specific腾讯qq空间登录
腾讯qq空间登录 时间:2021-01-21 阅读:(
)
ResearchofImprovedAntColonyHybridAlgorithmLiShijun1,a,HanYu1,b,GuHongjun1,c,GongHe1,d,LiJian1,el1CollegeofInformation&Technology,JilinAgriculturalUniversity,Changchun130118,China.
a452835889@qq.
com,b372600730@qq.
com,c330837495@qq.
comd29878671@qq.
com,e2312852319@qq.
comKeywords:antcolonyalgorithm,immunealgorithm,artificialfishswarmalgorithm,hybridalgorithm.
Abstract.
Inordertoextendtheapplicationofantcolonyalgorithm(ACA),manyscholarscombinedtheantcolonyalgorithmwithimmunealgorithm(IA)orotheralgorithmstosolvetheproblemofslowconvergence.
Tofullysolvethetoolongsearchtime,easilyfallingintolocaloptimization,slowconvergenceandsomeotherdefects,theimmunealgorithmandartificialfishswarmalgorithm(AFSA)combinewiththeantcolonyalgorithm,andtheantcolonyhybridalgorithmisproposed.
Thenbysolvingthetravelingsalesmanproblem(TSP),thenewalgorithmissimulated,andtheresultsshowthatimprovingalgorithmiseffectiveandfeasible.
IntroductionTheantcolonyalgorithm(ACA)wasfirstproposedbyItalyscholarDorigoM.
andothersin1991,anovelsimulatedevolutionaryalgorithm,antssearchforapaththroughthesecretionofpheromonescatteredonitspath.
Thentheantsrandomlychoosearoadthatdidn'tpass,releasepheromoneaboutthelengthofthispath.
Buttheamountofinformationreleasedisinverselyproportionaltothelengthofthepath,whichlikelytochoosethepathofalargeramountofinformation,it'sapositivefeedbackmechanism.
Thebestpathistheamountofinformationthatisgettingbiggerandbigger,theamountofinformationontheotherpathisgraduallyreduced,antseventuallyfindoptimalpath.
Bysimulatingants'behaviorsuchasforaging,assignmentandbuildingthegraveyard,weputforwardACA.
It'seasytocombinewithotheralgorithms,andithasastrongrobustnessandexcellentdistributedcomputersystem,andit'seasytocombinewithotheralgorithms.
Thisalgorithmachievedgoodeffectintheacademicfield,theproblemssuchasfunctionoptimization,combinationoptimization,datamining,networkrouting,etc.
ACAbecameahotspotformanyscholarstoanalyzetheoptimizationalgorithm,ithasuniqueandwidelyabilitytosolveproblems.
Improvedthealgorithmitself,andcombinedwithotheralgorithms,appliedtomanyoftheactualfieldofwhich.
Basicprinciplesofantcolonyalgorithm)(tijtFirst,solvingtheTSPproblemasanexample,thespecificimplementationstepsofthebasicACAareasfollows.
Givingncitiesandtwoofthedistancebetweenthetwocities,therequirementstodetermineapassedthrougheachcityonlyonceintheshortestpath.
Inordertosimulatethebehaviorofrealants,weintroducedthefollowingnotation;misthenumberofants.
ijd(i,j=1,2,.
.
.
,n)representsthedistancebetweeniandjinthecity,representstheamountofinformationremainingonthepathbetweeniandjinthetcity,it'susedtosimulatethepheromoneconcentrationkallowedktabu)(tpkijoftheactualants.
.
Wheninitialized,mantswereplacedrandomlyondifferentcities,givingthe)0(ijτamountofinformationwasoneachside.
Eachantkofthatthefirstelementwasassignedtothecitywhereitwaslocated.
indicatethattheantkwastransferredfromcityitocityjprobabilitytime,usingformula(1).
indicatesthatantkallowstochosethecityinthenextstep;αasinformationheuristicfactor,indicatesrelativelocusimportance.
Itreflectsthatantsaccumulatedinformationinthemovementtoplaytherolefortheantmovement;βasexpectationheuristicfactor,indicatesrelativevisibilityimportance,itreflectstheimportancedegreeofheuristicinformationwhenantschosethepathinthemovement.
(1)0j,)()()()()(∈=∑∈elseallowediftttttpkallowedsisisijijkijk,ββηtηtAfternmoments,antkwalkedthroughallthecities,completedacycle.
Thenupdatedtheamountofinformationoneachpathbytheformula(2).
ijτ)2()()()1()(ttntijijijttρt+=+Among,calculatedbytheformula(3),itrepresentstheamountofinformationonthekantinthepath(i,j)intheloop.
Thecalculationmethodisbasedonthecalculationmodel,inthemostcommonlyusedAnt-Cyclemodel,usingformula(4),Qrepresentsthepheromoneintensity,itaffectstheconvergencerateofthealgorithmtosomeextent.
kLrepresentsthetotallengthofthepathofthekantinthiscycle.
(3))()(1∑==mkkijijtttt)4(otherwise,0),i(throughcycleinthisantsonlyKtheIf,)(=jLQtkkijtCombinationofantcolonyalgorithmandimmunealgorithm.
Thebasicideaofthecombinationofantcolonyalgorithmandimmunealgorithm.
CombingIAwithACA,usedACAtosolvetheproblemasantigen,andtheextractionofthevaccinetopheromoneinitialization,ACAproducedantibodiestoassignavaluetoaparameter,appliedtothesolutionofspecificproblems,theobtainedresultsasthecurrentantibodyfitnessvaluebyinoculationofvaccineIA,crossover,mutation,affinityselection,retainedtoadaptgoodantibody,eliminatedadaptationofantibody,theiterative,gottheantibodyinfinally,theparameterACAcombinationwasobtainedforthespecificproblem.
Algorithmbyupdatingbasedonaffinity,thuseffectivelypreventsthe'premature'problem,ledthesearchprocesstotheglobaloptimum.
Theinitialvalueofpheromonewasextractedbytheextractionmechanismofvaccine,avoidedtherandomnessoftheinitialsolution.
Byusingthevaccinationmechanism,crossoverandmutationtoacceleratetheconvergencespeed.
ACAandIAiscalledimmuneantcolonyalgorithm(IAACA).
Thebasicstepsoftheimmuneantcolonyalgorithm.
ImmuneantcolonyalgorithmflowchartisshowninFig.
1.
Fig.
1ImmunealgorithmflowchartCombinationofartificialfishswarmalgorithmandimmuneantcolonyalgorithmThebasicideaofthehybridalgorithm(AFSA-IAACA)basedonartificialfishswarmalgorithmandantcolonyimmunealgorithm.
AFSAhastheadvantagesoffastconvergencespeed,wewilladdedtoeveryiterativeprocessofimmuneantcolonyalgorithmtoacceleratetheconvergencespeedofantcolonyalgorithm,anddependingontheforagingbehaviorofAFSAtohelpimproveIAACAtojumpoutoflocaloptimum.
AFSA-IAACAfortheTSPproblemofadetailedimprovementstrategyandalgorithmdetailedsteps:Step1Attheinitialt=0,mantswererandomlyplacedinthencities,eachpathinitialpheromoneconcentrationis.
)0(constij=tStep2Antscalculatedtransferprobabilitybytheformula(1),selectedtoprojecttransitionpath.
Thencalculatedthepathcongestionatthattimeijqbytheformula(5).
If)(tqijδindicatedthatpathisnottoocrowded,antschosethepathtotransferfrompositionitopositionj.
Otherwise,thepathwastoocrowded,theantselectedapathoftransferinthefeasibleneighborhoodtorandomly.
Amongthem,)(tδiscongestionthresholdinttime,updatedtypebytheformula(6).
Amongthem,cisthethresholdcoefficientofvariation.
(5))()(2∑≠=jiijijijttqtt(6)1)(ctet=δStep3Afternmoment,thekantwentallCitiestocompleteacycle.
Thenupdatedtheinformationoneachpathbytheformula(2).
Step4Repeatedformula(1)and(2),untilthemantschosethesamepathorreachthespecifiedmaximum.
SimulationResultsandAnalysisTable1Comparisonofexperimentalresultsnumberofcities(ACA)(IAACA)(AFSA-IAACA)averageiterationnumberOptimumsolutionaverageiterationnumberOptimumsolutionaverageiterationnumberOptimumsolution101032.
708617982.
708617912.
70861730728423.
631000596423.
631000547423.
631000501465429.
543000962427.
865000715427.
653.
000752103569.
7830001421551.
649000892541.
443000TheresultsshowthattheAFSA-IAACAalgorithmproveditsfeasibility,effectivenessandconvergencebyapplicationandsimulationexperimentintheTSPproblem.
ThealgorithmwillAFSAaddedtoeachiterativeprocessofIAACA,takingadvantageofAFSAwithfastconvergencewhichacceleratetheconvergencespeedofACAandforagingbehaviorofAFSAcouldhelpimprovedtheabilityofACAtojumpoutoflocaloptimum.
Bydoingthis,wecanreducenotonlythenumberofinvalidsearch,butalsothealgorithmintothelocaloptimalsolution,improvetheabilityandconvergencespeedofthealgorithm.
ConclusionsACAhassomeproblems,suchasprematureconvergence,slowconvergence,thecombinationofACAandIAisaneffectivemethodtosolvethesedefects.
ThencombinetheIAACAandAFSAtosolvethesedefectsthatlongsearchtimeandeasilyfallintolocaloptimization,andtoimprovetheabilitytojumpextreme,andsignificantlyimprovetheaccuracyofthealgorithm.
ThesimulationexperimentwascarriedoutbysolvingtheTSPproblem,andresultsshowthattheimprovedalgorithmiseffectiveandfeasible.
AcknowledgmentsTheauthorswishtoexpresstheirgratitudetotheprojects:JilinProvinceEconomicStructuralAdjustmentLeadingFundSpecialProject(No.
2014Y108)andChangchunCityScienceandTechnologyPlanProject(No.
14nk029),KeyTacklingItemofJilinProvinceScience&TechnologyDepartment(No.
20140204045NY),DesignofStandardizedBreedingSystemforRabbitsBasedonInternetofThingsfromEducationDepartmentofJilinProvince,ChangchunCityScienceandTechnologyPlanProject(No.
13KG71),fortheirgeneroussupportofthiswork.
References[1]GuMingjia,XuanShibin,LianKanchao,etal.
QoSroutingalgorithmbasedoncombinationofmodifiedantcolonyalgorithmandartificialfishswarmalgorithm,Computertechnologyanddevelopment,2009,pp.
145-148.
[2]HeYijun,ChenDezhao.
Theconstructionandapplicationofantcolonyalgorithmformulti-objectiveoptimization,HightechnologyCommunication,Beijing,2006,pp.
1241-1245.
[3]CaiLijun,JiangLinbo,YiYeQing.
Geneselectionbasedonantcolonyoptimizationalgorithm,CalculationandApplicationResearch.
Beijing,2008,pp.
2754-2756.
[4]DuanHaibin.
Antcolonyalgorithmanditsapplication,SciencePress,Beijing,2005.
[5]DasguptaD.
Advancesinartificialimmunesystems,IEEEComputationalIntelligenceMagazine,Beijing,2006,pp.
40-49.
[6]JiangXinzi,TongKezong,GaoShang.
Hybridalgorithmofantcolonyalgorithmwithimmunealgorithm,ScienceTechnologyandEngineering,Beijing,2008,pp.
1328-1333.
RAKsmart 商家我们应该较多的熟悉的,主营独立服务器和站群服务器业务。从去年开始有陆续的新增多个机房,包含韩国、日本、中国香港等。虽然他们家也有VPS主机,但是好像不是特别的重视,价格上特价的时候也是比较便宜的1.99美元月付(年中活动有促销)。不过他们的重点还是独立服务器,毕竟在这个产业中利润率较大。正如上面的Megalayer商家的美国服务器活动,这个同学有需要独立服务器,这里我一并整理...
WordPress经典外贸企业建站主题,经典配色扁平化简约设计+跨屏自适应移动端设备,特色外贸企业建站功能模块+在线Inquiry询单功能,更有利于Google等英文搜索优化和站点收录。采用标准的HTML5+CSS3语言开发,兼容当下的各种主流浏览器: IE 6+(以及类似360、遨游等基于IE内核的)、Firefox、Google Chrome、Safari、Opera等;同时支持移动终端的常用...
IntoVPS是成立于2004年的Hosterion SRL旗下于2009年推出的无管理型VPS主机品牌,商家提供基于OpenStack构建的VPS产品,支持小时计费是他的一大特色,VPS可选数据中心包括美国弗里蒙特、达拉斯、英国伦敦、荷兰和罗马尼亚等6个地区机房。商家VPS主机基于KVM架构,最低每小时0.0075美元起($5/月)。下面列出几款VPS主机配置信息。CPU:1core内存:2GB...
腾讯qq空间登录为你推荐
电脑杀毒软件哪个好电脑用什么杀毒软件好?迈腾和帕萨特哪个好迈腾和帕萨特哪个好华为p40和mate30哪个好荣耀30pro和华为P40哪个好?网页传奇哪个好玩求最好玩的网页传奇?云盘哪个好网络云盘哪个好用视频软件哪个好编辑视频用什么软件最好考生个人空间登录自学考试的“考生个人空间”密码忘记了……一定要本人带身份证和考籍证去有关部门吗?google广告申请申请Google广告要多长时间呢360云盘下载下载一个360云盘,怎么下载360云盘企业版360云盘转企业版我的数据该怎么办
域名备案流程 泛域名解析 赵容 国内永久免费云服务器 qq数据库 南昌服务器托管 小米数据库 ca4249 促正网秒杀 泉州电信 129邮箱 qq对话框 国外免费asp空间 in域名 华为云盘 工信部网站备案查询 xuni 阵亡将士纪念日 cdn服务 windowsserver2012r2 更多