allthosepresentedhavebeensuccessfullyusedinthestudyoffoodpowders.
AcknowledgmentsANRfundingfromthe''ReactivePowder''programisgratefullythanked.
Inaddition,therstauthoracknowledgestheResearchNationalAssociationinFrance,theMexicanNationalCouncilofScienceandtechnologyandtheComplementaryScholarshipsofSEPinMexicofornancialresources.
CarlSitchisalsothankedforEnglishre-reading.
ReferencesAdhikari,B.
,Howes,T.
,Bhandari,B.
R.
,Truong,V.
,2001.
Stickinessinfoods:areviewofmechanismsandtestmethods.
InternationalJournalofFoodProperties4(1),1–33.
AlMahdi,R.
,Nasirpour,A.
,Banon,S.
,Scher,J.
,Desobry,S.
,2006.
Morphologicalandmechanicalpropertiesofdriedskimmedmilkandwheatourmixturesduringstorage.
PowderTechnology163(3),145–151.
Ambarkhane,A.
V.
,Pincott,K.
,Buckton,G.
,2005.
Theuseofinversegaschromatographyandgravimetricvapoursorptiontostudytransitionsinamorphouslactose.
InternationalJournalofPharmaceutics294(1–2),129–135.
An,H.
,Yang,H.
,Liu,Z.
,Zhang,Z.
,2008.
Effectsofheatingmodesandsourcesonnanostructureofgelatinizedstarchmoleculesusingatomicforcemicroscopy.
LWT–FoodScienceandTechnology41(8),1466–1471.
Aspelund,T.
G.
,Wilson,L.
A.
,1983.
Adsorptionofoff-avorcompoundsontosoyprotein:athermodynamicstudy.
JournalofAgriculturalandFoodChemistry31(3),539–545.
Baldwin,P.
,1995.
Studiesonthesurfacechemistry,minorcomponentcompositionandstructureofgranularstarches.
Ph.
D.
Thesis,UniversityofNottingham,UK.
Baldwin,P.
M.
,Davies,M.
C.
,Melia,C.
D.
,1997.
Starchgranulesurfaceimagingusinglow-voltagescanningelectronmicroscopyandatomicforcemicroscopy.
InternationalJournalofBiologicalMacromolecules21(1–2),103–107.
Baldwin,P.
M.
,Adler,J.
,Davies,M.
C.
,Melia,C.
D.
,1998.
Highresolutionimagingofstarchgranulesurfacesbyatomicforcemicroscopy.
JournalofCerealScience27(3),255–265.
Baldwin,P.
M.
,2001.
Starchgranule-associatedproteinsandpolypeptides:areview.
Starch–Strke53(10),475–503.
Barbosa-Canovas,G.
V.
,Lopez,J.
M.
,Peleg,M.
,1987.
Densityandcompressibilityofselectedfoodpowdersmixtures.
JournalofFoodProcessEngineering10(1),1–19.
Bosquillon,C.
,Rouxhet,P.
G.
,Ahimou,F.
,Simon,D.
,Culot,C.
,Préat,V.
,Vanbever,R.
,2004.
Aerosolizationproperties,surfacecompositionandphysicalstateofspray-driedproteinpowders.
JournalofControlledRelease99(3),357–367.
Boutboul,A.
,Giampaoli,P.
,Feigenbaum,A.
,Ducruet,V.
,2000.
Useofinversegaschromatographywithhumiditycontrolofthecarriergastocharacterisearoma–starchinteractions.
FoodChemistry71(3),387–392.
Boutboul,A.
,Lenfant,F.
,Giampaoli,P.
,Feigenbaum,A.
,Ducruet,V.
,2002.
Useofinversegaschromatographytodeterminethermodynamicparametersofaroma–starchinteractions.
JournalofChromatographyA969(1–2),9–16.
Briggs,D.
(1994).
Practicalsurfaceanalysis:AugerandX-rayphotoelectronspectroscopy,v.
1,seconded.
,Wiley-Blackwell.
Brum,J.
,Burnett,D.
,2011.
Quanticationofsurfaceamorphouscontentusingdispersivesurfaceenergy:theconceptofeffectiveamorphoussurfacearea.
AAPSPharmSciTech12(3),887–892.
Buchheim,W.
,1978.
DistributionofExtractableFatinParticlesSprayDriedWholeMilk.
XXInternationalDairyCongress.
Buma,T.
J.
,1971.
Freefatinspray-driedwholemilkX.
Analreportwithaphysicalmodelforfree-fatinspray-driedmilk.
NetherlandsMilkandDairyJournal25,159–174.
Fig.
4.
Linksbetweensurfacecharacterization,physico-chemicalprocessandconstraints(hydric,thermalandmechanical).
I.
Murrieta-Pazosetal.
/JournalofFoodEngineering112(2012)1–2119Chanvrier,H.
,Colonna,P.
,DellaValle,G.
,Lourdin,D.
,2005.
Structureandmechanicalbehaviourofcornourandstarch–zeinbasedmaterialsintheglassystate.
CarbohydratePolymers59(1),109–119.
Chau,T.
T.
,Bruckard,W.
J.
,Koh,P.
T.
L.
,Nguyen,A.
V.
,2009.
Areviewoffactorsthataffectcontactangleandimplicationsforotationpractice.
AdvancesinColloidandInterfaceScience150(2),106–115.
Cliff,B.
,Lockyer,N.
,Jungnickel,H.
,Stephens,G.
,Vickerman,J.
C.
,2003.
Probingcellchemistrywithtime-of-ightsecondaryionmassspectrometry:developmentandexploitationofinstrumentationforstudiesoffrozen-hydratedbiologicalmaterial.
RapidCommunicationsinMassSpectrometry:RCM17(19),2163–2167.
Coelho,U.
,Miltz,J.
,Gilbert,S.
G.
,1979a.
Applicationofinversephasegaschromatographyfordeterminationofboundwaterphasegaschromatographyfordeterminationofboundwaterincollagen.
JournalofFoodScience44(4),1150–1151.
Coelho,U.
,Miltz,J.
,Gilbert,S.
G.
,1979b.
Waterbindingoncollagenbyinversephasegaschromatography:thermodynamicconsiderations.
Macromolecules12(2),284–287.
Conder,J.
R.
,Young,C.
L.
(Eds.
),1979.
PhysicochemicalMeasurementbyGasChromatography,JohnWiley&SonsLtd.
,Chichester,NewYork.
Crowther,A.
,Wilson,L.
A.
,Glatz,C.
E.
,1981.
Effectofprocessingonadsorptionofoff-avorsontsoyprotein.
JournalofFoodProcessEngineering4(2),99–115.
Cuq,B.
,Rondet,E.
,Abecassis,J.
,2011.
Foodpowdersengineering,betweenknowhowandscience:constraints,stakesandopportunities.
PowderTechnology208(2),244–251.
Demertzis,P.
G.
,Riganakos,K.
A.
,Giannakakos,P.
N.
,Kontominas,M.
G.
,1991.
Studyofwatersorptionbehaviourofpectinsusingacomputerisedelutiongaschromatographictechnique.
JournaloftheScienceofFoodandAgriculture54(3),421–428.
Demertzis,P.
G.
,Riganakos,K.
A.
,Kontominas,M.
G.
,1989.
Watersorptionisothermsofcrystallinerafnosebyinversegaschromatography.
InternationalJournalofFoodScienceandTechnology24(6),629–636.
Du,C.
-J.
,Sun,D.
-W.
,2004.
Recentdevelopmentsintheapplicationsofimageprocessingtechniquesforfoodqualityevaluation.
TrendsinFoodScienceandTechnology15(5),230–249.
Fldt,P.
,1995.
Surfacecompositionofspraydriedemulsions.
Ph.
D.
Thesis.
DepartmentofFoodEngineering,LundUniversity,Lund,Sweden.
Fannon,J.
E.
,Shull,J.
M.
,Bemiller,J.
N.
,1993.
Interiorchannelsofstarchgranules.
CerealChemistry70(5),611–613.
Farkas,J.
,Mohácsi-Farkas,C.
,1996.
Applicationofdifferentialscanningcalorimetryinfoodresearchandfoodqualityassurance.
JournalofThermalAnalysis47(6),1787–1803.
Focardi,S.
,Ristori,S.
,Mazzuoli,S.
,Tognazzi,A.
,Leach-Scampavia,D.
,Castner,D.
G.
,Rossi,C.
,2006.
ToF-SIMSandPCAstudiesofSeggianeseolivesandoliveoil.
ColloidsandSurfacesA:PhysicochemicalandEngineeringAspects279(1–3),225–232.
Forny,L.
,Marabi,A.
,Palzer,S.
,2011.
Wetting,disintegrationanddissolutionofagglomeratedwatersolublepowders.
PowderTechnology206(1–2),72–78.
Freudig,B.
,Hogekamp,S.
,Schubert,H.
,1999.
Dispersionofpowdersinliquidsinastirredvessel.
ChemicalEngineeringandProcessing38(4–6),525–532.
Funami,T.
,2010.
Atomicforcemicroscopyimagingoffoodpolysaccharides.
FoodScienceandTechnologyResearch16(1),1–12.
Funami,T.
,Noda,S.
,Nakauma,N.
M.
,Ishihara,S.
,Takahashi,R.
,Al-Assaf,S.
,Ikeda,S.
,Nishinari,K.
,Phillips,G.
O.
,2008.
Molecularstructuresofgellangumimagedwithatomicforcemicroscopyinrelationtotherheologicalbehaviorinaqueoussystemsinthepresenceorabsenceofvariouscations.
JournalofAgriculturalandFoodChemistry56(18),8609–8618.
Fyfe,K.
N.
,Kravchuk,O.
,Le,T.
,Deeth,H.
C.
,Nguyen,A.
V.
,Bhandari,B.
,2011.
Storageinducedchangestohighproteinpowders:inuenceonsurfacepropertiesandsolubility.
JournaloftheScienceofFoodandAgriculture91(14),2566–2575.
Gaiani,C.
,2006.
Etudedesmécanismesderéhydratationdespoudreslaitières:inuencedelastructureetdelacompositiondespoudres.
Ph.
D.
Thesis,UniversityofLorraine.
VandoeuvrelèsNancy,France.
Gaiani,C.
,Banon,S.
,Scher,J.
,Schuck,P.
,Hardy,J.
,2005.
Useofaturbiditysensortocharacterizemicellarcaseinpowderrehydration:inuenceofsometechnologicaleffects.
JournalofDairyScience88(8),2700–2706.
Gaiani,C.
,Boyanova,P.
,Hussain,R.
,MurrietaPazos,I.
,Karam,M.
C.
,Burgain,J.
,Scher,J.
,2011b.
Morphologicaldescriptorsandcolourasatooltobetterunderstandrehydrationpropertiesofdairypowders.
InternationalDairyJournal21(7),462–469.
Gaiani,C.
,Ehrhardt,J.
J.
,Scher,J.
,Hardy,J.
,Desobry,S.
,Banon,S.
,2006.
SurfacecompositionofdairypowdersobservedbyX-rayphotoelectronspectroscopyandeffectsontheirrehydrationproperties.
ColloidsandSurfacesB:Biointerfaces49(1),71–78.
Gaiani,C.
,Morand,M.
,Sanchez,C.
,Tehrany,E.
A.
,Jacquot,M.
,Schuck,P.
,Jeantet,R.
,Scher,J.
,2010.
Howsurfacecompositionofhighmilkproteinspowdersisinuencedbyspray-dryingtemperature.
ColloidsandSurfacesB:Biointerfaces75(1),377–384.
Gaiani,C.
,Mullet,M.
,ArabTehrany,E.
,Jacquot,M.
,Perroud,C.
,Renard,A.
,Scher,J.
,2011a.
Milkproteinsdifferentiationandcompetitiveadsorptionduringspray-drying.
FoodHydrocolloids25(5),983–990.
Gaiani,C.
,Scher,J.
,Ehrhardt,J.
J.
,Linder,M.
,Schuck,P.
,Desobry,S.
,Banon,S.
,2007.
Relationshipsbetweendairypowdersurfacecompositionandwettingpropertiesduringstorage:importanceofresiduallipids.
JournalofAgriculturalandFoodChemistry55(16),6561–6567.
Gaiani,C.
,Schuck,P.
,Scher,J.
,Ehrhardt,J.
J.
,Arab-Tehrany,E.
,Jacquot,V.
,Banon,S.
,2009.
Nativephosphocaseinatepowderduringstorage:lipidsreleasedontothesurface.
JournalofFoodEngineering94(2),130–134.
Gallant,D.
J.
,Bouchet,B.
,Baldwin,P.
M.
,1997.
Microscopyofstarch:evidenceofanewlevelofgranuleorganization.
CarbohydratePolymers32(3–4),177–191.
Grenha,A.
,Seijo,B.
,Serra,C.
,Remuan-López,C.
,2007.
Chitosannanoparticle-loadedmannitolmicrospheres:structureandsurfacecharacterization.
Biomacromolecules8(7),2072–2079.
Gunning,A.
P.
,Kirby,A.
R.
,Parker,M.
L.
,Cross,K.
L.
,Morris,J.
,2010.
Utilizingatomicforcemicroscopyinfoodresearch.
FoodTechnology64(12),32–37.
Haque,M.
K.
,Roos,Y.
H.
,2006.
Differencesinthephysicalstateandthermalbehaviorofspray-driedandfreeze-driedlactoseandlactose/proteinmixtures.
InnovativeFoodScienceandEmergingTechnologies7(1–2),62–73.
Hartmann,M.
,Palzer,S.
,2011.
Cakingofamorphouspowders–materialaspects,modellingandapplications.
PowderTechnology206(1–2),112–121.
Helen,H.
J.
,Gilbert,S.
G.
,1985.
Moisturesorptionofdrybakeryproductsbyinversegaschromatography.
JournalofFoodScience50(2),454–458.
Hentschel,M.
L.
,Page,N.
W.
,2003.
Selectionofdescriptorsforparticleshapecharacterization.
ParticleandParticleSystemsCharacterization20(1),25–38.
Iijima,M.
,Shinozaki,M.
,Hatakeyama,T.
,Takahashi,M.
,Hatakeyama,H.
,2007.
AFMstudiesongelationmechanismofxanthangumhydrogels.
CarbohydratePolymers68(4),701–707.
James,B.
J.
,Smith,B.
G.
,2009.
SurfacestructureandcompositionoffreshandbloomedchocolateanalysedusingX-rayphotoelectronspectroscopy,cryo-scanningelectronmicroscopyandenvironmentalscanningelectronmicroscopy.
LWT–FoodScienceandTechnology42(5),929–937.
Jayasundera,M.
,Adhikari,B.
P.
,Adhikari,R.
,Aldred,P.
,2010.
Theeffectoffood-gradelow-molecular-weightsurfactantsandsodiumcaseinateonspraydryingofsugar-richfoods.
FoodBiophysics5(2),128–137.
Jayasundera,M.
,Adhikari,B.
,Adhikari,R.
,Aldred,P.
,2011a.
Theeffectofproteintypesandlowmolecularweightsurfactantsonspraydryingofsugar-richfoods.
FoodHydrocolloids25(3),459–469.
Jayasundera,M.
,Adhikari,B.
,Adhikari,R.
,Aldred,P.
,2011b.
Theeffectsofproteinsandlowmolecularweightsurfactantsonspraydryingofmodelsugar-richfoods:powderproductionandcharacterisation.
JournalofFoodEngineering104(2),259–271.
Jayasundera,M.
,Adhikari,B.
,Aldred,P.
,Ghandi,A.
,2009.
Surfacemodicationofspraydriedfoodandemulsionpowderswithsurface-activeproteins:areview.
JournalofFoodEngineering93(3),266–277.
Jayasundera,M.
,Adhikari,B.
,Howes,T.
,Aldred,P.
,2011c.
Surfaceproteincoverageanditsimplicationsonspray-dryingofmodelsugar-richfoods:solubility,powderproductionandcharacterisation.
FoodChemistry128(4),1003–1016.
Jenni,K.
,2007.
Caractérisationdespropriétésdesurfacedepoudresalimentaires:farinedeblé.
Masterreport.
UniversitédeMontpellier,France.
Kim,E.
H.
J.
,2008.
Surfacecompositionofindustrialspray-drieddairypowdersanditsformationmechanisms.
Ph.
D.
Thesis,UniversityofAuckland.
Auckland,NewZealand.
Kim,E.
H.
J.
,Chen,X.
D.
,Pearce,D.
,2002.
Surfacecharacterizationoffourindustrialspray-drieddairypowdersinrelationtochemicalcomposition,structureandwettingproperty.
ColloidsandSurfacesB:Biointerfaces26(3),197–212.
Kim,E.
H.
J.
,Chen,X.
D.
,Pearce,D.
,2005a.
Meltingcharacteristicsoffatpresentonthesurfaceofindustrialspray-drieddairypowders.
ColloidsandSurfacesB:Biointerfaces42(1),1–8.
Kim,E.
H.
J.
,Chen,X.
D.
,Pearce,D.
,2005b.
Effectofsurfacecompositionontheowabilityofindustrialspray-drieddairypowders.
ColloidsandSurfacesB:Biointerfaces46(3),182–187.
Kim,E.
H.
J.
,Chen,X.
D.
,Pearce,D.
,2009a.
Surfacecompositionofindustrialspray-driedmilkpowders.
1.
Developmentofsurfacecompositionduringmanufacture.
JournalofFoodEngineering94(2),163–168.
Kim,E.
H.
J.
,Chen,X.
D.
,Pearce,D.
,2009b.
Surfacecompositionofindustrialspray-driedmilkpowders.
3.
Changesinthesurfacecompositionduringlong-termstorage.
JournalofFoodEngineering94(2),182–191.
Kim,E.
H.
J.
,Chen,X.
D.
,Pearce,D.
,2009c.
Surfacecompositionofindustrialspray-driedmilkpowders.
2.
Effectsofspraydryingconditionsonthesurfacecomposition.
JournalofFoodEngineering94(2),169–181.
Kirby,A.
R.
,MacDougall,A.
J.
,Morris,V.
J.
,2008.
Atomicforcemicroscopyoftomatoandsugarbeetpectinmolecules.
CarbohydratePolymers71(4),640–647.
Knowlton,T.
M.
,Carson,J.
W.
,Klinzing,J.
W.
,Yang,W.
C.
,1994.
Theimportanceofstorage,transferandcollection.
ChemicalEngineeringProgress90(4),44–54.
Lagoudaki,M.
,Demertzis,P.
G.
,1994.
Equilibriummoisturecharacteristicsofdehydratedfoodconstituentsasstudiedbyamodiedinversegaschromatographicmethod.
JournaloftheScienceofFoodandAgriculture65(1),101–109.
Lagoudaki,M.
,Demertzis,P.
G.
,Kontominas,M.
G.
,1993.
MoistureAdsorptionBehaviourofPastaProducts.
Lebensmittel-Wissenschaftund-Technologie26(6),512–516.
Lukasiewicz,M.
,Ptaszek,A.
,Koziel,L.
,Achremowicz,B.
,Grzesik,M.
,2007.
Carboxymethylcellulose/polyanilineblends.
Synthesisandproperties.
PolymerBulletin58(1),281–288.
Marabi,A.
,Raemy,A.
,Bauwens,I.
,Burbidge,A.
,Wallach,R.
,Saguy,I.
S.
,2008.
Effectoffatcontentonthedissolutionenthalpyandkineticsofamodelfoodpowder.
JournalofFoodEngineering85(4),518–527.
Mathlouthi,M.
,Rogé,B.
,2003.
Watervapoursorptionisothermsandthecakingoffoodpowders.
FoodChemistry82(1),61–71.
McKenna,A.
B.
,1997.
Examinationofwholemilkpowderbyconfocallaserscanningmicroscopy.
JournalofDairyResearch64(3),423–432.
20I.
Murrieta-Pazosetal.
/JournalofFoodEngineering112(2012)1–21McKenna,A.
B.
,Lloyd,R.
J.
,Munro,P.
A.
,Singh,H.
,1999.
Microstructureofwholemilkpowderandofinsolublesdetectedbypowderfunctionaltesting.
Scanning21(5),305–315.
McMullin,S.
L.
,Bernhard,R.
A.
,Nickerson,T.
A.
,1975.
Heatsofadsorptionofsmallmoleculesonlactose.
JournalofAgriculturalandFoodChemistry23(3),452–458.
Millqvist-Fureby,A.
,Elofsson,U.
,Bergensthl,B.
,2001.
Surfacecompositionofspray-driedmilkprotein-stabilisedemulsionsinrelationtopre-heattreatmentofproteins.
ColloidsandSurfacesB:Biointerfaces21(1–3),47–58.
Millqvist-Fureby,A.
,Smith,P.
,2007.
Insitulecithinationofdairypowdersinspray-dryingforconfectioneryapplications.
FoodHydrocolloids21(5–6),920–927.
Murrieta-Pazos,I.
,Gaiani,C.
,Galet,L.
,Cuq,B.
,Desobry,S.
,Scher,J.
,2011.
Comparativestudyofparticlestructureevolutionduringwatersorption:skimandwholemilkpowders.
ColloidsandSurfacesB:Biointerface87(1),1–10.
Murrieta-Pazos,I.
,Gaiani,C.
,Galet,L.
,Scher,J.
,2012.
Compositiongradientfromsurfacetocoreindairypowders:agglomerationeffect.
FoodHydrocolloids26(1),149–158.
Newell,H.
E.
,Buckton,G.
,Butler,D.
A.
,Thielmann,F.
,Williams,D.
R.
,2001a.
Theuseofinversephasegaschromatographytomeasurethesurfaceenergyofcrystalline,amorphous,andrecentlymilledlactose.
PharmaceuticalResearch18(5),662–666.
Newell,H.
E.
,Buckton,G.
,Butler,D.
A.
,Thielmann,F.
,Williams,D.
R.
,2001b.
Theuseofinversephasegaschromatographytostudythechangeofsurfaceenergyofamorphouslactoseasafunctionofrelativehumidityandtheprocessesofcollapseandcrystallisation.
InternationalJournalofPharmaceutics217(1–2),45–56.
Newell,H.
E.
,Buckton,G.
,2004.
Inversegaschromatography:investigatingwhetherthetechniquepreferentiallyprobeshighenergysitesformixturesofcrystallineandamorphouslactose.
PharmaceuticalResearch21(8),1440–1444.
Nijdam,J.
J.
,Langrish,T.
A.
G.
,2006.
Theeffectofsurfacecompositiononthefunctionalpropertiesofmilkpowders.
JournalofFoodEngineering77(4),919–925.
Ohtani,T.
,Yoshino,T.
,Hagiwara,S.
,Maekawa,T.
,2000a.
High-resolutionimagingofstarchgranulestructureusingatomicforcemicroscopy.
Starch–Strke52(5),150–153.
Ohtani,T.
,Yoshino,T.
,Ushiki,T.
,Hagiwara,S.
,Maekawa,T.
,2000b.
Structureofricestarchgranulesinnanometrescaleasrevealedbyatomicforcemicroscopy.
JournalofElectronMicroscopy49(3),487–489.
Olivares,M.
L.
,PasseggiJr.
,M.
C.
G.
,Ferrón,J.
,Zorrilla,S.
E.
,Rubiolo,A.
C.
,2010.
Studyofmilk/kappa-carrageenanmixturesbyatomicforcemicroscopy.
FoodHydrocolloids24(8),776–782.
Ortega-Rivas,E.
,2009.
Bulkpropertiesoffoodparticulatematerials:anappraisaloftheircharacterisationandrelevanceinprocessing.
FoodandBioprocessTechnology2(1),28–44.
Paramita,V.
,Iida,K.
,Yoshii,H.
,Furuta,T.
,2010.
Effectoffeedliquidtemperatureonthestructuralmorphologiesofd-limonenemicroencapsulatedpowderanditspreservation.
JournalofFoodScience75(1),E39–E45.
Parker,M.
L.
,Kirby,A.
R.
,Morris,V.
J.
,2008.
Insituimagingofpeastarchinseeds.
FoodBiophysics3(1),66–76.
Perea,M.
J.
,Arzate,I.
,Terres,E.
,Alamilla,L.
,Calderon,G.
,Guttierrez,G.
F.
Garibay,V.
,ChanonaJ.
J.
,2009.
Morphologicalcharacterizationofpowdermilkandtheirrelationshipwithrehydrationproperties.
EnProceedingsofthe5thCIGRSectionIVInternationalSymposiumonFood439Processing,MonitoringTechnologyinBioprocessesandFoodQualityManagemen,Potsdam,Germany.
Prego,I.
,Maldonado,S.
,Otegui,M.
,1998.
Seedstructureandlocalizationofreservesinchenopodiumquinoa.
AnnalsofBotany82(4),481–488.
Prom-u-thai,C.
,Huang,L.
,Rerkasem,B.
,Thomson,G.
,Kuo,J.
,Saunders,M.
,Dell,B.
,2008.
Distributionofproteinbodiesandphytate-richinclusionsingraintissuesoflowandhighironricegenotypes.
CerealChemistry85(2),257–265.
Qi,P.
X.
,2007.
Studiesofcaseinmicellestructure:thepastandthepresent.
LeLait87(4–5),21.
Quiroga,C.
C.
,Bergensthl,B.
,2007.
Characterizationofthemicrostructureofphasesegregatedamylopectinandb-lactoglobulindrymixtures.
FoodBiophysics2(4),172–182.
Rayas-Duarte,P.
,Robinson,S.
F.
,Freeman,T.
P.
,1995.
Insitulocationofastarchgranuleproteinindurumwheatendospermbyimmunocytochemistry.
CerealChemistry72(3),269–274.
Ridout,M.
J.
,Parker,M.
L.
,Hedley,C.
L.
,Bogracheva,T.
Y.
,Morris,V.
J.
,2004.
Atomicforcemicroscopyofpeastarch:originsofimagecontrast.
Biomacromolecules5(4),1519–1527.
Riganakos,K.
A.
,Demertzis,P.
G.
,Kontominas,M.
G.
,1989.
Gaschromatographicstudyofwatersorptionbywheatour.
JournalofCerealScience9(3),261–271.
Riganakos,K.
A.
,Demertzis,P.
G.
,Kontominas,M.
G.
,1994.
Watersorptionbywheatandsoyour:comparisonofthreemethods.
JournalofCerealScience20(1),101–106.
Round,A.
N.
,Rigby,N.
M.
,MacDougall,A.
J.
,Morris,V.
J.
,2010.
Anewviewofpectinstructurerevealedbyacidhydrolysisandatomicforcemicroscopy.
CarbohydrateResearch345(4),487–497.
Rousset,Ph.
,Sellappan,P.
,Daoud,P.
,2002.
Effectofemulsiersonsurfacepropertiesofsucrosebyinversegaschromatography.
JournalofChromatographyA969(1–2),97–101.
Rouxhet,P.
G.
,Genet,M.
J.
,2011.
XPSanalysisofbio-organicsystems.
SurfaceandInterfaceAnalysis43(12),1453–1470.
Rouxhet,P.
G.
,Misselyn-Bauduin,A.
M.
,Ahimou,F.
,Genet,M.
J.
,Adriaensen,Y.
,Desille,T.
,Bodson,P.
,Deroanne,C.
,2008.
XPSanalysisoffoodproducts:towardchemicalfunctionsandmolecularcompounds.
SurfaceandInterfaceAnalysis40(3–4),718–724.
Russell,P.
L.
,Gough,B.
M.
,Greenwell,P.
,Fowler,P.
,Munro,H.
S.
,1987.
AstudybyESCAofthesurfaceofnativeandchlorine-treatedwheatstarchgranules:theeffectsofvarioussurfacetreatments.
JournalofCerealScience5(1),83–100.
Saad,M.
,Gaiani,C.
,Scher,J.
,Cuq,B.
,Ehrhardt,J.
J.
,Desobry,S.
,2009.
Impactofre-grindingonhydrationpropertiesandsurfacecompositionofwheatour.
JournalofCerealScience49(1),134–140.
Saad,M.
,Gaiani,C.
,Mullet,M.
,Scher,J.
,Cuq,B.
,2011a.
X-rayphotoelectronspectroscopyforwheatpowders:measurementofsurfacechemicalcomposition.
JournalofAgriculturalandFoodChemistry59(5),1527–1540.
Saad,M.
,Sadoudi,A.
,Rondet,E.
,Cuq,B.
,2011b.
Morphologicalcharacterizationofwheatpowders,howtocharacterizetheshapeofparticles.
JournalofFoodEngineering102(4),293–301.
Sanyal,B.
,Chawla,S.
P.
,Sharma,A.
,2009.
AnimprovedmethodtoidentifyirradiatedricebyEPRspectroscopyandthermoluminescencemeasurements.
FoodChemistry116(2),526–534.
Shrestha,A.
K.
,Howes,T.
,Adhikari,B.
P.
,Wood,B.
J.
,Bhandari,B.
R.
,2007.
Effectofproteinconcentrationonthesurfacecomposition,watersorptionandglasstransitiontemperatureofspray-driedskimmilkpowders.
FoodChemistry104(4),1436–1444.
Smith,D.
S.
,Mannheim,C.
H.
,Gilbert,S.
G.
,1981.
Watersorptionisothermsofsucroseandglucosebyinversegaschromatography.
JournalofFoodScience46(4),1051–1053.
Stevens,J.
S.
,Schroeder,S.
L.
M.
,2009.
QuantitativeanalysisofsaccharidesbyX-rayphotoelectronspectroscopy.
SurfaceandInterfaceAnalysis41(6),453–462.
Ticehurst,M.
D.
,York,P.
,Rowe,R.
C.
,Dwivedi,S.
K.
,1996.
Characterisationofthesurfacepropertiesofalpha-lactosemonohydratewithinversegaschromatography,usedtodetectbatchvariation.
InternationalJournalofPharmaceutics141(1–2),93–99.
Tomoaia-Cotisel,M.
,Cioica,N.
,Cota,C.
,Racz,C.
,Petean,I.
,Bobos,L.
D.
,Mocanu,A.
,Horovitz,O.
,2010.
Structureofstarchgranulesrevealedbyatomicforcemicroscopy.
StudiaUniversitatisBabes-BolyaiChemia2(2),313–324.
Ulusoy,U.
,2008.
ApplicationofANOVAtoimageanalysisresultsoftalcparticlesproducedbydifferentmilling.
PowderTechnology188(2),133–138.
Vega,C.
,Kim,E.
H.
J.
,Chen,X.
D.
,Roos,Y.
H.
,2005.
Solid-statecharacterizationofspray-driedicecreammixes.
ColloidsandSurfacesB:Biointerfaces45(2),66–75.
Vignolles,M.
-L.
,Lopez,C.
,Ehrhardt,J.
J.
,Lambert,J.
,Méjean,S.
,Jeantet,R.
,Schuck,P.
,2009.
Methods'combinationtoinvestigatethesuprastructure,compositionandpropertiesoffatinfat-lleddairypowders.
JournalofFoodEngineering94(2),154–162.
Waduge,R.
N.
,Xu,S.
,Seetharaman,K.
,2010.
Iodineabsorptionpropertiesanditseffectonthecrystallinityofdevelopingwheatstarchgranules.
CarbohydratePolymers82(3),786–794.
Whistler,R.
L.
,Turner,E.
S.
,1955.
Finestructureofstarchgranulesections.
JournalofPolymerScience18(87),153–156.
Wuttisela,K.
,Triampo,W.
,Triampo,D.
,2009.
Chemicalforcemappingofphosphateandcarbononacid-modiedtapiocastarchsurface.
InternationalJournalofBiologicalMacromolecules44(1),86–91.
Zhou,Q.
,Cadwallader,K.
R.
,2004.
Inversegaschromatographicmethodformeasurementofinteractionsbetweensoyproteinisolateandselectedavorcompoundsundercontrolledrelativehumidity.
JournalofAgriculturalandFoodChemistry52(20),6271–6277.
Zhou,Q.
,Cadwallader,K.
R.
,2006.
Effectofavorcompoundchemicalstructureandenvironmentalrelativehumidityonthebindingofvolatileavorcompoundstodehydratedsoyproteinisolates.
JournalofAgriculturalandFoodChemistry54(5),1838–1843.
Zimm,B.
,Lundberg,J.
L.
,1956.
Sorptionofvapoursbyhighpolymers.
JournalofPhysicalChemistry60(4),425–428.
I.
Murrieta-Pazosetal.
/JournalofFoodEngineering112(2012)1–2121
昔日数据,国内商家,成立于2020年,主要销售湖北十堰和香港HKBN的云服务器,采用KVM虚拟化技术构架,不限制流量。当前夏季促销活动,全部首月5折促销,活动截止于8月11日。官方网站:https://www.xrapi.cn/5折优惠码:XR2021湖北十堰云服务器托管于湖北十堰市IDC数据中心,母鸡采用e5 2651v2,SSD MLC企业硬盘、 rdid5阵列为数据护航,100G高防,超出防...
云基yunbase怎么样?云基成立于2020年,目前主要提供高防海内外独立服务器,欢迎各类追求稳定和高防优质线路的用户。业务可选:洛杉矶CN2-GIA+高防(默认500G高防)、洛杉矶CN2-GIA(默认带50Gbps防御)、香港CN2-GIA高防(双向CN2GIA专线,突发带宽支持,15G-20G DDoS防御,无视CC)。目前,美国洛杉矶CN2-GIA高防独立服务器,8核16G,最高500G ...
hostodo从2014年年底运作至今一直都是走低价促销侧率运作VPS,在市场上一直都是那种不温不火的品牌知名度,好在坚持了7年都还运作得好好的,站长觉得hostodo还是值得大家在买VPS的时候作为一个候选考虑项的。当前,hostodo有拉斯维加斯和迈阿密两个数据中心的VPS在促销,专门列出了2款VPS给8T流量/月,基于KVM虚拟+NVMe整列,年付送DirectAdmin授权(发ticket...
wmp10为你推荐
天府热线劲舞团 四川 天府热线 在哪改密码?选择大区怎么没天府?淘宝收费淘宝都什么服务是收费的?博客外链怎么用博客发外链?真正免费的网络电话有真正的免费的网络电话吗 ?flash导航条如何制作flash导航条申请证书申请毕业证书ios系统iOS系统是什么网络广告投放网络广告投放有哪些技巧?铁路客服中心铁路客户服务中心怎么订票南北互通怎么知道是南北互通机房?
深圳虚拟主机 个人注册域名 上海vps 特价空间 512m内存 新站长网 私有云存储 免费全能空间 服务器托管什么意思 umax120 hkt 如何注册阿里云邮箱 韩国代理ip 百度云空间 实惠 阿里云邮箱登陆 netvigator 美国十大啦 游戏服务器 主机箱 更多