specific腾讯qq空间登录
腾讯qq空间登录 时间:2021-01-21 阅读:(
)
ResearchofImprovedAntColonyHybridAlgorithmLiShijun1,a,HanYu1,b,GuHongjun1,c,GongHe1,d,LiJian1,el1CollegeofInformation&Technology,JilinAgriculturalUniversity,Changchun130118,China.
a452835889@qq.
com,b372600730@qq.
com,c330837495@qq.
comd29878671@qq.
com,e2312852319@qq.
comKeywords:antcolonyalgorithm,immunealgorithm,artificialfishswarmalgorithm,hybridalgorithm.
Abstract.
Inordertoextendtheapplicationofantcolonyalgorithm(ACA),manyscholarscombinedtheantcolonyalgorithmwithimmunealgorithm(IA)orotheralgorithmstosolvetheproblemofslowconvergence.
Tofullysolvethetoolongsearchtime,easilyfallingintolocaloptimization,slowconvergenceandsomeotherdefects,theimmunealgorithmandartificialfishswarmalgorithm(AFSA)combinewiththeantcolonyalgorithm,andtheantcolonyhybridalgorithmisproposed.
Thenbysolvingthetravelingsalesmanproblem(TSP),thenewalgorithmissimulated,andtheresultsshowthatimprovingalgorithmiseffectiveandfeasible.
IntroductionTheantcolonyalgorithm(ACA)wasfirstproposedbyItalyscholarDorigoM.
andothersin1991,anovelsimulatedevolutionaryalgorithm,antssearchforapaththroughthesecretionofpheromonescatteredonitspath.
Thentheantsrandomlychoosearoadthatdidn'tpass,releasepheromoneaboutthelengthofthispath.
Buttheamountofinformationreleasedisinverselyproportionaltothelengthofthepath,whichlikelytochoosethepathofalargeramountofinformation,it'sapositivefeedbackmechanism.
Thebestpathistheamountofinformationthatisgettingbiggerandbigger,theamountofinformationontheotherpathisgraduallyreduced,antseventuallyfindoptimalpath.
Bysimulatingants'behaviorsuchasforaging,assignmentandbuildingthegraveyard,weputforwardACA.
It'seasytocombinewithotheralgorithms,andithasastrongrobustnessandexcellentdistributedcomputersystem,andit'seasytocombinewithotheralgorithms.
Thisalgorithmachievedgoodeffectintheacademicfield,theproblemssuchasfunctionoptimization,combinationoptimization,datamining,networkrouting,etc.
ACAbecameahotspotformanyscholarstoanalyzetheoptimizationalgorithm,ithasuniqueandwidelyabilitytosolveproblems.
Improvedthealgorithmitself,andcombinedwithotheralgorithms,appliedtomanyoftheactualfieldofwhich.
Basicprinciplesofantcolonyalgorithm)(tijtFirst,solvingtheTSPproblemasanexample,thespecificimplementationstepsofthebasicACAareasfollows.
Givingncitiesandtwoofthedistancebetweenthetwocities,therequirementstodetermineapassedthrougheachcityonlyonceintheshortestpath.
Inordertosimulatethebehaviorofrealants,weintroducedthefollowingnotation;misthenumberofants.
ijd(i,j=1,2,.
.
.
,n)representsthedistancebetweeniandjinthecity,representstheamountofinformationremainingonthepathbetweeniandjinthetcity,it'susedtosimulatethepheromoneconcentrationkallowedktabu)(tpkijoftheactualants.
.
Wheninitialized,mantswereplacedrandomlyondifferentcities,givingthe)0(ijτamountofinformationwasoneachside.
Eachantkofthatthefirstelementwasassignedtothecitywhereitwaslocated.
indicatethattheantkwastransferredfromcityitocityjprobabilitytime,usingformula(1).
indicatesthatantkallowstochosethecityinthenextstep;αasinformationheuristicfactor,indicatesrelativelocusimportance.
Itreflectsthatantsaccumulatedinformationinthemovementtoplaytherolefortheantmovement;βasexpectationheuristicfactor,indicatesrelativevisibilityimportance,itreflectstheimportancedegreeofheuristicinformationwhenantschosethepathinthemovement.
(1)0j,)()()()()(∈=∑∈elseallowediftttttpkallowedsisisijijkijk,ββηtηtAfternmoments,antkwalkedthroughallthecities,completedacycle.
Thenupdatedtheamountofinformationoneachpathbytheformula(2).
ijτ)2()()()1()(ttntijijijttρt+=+Among,calculatedbytheformula(3),itrepresentstheamountofinformationonthekantinthepath(i,j)intheloop.
Thecalculationmethodisbasedonthecalculationmodel,inthemostcommonlyusedAnt-Cyclemodel,usingformula(4),Qrepresentsthepheromoneintensity,itaffectstheconvergencerateofthealgorithmtosomeextent.
kLrepresentsthetotallengthofthepathofthekantinthiscycle.
(3))()(1∑==mkkijijtttt)4(otherwise,0),i(throughcycleinthisantsonlyKtheIf,)(=jLQtkkijtCombinationofantcolonyalgorithmandimmunealgorithm.
Thebasicideaofthecombinationofantcolonyalgorithmandimmunealgorithm.
CombingIAwithACA,usedACAtosolvetheproblemasantigen,andtheextractionofthevaccinetopheromoneinitialization,ACAproducedantibodiestoassignavaluetoaparameter,appliedtothesolutionofspecificproblems,theobtainedresultsasthecurrentantibodyfitnessvaluebyinoculationofvaccineIA,crossover,mutation,affinityselection,retainedtoadaptgoodantibody,eliminatedadaptationofantibody,theiterative,gottheantibodyinfinally,theparameterACAcombinationwasobtainedforthespecificproblem.
Algorithmbyupdatingbasedonaffinity,thuseffectivelypreventsthe'premature'problem,ledthesearchprocesstotheglobaloptimum.
Theinitialvalueofpheromonewasextractedbytheextractionmechanismofvaccine,avoidedtherandomnessoftheinitialsolution.
Byusingthevaccinationmechanism,crossoverandmutationtoacceleratetheconvergencespeed.
ACAandIAiscalledimmuneantcolonyalgorithm(IAACA).
Thebasicstepsoftheimmuneantcolonyalgorithm.
ImmuneantcolonyalgorithmflowchartisshowninFig.
1.
Fig.
1ImmunealgorithmflowchartCombinationofartificialfishswarmalgorithmandimmuneantcolonyalgorithmThebasicideaofthehybridalgorithm(AFSA-IAACA)basedonartificialfishswarmalgorithmandantcolonyimmunealgorithm.
AFSAhastheadvantagesoffastconvergencespeed,wewilladdedtoeveryiterativeprocessofimmuneantcolonyalgorithmtoacceleratetheconvergencespeedofantcolonyalgorithm,anddependingontheforagingbehaviorofAFSAtohelpimproveIAACAtojumpoutoflocaloptimum.
AFSA-IAACAfortheTSPproblemofadetailedimprovementstrategyandalgorithmdetailedsteps:Step1Attheinitialt=0,mantswererandomlyplacedinthencities,eachpathinitialpheromoneconcentrationis.
)0(constij=tStep2Antscalculatedtransferprobabilitybytheformula(1),selectedtoprojecttransitionpath.
Thencalculatedthepathcongestionatthattimeijqbytheformula(5).
If)(tqijδindicatedthatpathisnottoocrowded,antschosethepathtotransferfrompositionitopositionj.
Otherwise,thepathwastoocrowded,theantselectedapathoftransferinthefeasibleneighborhoodtorandomly.
Amongthem,)(tδiscongestionthresholdinttime,updatedtypebytheformula(6).
Amongthem,cisthethresholdcoefficientofvariation.
(5))()(2∑≠=jiijijijttqtt(6)1)(ctet=δStep3Afternmoment,thekantwentallCitiestocompleteacycle.
Thenupdatedtheinformationoneachpathbytheformula(2).
Step4Repeatedformula(1)and(2),untilthemantschosethesamepathorreachthespecifiedmaximum.
SimulationResultsandAnalysisTable1Comparisonofexperimentalresultsnumberofcities(ACA)(IAACA)(AFSA-IAACA)averageiterationnumberOptimumsolutionaverageiterationnumberOptimumsolutionaverageiterationnumberOptimumsolution101032.
708617982.
708617912.
70861730728423.
631000596423.
631000547423.
631000501465429.
543000962427.
865000715427.
653.
000752103569.
7830001421551.
649000892541.
443000TheresultsshowthattheAFSA-IAACAalgorithmproveditsfeasibility,effectivenessandconvergencebyapplicationandsimulationexperimentintheTSPproblem.
ThealgorithmwillAFSAaddedtoeachiterativeprocessofIAACA,takingadvantageofAFSAwithfastconvergencewhichacceleratetheconvergencespeedofACAandforagingbehaviorofAFSAcouldhelpimprovedtheabilityofACAtojumpoutoflocaloptimum.
Bydoingthis,wecanreducenotonlythenumberofinvalidsearch,butalsothealgorithmintothelocaloptimalsolution,improvetheabilityandconvergencespeedofthealgorithm.
ConclusionsACAhassomeproblems,suchasprematureconvergence,slowconvergence,thecombinationofACAandIAisaneffectivemethodtosolvethesedefects.
ThencombinetheIAACAandAFSAtosolvethesedefectsthatlongsearchtimeandeasilyfallintolocaloptimization,andtoimprovetheabilitytojumpextreme,andsignificantlyimprovetheaccuracyofthealgorithm.
ThesimulationexperimentwascarriedoutbysolvingtheTSPproblem,andresultsshowthattheimprovedalgorithmiseffectiveandfeasible.
AcknowledgmentsTheauthorswishtoexpresstheirgratitudetotheprojects:JilinProvinceEconomicStructuralAdjustmentLeadingFundSpecialProject(No.
2014Y108)andChangchunCityScienceandTechnologyPlanProject(No.
14nk029),KeyTacklingItemofJilinProvinceScience&TechnologyDepartment(No.
20140204045NY),DesignofStandardizedBreedingSystemforRabbitsBasedonInternetofThingsfromEducationDepartmentofJilinProvince,ChangchunCityScienceandTechnologyPlanProject(No.
13KG71),fortheirgeneroussupportofthiswork.
References[1]GuMingjia,XuanShibin,LianKanchao,etal.
QoSroutingalgorithmbasedoncombinationofmodifiedantcolonyalgorithmandartificialfishswarmalgorithm,Computertechnologyanddevelopment,2009,pp.
145-148.
[2]HeYijun,ChenDezhao.
Theconstructionandapplicationofantcolonyalgorithmformulti-objectiveoptimization,HightechnologyCommunication,Beijing,2006,pp.
1241-1245.
[3]CaiLijun,JiangLinbo,YiYeQing.
Geneselectionbasedonantcolonyoptimizationalgorithm,CalculationandApplicationResearch.
Beijing,2008,pp.
2754-2756.
[4]DuanHaibin.
Antcolonyalgorithmanditsapplication,SciencePress,Beijing,2005.
[5]DasguptaD.
Advancesinartificialimmunesystems,IEEEComputationalIntelligenceMagazine,Beijing,2006,pp.
40-49.
[6]JiangXinzi,TongKezong,GaoShang.
Hybridalgorithmofantcolonyalgorithmwithimmunealgorithm,ScienceTechnologyandEngineering,Beijing,2008,pp.
1328-1333.
hostsailor怎么样?hostsailor成立多年,是一家罗马尼亚主机商家,机房就设在罗马尼亚,具说商家对内容管理的还是比较宽松的,商家提供虚拟主机、VPS及独立服务器,今天收到商家推送的八月优惠,针对所有的产品都有相应的优惠,商家的VPS产品分为KVM和OpenVZ两种架构,OVZ的比较便宜,有这方面需要的朋友可以看看。点击进入:hostsailor商家官方网站HostSailor优惠活动...
Webhosting24是一家始于2001年的意大利商家,提供的产品包括虚拟主机、VPS、独立服务器等,可选数机房包括美国洛杉矶、迈阿密、纽约、德国慕尼黑、日本、新加坡、澳大利亚悉尼等。商家VPS主机采用AMD Ryzen 9 5950X CPU,NVMe磁盘,基于KVM架构,德国机房不限制流量,网站采用欧元计费,最低年付15欧元起。这里以美国机房为例,分享几款套餐配置信息。CPU:1core内存...
tmthosting怎么样?tmthosting家本站也分享过多次,之前也是不温不火的商家,加上商家的价格略贵,之到斯巴达商家出现,这个商家才被中国用户熟知,原因就是斯巴达家的机器是三网回程AS4837线路,而且也没有多余的加价,斯巴达家断货后,有朋友发现TMTHosting竟然也在同一机房,所以大家就都入手了TMTHosting家的机器。目前,TMTHosting商家放出了夏季优惠,针对VPS推...
腾讯qq空间登录为你推荐
麒麟820和980哪个好骁龙820和麒麟970哪个更强?视频剪辑软件哪个好常见好用的视频剪辑软件都有哪些?苹果x和xr哪个好苹果x和苹果xr买哪个好手动挡和自动挡哪个好自动挡和手动挡哪个更好一点手机杀毒哪个好手机杀毒软件哪个最好用尼康和佳能单反哪个好佳能和尼康单反哪个好?播放器哪个好哪个播放器最好雅思和托福哪个好考托福好考还是雅思好考哇?网络机顶盒哪个好什么牌子的网络机顶盒最好空间登录qq如何在空间里登陆qq
com域名注册 七牛优惠码 哈喽图床 英文站群 怎么测试下载速度 昆明蜗牛家 上海联通宽带测速 厦门电信 www789 国内域名 服务器论坛 杭州电信宽带优惠 免备案jsp空间 cdn加速 标准机柜 comodo asp.net虚拟主机 中国域名根服务器 screen let 更多