regulationgmail企业邮箱

gmail企业邮箱  时间:2021-01-28  阅读:()
ВведениеПреобразователипостоянногонапряжения,обеспечивающиепроизвольноесогласованиеуровнейвходногоивыходногонапряженийзасчетвведениявструктурутрансформатора,широкоизвестны[1,2]инаходятприменениевомногихнаправленияхэлектроники,втомчислевсолнечнойэнергетике[3,4].
Вчастности,внашейстранепроизводятсяпопыткиприменениятакихпреобразователейвсистемахэлектропитаниякосмическихаппаратов[5–8],вместоширокоиспользуемыхсистемэлектропитаниянабазебестрансформаторныхпреобразователейпостоянногонапряжения[9,10].
Приэтом,ввидутого,чтосолнечнаябатареянаразныхучасткахвольтампернойхарактеристики(ВАХ)можетиметьсвойствакакисточниОсиповА.
В.
идр.
Обеспечениеблагоприятногопереключениятранзисторовинверторатокав.
.
.
C.
138–145138УДК621.
314ОБЕСПЕЧЕНИЕБЛАГОПРИЯТНОГОПЕРЕКЛЮЧЕНИЯТРАНЗИСТОРОВИНВЕРТОРАТОКАВПРЕОБРАЗОВАТЕЛЯХСОЗВЕНОМПОВЫШЕННОЙЧАСТОТЫОсиповАлександрВладимирович,канд.
техн.
наук,зав.
лаб.
НИИавтоматикииэлектромеханикиприТомскомуниверситетесистемуправленияирадиоэлектроники,Россия,634050,г.
Томск,пр.
Ленина,40.
Email:ossan@mail.
ruШиняковЮрийАлександрович,дртехн.
наук,директорНИИкосмическихтехнологийТомскогоуниверситетасистемуправленияирадиоэлектроники,Россия,634050,г.
Томск,пр.
Ленина,40.
Email:shua@main.
tusur.
ruОттоАртурИсаакович,мл.
науч.
сотр.
НИИкосмическихтехнологийТомскогоуниверситетасистемуправленияирадиоэлектроники,Россия,634050,г.
Томск,пр.
Ленина,40.
Email:ottoai@mail.
ruЧернаяМарияМихайловна,мл.
науч.
сотр.
НИИкосмическихтехнологийТомскогоуниверситетасистемуправленияирадиоэлектроники,Россия,634050,г.
Томск,пр.
Ленина,40.
Email:cmm91@inbox.
ruТкаченкоАлександрАлександрович,канд.
техн.
наук,зав.
отделомНИИавтоматикииэлектромеханикиприТомскомуниверситетесистемуправленияирадиоэлектроники,Россия,634050,г.
Томск,пр.
Ленина,40.
Email:aem@tusur.
ruАктуальностьработыопределяетсянеобходимостьюуменьшениядинамическихпотерьвтранзисторахпреобразователясозвеномповышеннойчастотынаосноверегулируемогоинверторатока.
Цельработы:анализкоммутационныхпроцессовврегулируемоминверторетока,разработкасхемыиспособарегулированиявыходноготока,обеспечивающихбезопаснуютраекториюпереключениясиловыхтранзисторов.
Методыисследованияоснованынаобщихположенияхтеорииэлектрическихцепей,теорииалгебраическихуравнений,вычислительныхметодахииспользованиисовременныхинструментальныхсистемиметодовматематическогомоделирования.
Результаты.
Рассмотреныкоммутационныепроцессыприрезонансномпереключениитранзисторовинверторатокавпреобразователесозвеномповышеннойчастоты.
Показано,чтоблокирующиедиодыинвертораограничиваютамплитудурезонансныхколебанийтокатранзисторовнауровнетокавходногодросселя.
Исключениеблокирующихдиодовивключениеобратныхдиодовтранзисторовприводитквозможностиреверсатокакоммутирующегодросселяисущественномузавышениютокатранзисторов,определяемомувэтомслучаебалансоммощностиреактивныхэлементовкоммутационногоконтура.
Исследованыкоммутационныепроцессытранзисторовинвертораприфазовомрегулированиивыходноготока,приэтомустановлено,чтонаинтервалезакорачиваниявходногоисточникатоктранзисторасостоитизсоставляющейтокасамогоисточникапитанияисоставляющейтока,накопленноговкоммутирующихдросселяхприразрядеконденсаторавключаемоготранзистора.
Показано,чтомаксимальныйтоктранзисторовопределяетсясоотношениемволновогосопротивлениякоммутирующегоконтураисопротивлениянагрузки.
Составленыуравненияэнергобаланса,наосновекоторыхполученысоотношения,позволяющиеопределитьмаксимальныезначенияэлектрическихпараметровтранзисторов.
Сделанывыводы,проведенообсуждениеполученныхрезультатов.
Ключевыеслова:Инвертортока,коммутационныепроцессы,динамическиепотери,коммутирующийрезонансныйконтур,безопасноепереключениетранзисторов.
канапряжения,такиисточникатока,могутприменятьсясоответственнокакинверторынапряжения[7],такиинверторытока[8].
СопоставлениеэнергетическиххарактеристикуказанныхвариантовреализациипреобразователявреальныхдиапазонахизмененияВАХсолнечнойбатареипоказалоэффективностьименносистемнаосновеинверторетока.
Однакоприпостроениисистемынаосновеклассическогоинверторатокавегоключахприсутствуютблокирующиеобратнуюпроводимостьдиоды,существенноувеличивающиестатическиепотерииухудшающиеКПДпреобразователя,чтокрайненежелательноприпостроениисистемэлектропитаниякосмическихаппаратов.
Поэтомуфункциюблокирующихдиодоввпреобразователяхсвыходомнапостоянномтокевыполняютдиодывыходноговыпрямителя[8].
Другимважнымнаправлениемминимизациипотерьвпреобразователеявляетсяуменьшениекоммутационныхпотерьприпереключениитранзисторов,обеспечиваемоепутемихбезопасногопереключения,включенияпринуленапряжения(ZVS)ивыключенияпринулетока(ZCS),реализациянепосредственногопреобразователяповышающеготипасмягкойкоммутациейрассмотренав[11,12].
Впреобразователяхсозвеномповышеннойчастотынаинверторенапряжениядляобеспечениябезопасноговыключениятранзисторовтрадиционноприменяетсяпараллельноевключениеконденсаторов,демпфирующихпроцессвыключениятранзисторов.
Приэтомнаинтервалекоммутационнойпаузыэтиконденсаторывступаютврезонанссиндуктивностьюрассеяниятрансформатора,формируемыеприэтомгармоническиеколебаниянапряженияназакрытомтранзисторевопределенныемоментывремениобеспечиваютусловиядляZVS[13].
Другойспособсостоитвформированииколебанийвдополнительномконтуре[14].
Коммутационныепроцессывинверторетокадлярезонансныхсхемсвыходомнапеременномтокеисследованыв[15–17],дляпреобразователейсвыходомнапостоянномтокеипромежуточнымзвеномвысокойчастотымягкоепереключениеформируетсяспомощьюрезонансныхконтуров[18–20].
Приэтомзначенияпараметровреактивныхэлементоврезонансногоконтураменяютсяпогармоническомузаконуиформируютблагоприятныеусловиядляпереключениялишьвопределенныемоментывремени,чтозатрудняетреализациюплавногорегулированиявыходноготока.
Например,в[19,20]этазадачарешаетсявведениемдополнительноготранзистора,подключающеговтребуемыемоментывременинавходинвертораконденсаторклампиобрывающегоколебательныйпроцесс.
Такимобразом,исследованиекоммутационныхпроцессоввинверторетокаприегоработенавыпрямительиразработкаспособовбезопасногопереключениятранзистороввэтихсхемахявляетсяцельюнастоящейработы.
НерегулируемаясхемаинверторатокаНакоммутационныепроцессывинверторетокаоказываетбольшоевлияниеспецификаегоработы,вчастности,вотличиеотинверторанапряжения,винверторетокакоммутационнаяпаузаформируетсяпутемодновременноговключениявсехтранзисторовинвертора,чтопозволяетзакоротитьвходнойисточник.
ДляминимизациипотерьпривключениипоследовательностранзисторамивводятсякоммутирующиедросселяL1L4,затягивающиефронттоканавключаемомтранзисторе,иконденсаторCр,обеспечивающийформированиерезонансныхколебанийнаинтервалекоммутационнойпаузы(рис.
1,а).
ПринципработысхемыпоясняетсядиаграммамитоковинапряженийтранзисторовинверторатокаскоммутирующимидросселямиL1=L2=L3=L4=1мкГнирезонанснымконденсаторомСр=0,1мкФ,которыеприразныхзначенияхпаузыtpauseпоказанынарис.
1,б,в.
ПривключеннойдиагоналиVT2,VT3ивключениитранзисторовVT1,VT4засчетдросселейпроисходитплавноеувеличениетокавоткрываемыхтранзисторахVT1,VT4иуменьшениевVT2,VT3,чтоприводиткуменьшениювыходноготокаинвертора.
Сменаполярностипоследнегои,соответственно,дальнейшееизменениетоковтранзисторовпроисходитзасчетразрядарезонансногоконденсатора,токкоторогонеможетпревышатьтокавходногодросселя,т.
к.
черезнегопроходитцепьразряда.
Далеепроцессыопределяютсябалансоммощностиреактивныхэлементов.
Вслучае,представленномнадиаграммах,энергиязаряженногоконденсаторапревышаетэнергиюдросселей,поэтомукмоментуравенстватокаконденсатораитокавходногодросселянаконденсатореостаетсянапряжение,котороезапираетдиодытранзисторовVT1,VT4иразряжаетсятокомвходногодросселячерезтранзисторыVT2,VT3.
ВышесказанноеможноотразитьуравнениемгдеIL–токвходногодросселя;Uвых–выходноенапряжение,приведенноекпервичнойобмоткетрансформатора;EC_discharge–энергияконденсатора,сброшеннаявдроссель.
Следуетотметить,чтоинтервалсбросаэнергиивдроссельявляетсянаиболееблагоприятнымдлявыключениятранзисторовVT1,VT4,таккакихтокравеннулю(рис.
1,б).
ОднакопривключенныхтранзисторахколебательныйпроцесспродолжаетсясамплитудойнапряжениянаконденсатореUk,соответствующейравенствуэнергииконденсатораикоммутирующихдросселей,токитранзисторовприэтомколеблютсясполнойамплитудойтокавходногодросселя22LL,.
22kkULILUI22L_discharge,22CULIEИзвестияТомскогополитехническогоуниверситета.
2015.
Т.
326.
№4139Рис.
1.
Инвертортокасблокирующимидиодамиидиаграммыегоработы:а)схемаинверторатокаскоммутирующимидросселями;б)благоприятноевыключение,паузаtpause=0,6мкс;в)неблагоприятноевыключение,паузаtpause=2,5мксFig.
1.
Currentinverterwithblockingdiodesanddiagramsofitsoperation:a)currentinverterwithswitchingchokes;b)favorableswitchingoff,pausetpause=0,6ms;c)unfavorableswitchingoff,pausetpause=2,5msВданномслучаекоммутационныепотеризависятотмоментавыключения.
Так,например,выключениеприсущественномтоке(рис.
1,в)нежелательно.
Такимобразом,винверторетокаможнореализоватьполностьюблагоприятноепереключениетранзисторов.
Однакостатическиепотеривтакойсхемесущественнывпервуюочередьиззаналичияблокирующихдиодов,установкакоторыхвклассическихсхемахнеобходимадляисключениязакорачиваниянапряжениявыходногоконденсатора.
Вслучаеработыинверторанавыпрямительблокирующиедиодымогутбытьисключеныизсхемы,таккакзакорачиваниювыходногоконденсаторапрепятствуютдиодывыпрямителя.
Схемаинверторатокабезблокирующихдиодовпредставленанарис.
2,а,приотсутствииблокирующихдиодовутранзисторовпоявляетсяобратнаяпроводимостьзасчетработыобратныхдиодов,поэтомукоммутационныепроцессывинверторетокасущественноменяются,диаграммыпредставленынарис.
2,б,в.
Какивслучаесхемынарис.
1,привключениитранзисторовVT1,VT4происходитплавноеперераспределениетоковмеждупарамитранзисторовVT2,VT3иVT1,VT4,однакозасчетобратныхдиодовразрядрезонансногоконденсаторапроисходитполностьюдосниженияегонапряжениядонуля,врезультатечеготоккоммутирующихдросселей,асоответственно,итранзисторовможетсущественнопревышатьтоквходногодросселя.
Такимобразом,амплитудаколебанийнапряжениярезонансногоконденсатораравнаамплитудевыходногонапряжения,приэтомтокколебательногоконтураиззаработыобратныхдиодовопределяетсясоотношениемэнергий,запасенныхвиндуктивностях,поотношениюкэнергиирезонансногоконденсатораИнтервал,накоторомтоккоммутирующихдросселейпревышаеттоквходногодросселя,являетсянаиболееблагоприятнымдлявыключениятранзисторовVT1,VT4,таккакихобратныедиодывэтовремяоткрыты,случайнарис.
2,б.
Однако,еслитранзисторынезапирать,колебательныйпроцесспродолжаетсясамплитудойтокавдросселях,превышающейвходнойтоксоответственноэнергиирезонансногоконденсатора.
Благоприятноговыключенияможнодостичьвмоментыотрицательноготокаключа,т.
е.
приоткрытыхобратныхдиодах(рис.
2,в).
Основнымнедостаткомпредставленныхсхемявляетсяневозможностьреализациирегулированиявыходноготокаинвертора,чтосущественносужаетобластьпрактическогопримененияприведенныхспособовобеспеченияблагоприятнойкоммутации.
ИнвертортокасфазовымрегулированиемПриширотноимпульсномрегулированиивыходноготока,реализуемом,какправило,путемфазовогосдвигауправляющихимпульсовверхнейинижнейпартранзисторов,натактеуправлениякромеинтервалапередачиэнергиивнагрузкуТобразуетсяинтервалзакорачиваниявходногоисточника(1–)Т.
ВыходныепараметрыопределяютсядлительностьюимпульсовтокаL;,UEII22,.
22kkULIIULа/aб/bв/c4,964,98t,мс-30030-30030UCICIVT1,VT4UVT1,VT44,994,97I,АU,I,АU,I,АU,I,АU,Uk4,964,984,97-30030-30030UCICIVT1,VT4UVT1,VT44,99t,мсVT1VT2VT4VT3RHTV1CL1L2L3L4LCPОсиповА.
В.
идр.
Обеспечениеблагоприятногопереключениятранзисторовинверторатокав.
.
.
C.
138–145140Рис.
2.
Инвертортокабезблокирующихдиодовидиаграммыегоработы:а)схемаинверторатокабезблокирующихдиодов;б)благоприятноевыключение,tpause=0,8мкс;в)неблагоприятноевыключение,tpause=2мксFig.
2.
Currentinverterwithoutblockingdiodesanddiagramsofitsoperation:a)currentinverterwithoutswitchingdiodes;b)favorableswitchingoff,pausetpause=0,8s;c)unfavorableswitchingoff,pausetpause=2sгдеЕ–входноенапряжение,т.
е.
инверторработаетврежимеповышениявыходногонапряжения.
Согласноалгоритмуфазовогорегулированиятранзисторыопережающейпарывключаютсяприненулевомнапряжении,атранзисторыотстающейпарывыключаютсяприненулевомтоке,поэтомутранзисторыопережающейпарыдолжныиметькоммутирующиедроссели,атранзисторыотстающейпары–коммутирующиеконденсаторы,соответствующаясхемаприведенанарис.
3.
Рис.
3.
ИнвертортокасфазовымрегулированиемFig.
3.
CurrentinverterwithphasecontrolРаботасхемыотраженанадиаграммах(рис.
4).
ПриоткрытойдиагоналитранзисторовVT2,VT3токвходногодросселязаряжаетвыходнойконденсатор,поистечениидлительностиимпульсазарядноготока(моментвремениt1)происходитотпираниетранзистораVT1иначинаетсяпроцесснарастаниятокавдросселеL1одновременноспроцессомспадатокавL2.
ПослеспадатокатранзистораVT2донуляивозрастаниятокаVT1дономинальногозначения(моментвремениt2)токнагрузкиравеннулю,конденсаторC4транзистораVT4начинаетразряжатьсяпоцепиVD2–VT1–VT3.
ОткрытоесостояниеобратногодиоданаэтоминтервалесоздаетблагоприятныеусловиядлявыключенияVT2ипереходукрежимуоткрытойстойкиVT1,VT3,т.
е.
транзисторVT2выключается.
ПоокончанииразрядаконденсатораC4транзистораVT4(моментвремениt3)открываетсяобратныйдиодэтоготранзистораинакопленныйвпроцессеразрядаконденсаторатокдросселейL1,L2замыкаетсянакороткопоцепиVT1–VT3–VD4–VD2.
Такимобразом,наинтервалезакорачиваниявходногоисточникатоктранзисторовкоротящейстойкиVT1,VT3имеетдвесоставляющие:составляющуювходноготокаILисоставляющуюрезонансноготокакоммутирующихдросселейIrz+,обусловленнуюразрядомдемпфирующегоконденсаторат.
е.
токтранзисторовпревышаеттоквходногодросселяILнавеличинуIrz+,соответствующуюзапасеннойвконденсаторахэнергии.
Балансэнергиинаэтоминтервалеможетбытьотраженуравнением(1)согласнокоторомунаувеличениетокавдросселяхL1,L2кромеэнергииконденсаторазатрачивается222241VTmaxL2rzL_discharge(),222ULIILIEVTmaxLrz+,IIIILVT1VT2VT4VT3RTVCL1L2C3C4а/aб/bв/cIVT1,VT4UVT1,VT4UCICIk4,964,98t,мс-30030-300304,994,97I,АU,I,АU,I,АU,IVT1,VT4UVT1,VT4IVTmax030-30UCICIk4,964,98t,мс0304,994,97-30I,АU,VT1VT2VT4VT3TV1CL1L2L3L4LCИзвестияТомскогополитехническогоуниверситета.
2015.
Т.
326.
№4141энергиявходногодросселяEL_discharge,чтоможновидетьподиаграмменапряжениянавходеинвертораUвх.
Учитывая,чтонаэтоминтервале(t2–t3)энергияконденсатораделитсяпоровнумеждудросселями,таккакнапряжениянанихравны,атоквходногодросселянепротекаетчерездроссельL2,уравнениеможноупроститьИзполученногоуравненияможноопределитьмаксимальноезначениетокавтранзисторахгде=2L/C–волновоесопротивлениекоммутирующегорезонансногоконтураприобменеэнергиеймеждудвумядросселямииоднимконденсатором.
Вэтомсостоянииинверторнаходитсявесьинтервалвремени,соответствующийзакорачиваниювходногодросселя(1–)Т.
ПоокончанииэтогоинтервалавключаетсятранзисторVT4,егообратныйдиодпопрежнемуоткрыт,поэтомувключениеблагоприятноеинадиаграммахизмененийнепроисходит.
ПереходврежимпередачиэнергиивнагрузкупроисходитпривыключениитранзистораVT3(моментвремениt4),приэтомуменьшениединамическихпотерьVT3обеспечиваетконденсаторС3,которыйпослевыключенияначинаетзаряжатьсятокомIС3,накопленнымвиндуктивностяхL1,L2,зарядсопровождаетсяуменьшениемэтихтоков.
ПослезарядаконденсатораС3довыходногонапряжения(моментвремениt5)открываютсядиодывыпрямителяитокначинаетпоступатьвнагрузку.
Процессзарядаконденсатораприпренебрежениизатуханиемтокакоммутирующегоконтураипульсациямивходногодросселяможноотразитьследующимуравнениемэнергобаланса(2)Согласноэтомууравнениюзарядконденсатораосуществляетсякакэнергиейрезонансногоконтура,накопленнойвкоммутирующихдросселях,такиэнергиейвходногодросселяEL_charge.
Крометого,изначальноэнергия,накопленнаявкоммутирующихдросселях,превышаетэнергию,необходимуюдлязарядаконденсаторанавеличинуEL_discharge(1).
Такимобразом,энергия,накопленнаявкоммутирующихдросселях,превышаетэнергию,затрачиваемуюимидлязарядаконденсаторанавеличинуEL_charge+EL_discharge,азначит,зарядконденсаторадовыходногонапряженияпроизойдетзадолгодополногосбросатокарезонансногоконтурапринекоторомтокеНаследующеминтервалеработы(t5–t6)полученныйизбытокэнергииEL_charge+EL_dischargeпередаетсявнагрузку.
ОпределитьвеличинутокаIVTchargeможно,учитывая,чтополовинуэнергиидлязарядаконденсаторС3получаетотдросселяL1,атаккакнапряжениянанихравны,уравнениеможноупроститьоткудаили(3)т.
е.
токполногозарядаконденсатораравенгеометрическойразноститокатранзисторовкоротящейстойкиитокакоммутирующегорезонансногоконтура.
ПослезарядаконденсатораС3донапряженияпитанияоставшийсявдросселяхL1,L2контурныйтоксбрасываетсявнагрузку,вмоментвремениt6токидросселейуменьшаютсядозначенийIL1=ILIL2=0,чтоприводиткзапираниюобратногодиодатранзистораVT2ипереходуврежимпередачиэнергииотвходногоисточника.
Главнымнедостаткомпредставленногоспособаобеспеченияблагоприятнойкоммутациитранзисторовявляетсязавышениеихмаксимальноготокасогласновыражению(3),котороепоотношениюквходномутокубудетвыглядетьследующимобразомВидно,чтодлямаксимальноготокатранзисторовопределяющимявляетсясоотношениесопротивлениянагрузкикволновомусопротивлениюкоммутационногоконтура.
Выводы1.
Винверторетокаскоммутирующимидросселямиивыходнымконденсаторомнаинтервалекоммутационнойпаузыформируютсярезонансныеколебания,обеспечивающиевыключениетранзисторовпринулетока,причемамплитудаколебанийзависитоттипаключейинвертора.
Вчастности,приключахсблокирующимидиодамиамплитудаколебанийтокаограничиваетсявходнымтокоминвертора,априисполненииключейинверторасобратнымидиодамиопределяетсяэнергиейрезонансногоконденсатора.
2.
Реализацияфазовогорегулированиявинверторетокаменяетрежимыкоммутациитранзисторов,поэтомуобеспечениеихблагоприятногопереключениядостигаетсязасчетрезонансногообменареактивнойэнергиеймеждукоммутирующимидросселямиопережающейпарытранзисторовидемпфирующимиконденсаторамиотстающейпарытранзисторов.
Приэтоммаксимальныйтоктранзисторовпревышаеттоквходногодросселянавеличинуреактивноготокакоммутирующегоконтура,определяемогоеговолновымсопротивлением.
VTmaxHVTmaxLL11.
IURIII2VTchargeLLrez2,IIII22VTchargeVTmaxrezIII2221VTmaxVTcharge3(),42LIIUVTchargeLrez-.
III2322221VTmaxVTcharge2rz+rz-L_charge2()().
22ULIILIIE+VTmax,rzLUUIII2242rz.
42ULIОсиповА.
В.
идр.
Обеспечениеблагоприятногопереключениятранзисторовинверторатокав.
.
.
C.
138–1451423.
Вописанномвработеинверторетокасфазовымрегулированиемвкоммутационныхпроцессахчастьэнергиивходногодросселяпоступаетвнагрузкучерезэлементыкоммутационногоконтура.
Энергияпередаетсявкоммутационныйдроссельпривключениитранзистораопережающейпарысогласно(1)ивдемпфирующийконденсаторпривыключениитранзистораотстающейпарысогласно(2).
Послеполногозарядаконденсатораполученнаяотвходногодросселяэнергияпоступаетвнагрузку.
ИзвестияТомскогополитехническогоуниверситета.
2015.
Т.
326.
№4143СПИСОКЛИТЕРАТУРЫ1.
КобзевА.
В.
Многозоннаяимпульснаямодуляция.
Теорияиприменениевсистемахпреобразованияпараметровэлектрическойэнергии.
–Новосибирск:Наука,1979.
–304с.
2.
РозановЮ.
К.
Полупроводниковыепреобразователисозвеномповышеннойчастоты.
–М.
:Энергоатомиздат,1987.
–184с.
3.
Pushpullconverterforhighefficiencyphotovoltaicconversion/P.
Petit,MAillerie.
,J.
P.
Sawicki,J.
P.
Charles//EnergyProcedia.
–2012.
–V.
18.
–P.
1583–1592.
4.
NewarchitectureforhighefficiencyDCDCconverterdedicatedtophotovoltaicconversion/P.
Petit,A.
Zegaoui,J.
P.
Sawicki,M.
Aillerie,J.
P.
Charles//EnergyProcedia.
–2011.
–V.
8.
–P.
688–694.
5.
Системаэлектропитаниякосмическогоаппарата:пат.
Рос.
Федерации№2396666;заявл.
29.
06.
2009;опубл.
10.
08.
10,Бюл.
№22.
–8с.
6.
Способэлектропитаниякосмическогоаппарата:пат.
Рос.
Федерации№2488933;заявл.
13.
10.
2011;опубл.
20.
04.
13.
Бюл.
№21.
–7с.
Рис.
4.
Коммутационныепроцессывинверторетокаприфазовомрегулировании.
L1,L2=1мкГн,С3,С4=50нФ,RH=10Ом,Е=30В,=0,7.
а)полныйтактуправления;б)интервалзакорачиванияисточникаFig.
4.
Switchingprocessesinthecurrentinverteratphasecontrol.
L1,L2=1HY,С3,С4=50nF,RH=10Ohm,Е=30V,=0,7.
a)completecontrolcycle;b)sourceshortingintervalа/aб/bγТ(1-γ)ТUупVT2UупVT105UупVT3UупVT405U,U,UVT4UVT3UVT1UVT2II4I34,974,984,99t,мс040040-40040IVT1IVT3IVT4IVT2U,I,АU,I,АU,I,АtpauseU,U,I,АUупVT305UупVT105ILIrz+Irz-IVTchgIVT2I3UVT4UVT1t2t3t4t54,9804,9824,9830400400-4040t,мс4,981U,I,АU,I,АU,UупVT2UупVT3UI4IVT1UVT2IVT4UVT3IVT3t1t6IОсиповА.
В.
идр.
Обеспечениеблагоприятногопереключениятранзисторовинверторатокав.
.
.
C.
138–145144UDC621.
314FAVORABLESWITCHINGOFTRANSISTORSOFTHECURRENTINVERTERINCONVERTERSWITHTHEHIGHFREQUENCYLINKAleksandrV.
Osipov,TomskStateUniversityofControlSystemsandRadioElectronics,40,Leninavenue,Tomsk,634050,Russia.
Email:ossan@mail.
ruYuriyA.
Shinyakov,TomskStateUniversityofControlSystemsandRadioElectronics,40,Leninavenue,Tomsk,634050,Russia.
Email:shua@main.
tusur.
ruArturI.
Otto,TomskStateUniversityofControlSystemsandRadioElectronics,40,Leninavenue,Tomsk,634050,Russia.
Email:ottoai@mail.
ruMariyaM.
Chernaya,TomskStateUniversityofControlSystemsandRadioElectronics,40,Leninavenue,Tomsk,634050,Russia.
Email:cmm91@inbox.
ruAleksandrA.
Tkachenko,TomskStateUniversityofControlSystemsandRadioElectronics,40,Leninavenue,Tomsk,634050,Russia.
Email:aem@tusur.
ruTherelevanceoftheresearchisdeterminedbytheneedtoreducedynamiclossesintransistorsoftheinverterwithhighfrequencylinkbasedonthecurrentadjustableinverter.
Theaimoftheresearchistosynthesizethecurrentinverterschemeandtodevelopthemethodofitsregulation,providingasafeswitchingoftransistors.
Researchmethodsarebasedonthegeneraltheoryofelectricalcircuits,theoryofalgebraicequations,computingmethodsandtheuseofmoderninstrumentalsystemsandmethodsofmathematicalmodeling.
7.
Системыэлектропитаниякосмическихаппаратовнаосноверегулируемыхпреобразователейспромежуточнымзвеномповышеннойчастоты/А.
В.
Осипов,Ю.
А.
Шиняков,А.
И.
Отто,М.
М.
Черная//ИзвестияТомскогополитехническогоуниверситета.
–2013.
–Т.
323.
–№4.
–С.
126–132.
8.
Системыэлектропитаниякосмическихаппаратовнаосноверегулируемыхинверторовтока/А.
В.
Осипов,Ю.
А.
Шиняков,А.
И.
Отто,М.
М.
Черная,А.
А.
Ткаченко//ИзвестияТомскогополитехническогоуниверситета.
–2014.
–Т.
324.
–№4.
–С.
102–109.
9.
Системыэлектропитаниякосмическихаппаратов/Б.
П.
Соустин,В.
И.
Иванчура,А.
И.
Чернышев,Ш.
Н.
Исляев.
–Новосибирск:ВОНаука,1994.
–318с.
10.
MukundR.
Patel.
Spacecraftpowersystems.
NewYork;Washington,D.
C.
:CRCPress,691p.
URL:http://www.
ereading.
mobi/bookreader.
php/135136/Patel__Spacecraft_Power_Systems.
pdf(датаобращения:15.
01.
2015).
11.
Двухфазныйповышающийпреобразовательсмягкойкоммутациейтранзисторовиособенностиегодинамическихсвойств/Р.
К.
Диксон,Ю.
Н.
Дементьев,Г.
Я.
Михальченко,С.
Г.
Михальченко,С.
М.
Семенов//ИзвестияТомскогополитехническогоуниверситета.
–2014.
–Т.
324.
–№4.
–С.
96–101.
12.
ShengYuTs.
,ChihYangHs.
InterleavedstepupconverterwithasinglecapacitorsnubberforPVenergyconversionapplications//InternationalJournalofElectricalPower&EnergySystems.
–2013.
–V.
53.
–P.
909–922.
13.
ИдрисовИ.
К.
Комбинированныйдвухтрансформаторныйпреобразовательсобратнымключомимягкимвключением:автореф.
дис.
…канд.
техн.
наук.
–Томск,2013.
–22с.
14.
ChanuriCh.
,ShahidI.
,SoibT.
ANewSoftSwitchingPWMDCDCConverterwithAuxiliaryCircuitandCentreTappedTransformerRectifier//MalaysianTechnicalUniversitiesConferenceonEngineering&Technology.
–Malaysia,2013.
–P.
241–247.
15.
СилкинЕ.
М.
Применениенулевыхсхеминверторовтокасквазирезонанснойкоммутацией//Силоваяэлектроника.
–2005.
–№3.
–С.
84–87.
16.
Инвертортока:пат.
Рос.
Федерации№2285325;заявл.
28.
04.
2003;опубл.
10.
10.
2006,Бюл.
№28.
–7с.
17.
МуркинМ.
Н.
,ЗеманС.
К.
,ЯрославцевЕ.
В.
Исследованиекоммутационныхпроцессоввинверторетока//ИзвестияТомскогополитехническогоуниверситета.
–2009.
–Т.
315.
–№4.
–С.
111–116.
18.
РозановЮ.
К.
,НикифоровА.
А.
Высокочастотнаякоммутацияэлектрическихцепейсрезонанснымиконтурами–перспективноенаправлениепреобразовательнойтехники//Электротехника.
–1991.
–№6.
–С.
20–28.
19.
МелешинВ.
И.
,ЯкушевВ.
А.
,ФрейдлинС.
Анализтранзисторногопреобразователятокасмягкойкоммутацией//Электричество.
–2000.
–№1.
–С.
52–56.
20.
PrasannaU.
,AkshayK.
AnalysisandDesignofZeroVoltageSwitchingCurrentFedIsolatedFullBridgeDC/DCConverter//IEEEElectricalandComputerEngineering.
–2011.
–P.
239–245.
Поступила25.
02.
2015г.
REFERENCES1.
KobzevA.
V.
Mnogozonnayaimpulsnayamodulyatsiya.
Teoriyaiprimenenievsistemakhpreobrazovaniyaparametrovelektricheskoyenergii[Multizonalpulsemodulation.
Thetheoryandapplicationinconversionsystemsofelectricenergyparameters].
Novosibirsk,NaukaPubl.
,1979.
304p.
2.
RozanovYu.
K.
Poluprovodnikovyepreobrazovatelisozvenompovyshennoychastoty[Semiconductorconverterswithhighfrequencylink].
Moscow,EnergoatomizdatPubl.
,1987.
184p.
3.
PetitP.
,AillerieM,SawickiJ.
P.
,CharlesJ.
P.
Pushpullconverterforhighefficiencyphotovoltaicconversion.
EnergyProcedia,2012,vol.
18,pp.
1583–1592.
4.
PetitP.
,ZegaouiA.
,SawickiJ.
P.
,AillerieM.
,CharlesJ.
P.
NewarchitectureforhighefficiencyDCDCconverterdedicatedtophotovoltaicconversion.
EnergyProcedia,2011,vol.
8,pp.
688–694.
5.
KudryashovV.
S.
,ElmanV.
O.
,NesterishinM.
V.
,GordeevK.
G.
,GladushchenkoV.
N.
,KhartovV.
V.
,KochuraS.
G.
,SoldatenkoV.
G.
,MelnikovN.
V.
,KozlovR.
V.
Sistemaelectropitaniyakosmicheskogoapparata[Thepowersupplysystemofthespacecraft].
PatentRF,no.
2396666,2010.
6.
KarplyukD.
S.
,KorotkikhV.
V.
,NestirishinM.
V.
,OpеnkoS.
I.
Sposobelectropitaniyakosmicheskogoapparata[Themethodofthespacecraftsupply].
PatentRF,no.
2488933,2013.
7.
OsipovA.
V.
,ShinyakovYu.
A.
,OttoA.
I.
,ChernayaM.
M.
Sistemyelektropitaniyakosmicheskikhapparatovnaosnovereguliruemykhpreobrazovateleyspromezhutochnymzvenompovyshennoychastity[Thepowersystembasedonspacevehiclescontrolledconverterswithintermediatehighfrequencylink].
BulletinoftheTomskPolytechnicUniversity,2013,vol.
323,no.
4,pp.
126–132.
8.
OsipovA.
V.
,ShinyakovYu.
A.
,OttoA.
I.
,ChernayaM.
M.
,TkachenkoA.
A.
Sistemyelektropitaniyakosmicheskikhapparatovnaosnovereguluruemykhinvertorovtoka[Powersupplysystemsofspacecraftbasedonadjustablecurrentinverters].
BulletinoftheTomskPolytechnicUniversity,2014,vol.
324,no.
4,pp.
102–109.
9.
SoustinB.
P.
,IvanchuraV.
I.
,ChernyshevA.
I.
,IslyaevSh.
N.
Sistemyelektropitaniyakosmicheskikhapparatov[Spacecraftpowersupplysystem].
Novosibirsk,NaykaPubl.
,1994.
318p.
10.
MukundR.
Patel.
Spacecraftpowersystems.
NewYork;Washington,D.
C.
:CRCPress,691p.
Availableat:http://www.
ereading.
mobi/bookreader.
php/135136/Patel__Spacecraft_Power_Systems.
pdf(accessed15January2015).
11.
DiksonR.
K.
,DementevYu.
N.
,MikhalchenkoG.
Ya.
,MikhalchenkoS.
G.
,SemenovS.
M.
Dvukhfaznypovyshayushchypreobrazovatelsmyagkoykommutatsieytranzistoroviosobennostiegodinamicheskikhsvoystv[Dynamicpropertiesofatwophaseboostconverterwithsoftswitchingtransistorstechnology].
BulletinoftheTomskPolytechnicUniversity,2014,vol.
324,no.
4,pp.
96–101.
12.
ShengYuTs.
,ChihYangHs.
InterleavedstepupconverterwithasinglecapacitorsnubberforPVenergyconversionapplications.
InternationalJournalofElectricalPower&EnergySystems,2013,vol.
53,pp.
909–922.
13.
IdrisovI.
K.
Kombinirovannydvukhtransformatornypreobrazovatelsobratnymklyuchomimyagkimvklyucheniem.
Kand.
Diss.
[Combinedtwotransformerinverterwithreversekeyandsoftswitching.
Dis.
Kand.
nauk].
Tomsk,2013.
22p.
14.
ChanuriCh.
,ShahidI.
,SoibT.
ANewSoftSwitchingPWMDCDCConverterwithAuxiliaryCircuitandCentreTappedTransformerRectifier.
MalaysianTechnicalUniversitiesConferenceonEngineering&Technology.
Malaysia,2013.
pp.
241–247.
15.
SilkinE.
M.
Primenenienulevykhskheminvertorovtokaskvazirezonansnoykommutatsiey[Applyingazeroinvertercircuitcurrentwithquasiresonantswitching].
Silovayaelectronika,2005,no.
3,pp.
84–87.
16.
SilkinE.
M.
Invertortoka[Thecurrentinverter].
PatentRF,no.
2285325,2006.
17.
MurkinM.
N.
,ZemanS.
K.
,YaroslavtsevE.
V.
Issledovaniekommutatsionnykhprotsessovvinvertoretoka[Studyingswitchingprocessesincurrentinverter].
BulletinoftheTomskPolytechnicUniversity,2009,vol.
315,no.
4,pp.
111–116.
18.
RozanovYu.
K.
,NikiforovA.
A.
Vysokochastotnayakommutatsiyaelectricheskikhtsepeysrezonansnymikonturami–perspektivnoenapravleniepreobrazovatelnoytekhniki[Highfrequencyswitchingofelectriccircuitswithresonantcircuitsisapromisingdirectionintransformativetechnology].
RussianElectricalEngineering,1991,no.
6,pp.
20–28.
19.
MeleshinV.
I.
,YakushevV.
A.
,FreydlinS.
Analiztranzistornogopreobrazovatelyatokasmyagkoykommutatsiey[Analysisofthetransistorcurrentconverterwithasoftswitching].
ElectricalTechnologyRussia,2000,no.
1,pp.
52–56.
20.
PrasannaU.
,AkshayK.
AnalysisandDesignofZeroVoltageSwitchingCurrentFedIsolatedFullBridgeDC/DCConverter.
IEEEElectricalandComputerEngineering,2011.
pp.
239–245.
Received:25February2015.
ИзвестияТомскогополитехническогоуниверситета.
2015.
Т.
326.
№4145Results.
Thepaperconsidersswitchingprocessesincaseofresonantswitchingoftransistorsofthecurrentinverterintheconverterwiththehighfrequencylink.
Itisshownthatblockingdiodesoftheinverterrestrictamplitudeofresonanceoscillationsofcurrentoftransistorsatthelevelofcurrentoftheinputchoke.
Theexceptionofblockingdiodesleadstoessentialupratingofcurrentofthetransistors,definedbybalanceofpowerofreactiveelementsofaresonantcircuit.
Theauthorshavestudiedtheswitchingprocessesoftransistorsoftheinverterincaseofphaseregulationofanoutputcurrent.
Itwasascertainedthatontheintervalofinputsourceshortcircuitthetransistorcurrentconsistsofthesourcecurrentcomponentandcurrentcomponentaccumulatedinswitchingchokesincaseofthecapacitordischarge.
Theauthorsderivedtheenergybalanceequations.
Theywerethebaseforobtainingtheratioswhichallowdefiningthemaximumvaluesofcurrentintransistors.
Theauthorsmadeconclusionsanddiscussedtheresults.
Keywords:Currentinverter,switchingoperations,dynamiclosses,switchingresonantcircuit,safeswitchingoftransistors.

UCloud:全球大促降价,云服务器全网最低价,1核1G快杰云服务器47元/年

ucloud:全球大促活动降价了!这次云服务器全网最低价,也算是让利用户了,UCloud商家调低了之前的促销活动价格,并且新增了1核1G内存配置快杰型云服务器,价格是47元/年(也可选2元首月),这是全网同配置最便宜的云服务器了!UCloud全球大促活动促销机型有快杰型云服务器和通用型云服务器,促销机房国内海外都有,覆盖全球20个城市,具体有北京、上海、广州、香港、 台北、日本东京、越南胡志明市、...

3C云1核1G 9.9元 4核4G 16元 美国Cera 2核4G 24元

3C云互联怎么样?3C云互联专注免备案香港美国日本韩国台湾云主机vps服务器,美国高防CN2GIA,香港CN2GIA,顶级线路优化,高端品质售后无忧!致力于对互联网云计算科技深入研发与运营的极客共同搭建而成,将云计算与网络核心技术转化为最稳定,安全,高速以及极具性价比的云服务器等产品提供给用户!专注为个人开发者用户,中小型,大型企业用户提供一站式核心网络云端服务部署,促使用户云端部署化简为零,轻松...

弘速云(28元/月)香港葵湾2核2G10M云服务器

弘速云怎么样?弘速云是创建于2021年的品牌,运营该品牌的公司HOSU LIMITED(中文名称弘速科技有限公司)公司成立于2021年国内公司注册于2019年。HOSU LIMITED主要从事出售香港vps、美国VPS、香港独立服务器、香港站群服务器等,目前在售VPS线路有CN2+BGP、CN2 GIA,该公司旗下产品均采用KVM虚拟化架构。可联系商家代安装iso系统,目前推出全场vps新开7折,...

gmail企业邮箱为你推荐
秦殇内存修改器秦殇poq.exe文件怎么修改啊轿车和suv哪个好SUV和轿车哪个好点?纠结手机音乐播放器哪个好哪种手机音乐播放器最好核芯显卡与独立显卡哪个好独立显卡和核芯显卡有什么区别车险哪个好买汽车保险,买哪几种比较好东莞电信网上营业厅东莞电信网上营业厅是不是有个宽带团购活动?东莞电信宽带套餐广东东莞电信宽带资费是怎么样的?360云盘网页版360云盘网页版在哪里登录呀?360云u盘介绍一下360云u盘360云盘共享群360云盘怎么找共享群
台湾主机 免费注册网站域名 域名备案中心 希网动态域名 bluevm windows主机 512av 嘉洲服务器 有益网络 空间论坛 什么是服务器托管 qq云端 ca187 google台湾 东莞主机托管 广州虚拟主机 华为k3 成都主机托管 免费获得q币 时间服务器 更多