specific腾讯qq空间登录

腾讯qq空间登录  时间:2021-01-21  阅读:()
ResearchofImprovedAntColonyHybridAlgorithmLiShijun1,a,HanYu1,b,GuHongjun1,c,GongHe1,d,LiJian1,el1CollegeofInformation&Technology,JilinAgriculturalUniversity,Changchun130118,China.
a452835889@qq.
com,b372600730@qq.
com,c330837495@qq.
comd29878671@qq.
com,e2312852319@qq.
comKeywords:antcolonyalgorithm,immunealgorithm,artificialfishswarmalgorithm,hybridalgorithm.
Abstract.
Inordertoextendtheapplicationofantcolonyalgorithm(ACA),manyscholarscombinedtheantcolonyalgorithmwithimmunealgorithm(IA)orotheralgorithmstosolvetheproblemofslowconvergence.
Tofullysolvethetoolongsearchtime,easilyfallingintolocaloptimization,slowconvergenceandsomeotherdefects,theimmunealgorithmandartificialfishswarmalgorithm(AFSA)combinewiththeantcolonyalgorithm,andtheantcolonyhybridalgorithmisproposed.
Thenbysolvingthetravelingsalesmanproblem(TSP),thenewalgorithmissimulated,andtheresultsshowthatimprovingalgorithmiseffectiveandfeasible.
IntroductionTheantcolonyalgorithm(ACA)wasfirstproposedbyItalyscholarDorigoM.
andothersin1991,anovelsimulatedevolutionaryalgorithm,antssearchforapaththroughthesecretionofpheromonescatteredonitspath.
Thentheantsrandomlychoosearoadthatdidn'tpass,releasepheromoneaboutthelengthofthispath.
Buttheamountofinformationreleasedisinverselyproportionaltothelengthofthepath,whichlikelytochoosethepathofalargeramountofinformation,it'sapositivefeedbackmechanism.
Thebestpathistheamountofinformationthatisgettingbiggerandbigger,theamountofinformationontheotherpathisgraduallyreduced,antseventuallyfindoptimalpath.
Bysimulatingants'behaviorsuchasforaging,assignmentandbuildingthegraveyard,weputforwardACA.
It'seasytocombinewithotheralgorithms,andithasastrongrobustnessandexcellentdistributedcomputersystem,andit'seasytocombinewithotheralgorithms.
Thisalgorithmachievedgoodeffectintheacademicfield,theproblemssuchasfunctionoptimization,combinationoptimization,datamining,networkrouting,etc.
ACAbecameahotspotformanyscholarstoanalyzetheoptimizationalgorithm,ithasuniqueandwidelyabilitytosolveproblems.
Improvedthealgorithmitself,andcombinedwithotheralgorithms,appliedtomanyoftheactualfieldofwhich.
Basicprinciplesofantcolonyalgorithm)(tijtFirst,solvingtheTSPproblemasanexample,thespecificimplementationstepsofthebasicACAareasfollows.
Givingncitiesandtwoofthedistancebetweenthetwocities,therequirementstodetermineapassedthrougheachcityonlyonceintheshortestpath.
Inordertosimulatethebehaviorofrealants,weintroducedthefollowingnotation;misthenumberofants.
ijd(i,j=1,2,.
.
.
,n)representsthedistancebetweeniandjinthecity,representstheamountofinformationremainingonthepathbetweeniandjinthetcity,it'susedtosimulatethepheromoneconcentrationkallowedktabu)(tpkijoftheactualants.
.
Wheninitialized,mantswereplacedrandomlyondifferentcities,givingthe)0(ijτamountofinformationwasoneachside.
Eachantkofthatthefirstelementwasassignedtothecitywhereitwaslocated.
indicatethattheantkwastransferredfromcityitocityjprobabilitytime,usingformula(1).
indicatesthatantkallowstochosethecityinthenextstep;αasinformationheuristicfactor,indicatesrelativelocusimportance.
Itreflectsthatantsaccumulatedinformationinthemovementtoplaytherolefortheantmovement;βasexpectationheuristicfactor,indicatesrelativevisibilityimportance,itreflectstheimportancedegreeofheuristicinformationwhenantschosethepathinthemovement.
(1)0j,)()()()()(∈=∑∈elseallowediftttttpkallowedsisisijijkijk,ββηtηtAfternmoments,antkwalkedthroughallthecities,completedacycle.
Thenupdatedtheamountofinformationoneachpathbytheformula(2).
ijτ)2()()()1()(ttntijijijttρt+=+Among,calculatedbytheformula(3),itrepresentstheamountofinformationonthekantinthepath(i,j)intheloop.
Thecalculationmethodisbasedonthecalculationmodel,inthemostcommonlyusedAnt-Cyclemodel,usingformula(4),Qrepresentsthepheromoneintensity,itaffectstheconvergencerateofthealgorithmtosomeextent.
kLrepresentsthetotallengthofthepathofthekantinthiscycle.
(3))()(1∑==mkkijijtttt)4(otherwise,0),i(throughcycleinthisantsonlyKtheIf,)(=jLQtkkijtCombinationofantcolonyalgorithmandimmunealgorithm.
Thebasicideaofthecombinationofantcolonyalgorithmandimmunealgorithm.
CombingIAwithACA,usedACAtosolvetheproblemasantigen,andtheextractionofthevaccinetopheromoneinitialization,ACAproducedantibodiestoassignavaluetoaparameter,appliedtothesolutionofspecificproblems,theobtainedresultsasthecurrentantibodyfitnessvaluebyinoculationofvaccineIA,crossover,mutation,affinityselection,retainedtoadaptgoodantibody,eliminatedadaptationofantibody,theiterative,gottheantibodyinfinally,theparameterACAcombinationwasobtainedforthespecificproblem.
Algorithmbyupdatingbasedonaffinity,thuseffectivelypreventsthe'premature'problem,ledthesearchprocesstotheglobaloptimum.
Theinitialvalueofpheromonewasextractedbytheextractionmechanismofvaccine,avoidedtherandomnessoftheinitialsolution.
Byusingthevaccinationmechanism,crossoverandmutationtoacceleratetheconvergencespeed.
ACAandIAiscalledimmuneantcolonyalgorithm(IAACA).
Thebasicstepsoftheimmuneantcolonyalgorithm.
ImmuneantcolonyalgorithmflowchartisshowninFig.
1.
Fig.
1ImmunealgorithmflowchartCombinationofartificialfishswarmalgorithmandimmuneantcolonyalgorithmThebasicideaofthehybridalgorithm(AFSA-IAACA)basedonartificialfishswarmalgorithmandantcolonyimmunealgorithm.
AFSAhastheadvantagesoffastconvergencespeed,wewilladdedtoeveryiterativeprocessofimmuneantcolonyalgorithmtoacceleratetheconvergencespeedofantcolonyalgorithm,anddependingontheforagingbehaviorofAFSAtohelpimproveIAACAtojumpoutoflocaloptimum.
AFSA-IAACAfortheTSPproblemofadetailedimprovementstrategyandalgorithmdetailedsteps:Step1Attheinitialt=0,mantswererandomlyplacedinthencities,eachpathinitialpheromoneconcentrationis.
)0(constij=tStep2Antscalculatedtransferprobabilitybytheformula(1),selectedtoprojecttransitionpath.
Thencalculatedthepathcongestionatthattimeijqbytheformula(5).
If)(tqijδindicatedthatpathisnottoocrowded,antschosethepathtotransferfrompositionitopositionj.
Otherwise,thepathwastoocrowded,theantselectedapathoftransferinthefeasibleneighborhoodtorandomly.
Amongthem,)(tδiscongestionthresholdinttime,updatedtypebytheformula(6).
Amongthem,cisthethresholdcoefficientofvariation.
(5))()(2∑≠=jiijijijttqtt(6)1)(ctet=δStep3Afternmoment,thekantwentallCitiestocompleteacycle.
Thenupdatedtheinformationoneachpathbytheformula(2).
Step4Repeatedformula(1)and(2),untilthemantschosethesamepathorreachthespecifiedmaximum.
SimulationResultsandAnalysisTable1Comparisonofexperimentalresultsnumberofcities(ACA)(IAACA)(AFSA-IAACA)averageiterationnumberOptimumsolutionaverageiterationnumberOptimumsolutionaverageiterationnumberOptimumsolution101032.
708617982.
708617912.
70861730728423.
631000596423.
631000547423.
631000501465429.
543000962427.
865000715427.
653.
000752103569.
7830001421551.
649000892541.
443000TheresultsshowthattheAFSA-IAACAalgorithmproveditsfeasibility,effectivenessandconvergencebyapplicationandsimulationexperimentintheTSPproblem.
ThealgorithmwillAFSAaddedtoeachiterativeprocessofIAACA,takingadvantageofAFSAwithfastconvergencewhichacceleratetheconvergencespeedofACAandforagingbehaviorofAFSAcouldhelpimprovedtheabilityofACAtojumpoutoflocaloptimum.
Bydoingthis,wecanreducenotonlythenumberofinvalidsearch,butalsothealgorithmintothelocaloptimalsolution,improvetheabilityandconvergencespeedofthealgorithm.
ConclusionsACAhassomeproblems,suchasprematureconvergence,slowconvergence,thecombinationofACAandIAisaneffectivemethodtosolvethesedefects.
ThencombinetheIAACAandAFSAtosolvethesedefectsthatlongsearchtimeandeasilyfallintolocaloptimization,andtoimprovetheabilitytojumpextreme,andsignificantlyimprovetheaccuracyofthealgorithm.
ThesimulationexperimentwascarriedoutbysolvingtheTSPproblem,andresultsshowthattheimprovedalgorithmiseffectiveandfeasible.
AcknowledgmentsTheauthorswishtoexpresstheirgratitudetotheprojects:JilinProvinceEconomicStructuralAdjustmentLeadingFundSpecialProject(No.
2014Y108)andChangchunCityScienceandTechnologyPlanProject(No.
14nk029),KeyTacklingItemofJilinProvinceScience&TechnologyDepartment(No.
20140204045NY),DesignofStandardizedBreedingSystemforRabbitsBasedonInternetofThingsfromEducationDepartmentofJilinProvince,ChangchunCityScienceandTechnologyPlanProject(No.
13KG71),fortheirgeneroussupportofthiswork.
References[1]GuMingjia,XuanShibin,LianKanchao,etal.
QoSroutingalgorithmbasedoncombinationofmodifiedantcolonyalgorithmandartificialfishswarmalgorithm,Computertechnologyanddevelopment,2009,pp.
145-148.
[2]HeYijun,ChenDezhao.
Theconstructionandapplicationofantcolonyalgorithmformulti-objectiveoptimization,HightechnologyCommunication,Beijing,2006,pp.
1241-1245.
[3]CaiLijun,JiangLinbo,YiYeQing.
Geneselectionbasedonantcolonyoptimizationalgorithm,CalculationandApplicationResearch.
Beijing,2008,pp.
2754-2756.
[4]DuanHaibin.
Antcolonyalgorithmanditsapplication,SciencePress,Beijing,2005.
[5]DasguptaD.
Advancesinartificialimmunesystems,IEEEComputationalIntelligenceMagazine,Beijing,2006,pp.
40-49.
[6]JiangXinzi,TongKezong,GaoShang.
Hybridalgorithmofantcolonyalgorithmwithimmunealgorithm,ScienceTechnologyandEngineering,Beijing,2008,pp.
1328-1333.

腾讯云轻量服务器两款低价年付套餐 2核4GB内存8M带宽 年74元

昨天,有在"阿里云秋季促销活动 轻量云服务器2G5M配置新购年60元"文章中记录到阿里云轻量服务器2GB内存、5M带宽一年60元的活动,当然这个也是国内机房的。我们很多人都清楚备案是需要接入的,如果我们在其他服务商的域名备案的,那是不能解析的。除非我们不是用来建站,而是用来云端的,是可以用的。这不看到其对手腾讯云也有推出两款轻量服务器活动。其中一款是4GB内存、8M带宽,这个比阿里云还要狠。这个真...

统计一下racknerd正在卖的超便宜VPS,值得推荐的便宜美国VPS

racknerd从成立到现在发展是相当迅速,用最低的价格霸占了大部分低端便宜vps市场,虽然VPS价格便宜,但是VPS的质量和服务一点儿都不拉跨,服务器稳定、性能给力,尤其是售后方面时间短技术解决能力强,估计这也是racknerd这个品牌能如此成功的原因吧! 官方网站:https://www.racknerd.com 多种加密数字货币、信用卡、PayPal、支付宝、银联、webmoney,可...

麻花云:3折优惠,香港CN2安徽麻花云香港安徽移动BGP云服务器(大带宽)

麻花云在7月特意为主机测评用户群定制了促销活动:香港宽频CN2云服务器、安徽移动云服务器(BGP网络,非单线,效果更好)、安徽移动独立服务器、安徽电信独立服务器,全部不限制流量,自带一个IPv4,默认5Gbps的DDoS防御。活动链接:https://www.mhyun.net/act/zjcp特价云服务器不限流量,自带一个IPv4,5Gbps防御香港宽频CN2全固态Ⅲ型 4核4G【KVM】内存:...

腾讯qq空间登录为你推荐
聚酯纤维和棉哪个好聚酯纤维和纯棉的相比,哪个好?帕萨特和迈腾哪个好2019帕萨特和迈腾哪个好?隔音怎么样?网络机顶盒哪个好什么牌子的网络机顶盒最好qq空间登录不了登陆不了QQ空间dns服务器未响应电脑网络连接不到,DNS服务器未响应是什么意思?dns服务器故障DNS服务器老是出错 如何从根本上解决??360云盘论坛360云盘最大多少G360云盘下载速度慢怎么办360网盘上传速度好慢,怎么解决?月抛隐形眼镜月抛隐形眼镜大概多少钱强生美瞳月抛强生隐形眼镜月抛有哪些,价格是多少?哪个较好?
免费网站域名注册 个人域名注册 日本软银 59.99美元 512m seovip html空间 华为网络硬盘 日本bb瘦 免费网页空间 怎么建立邮箱 韩国代理ip 杭州电信宽带 广州主机托管 服务器防御 forwarder cloudflare 中国域名根服务器 长沙服务器托管 深圳服务器维护 更多